chris kelly university of edinburgh rbc & ukqcd collaborations · bk chiral fit forms we use...

122
B K for 2+1 flavour domain wall fermions from 24 3 and 32 3 × 64 lattices Chris Kelly University of Edinburgh RBC & UKQCD Collaborations Mon 14 th July

Upload: others

Post on 29-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK for 2+1 flavour domain wall fermions from243 and 323 × 64 lattices

Chris Kelly

University of EdinburghRBC & UKQCD Collaborations

Mon 14th July

Page 2: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Outline

The neutral kaon mixing amplitude BK

Page 3: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Outline

The neutral kaon mixing amplitude BK

Ensemble details

Page 4: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

Page 5: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

The chiral extrapolation of BK

Page 6: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

The chiral extrapolation of BK

The non-perturbative renormalisation of BK

Page 7: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

The chiral extrapolation of BK

The non-perturbative renormalisation of BK

Conclusions and Outlook

Page 8: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

The neutral kaon mixing amplitude BK

Page 9: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Kaon mixing

◮ Indirect CP violation in neutral kaon sector

Page 10: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:

Page 11: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:

Page 12: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:

Page 13: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:

Page 14: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK

◮ BK parameterises the matrix element of the four-quarkK 0 → K̄ 0 operator

Page 15: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK

◮ BK parameterises the matrix element of the four-quarkK 0 → K̄ 0 operator

BK ≡〈K 0|OVV+AA|K̄

0〉83 f 2

KM2K

Page 16: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK

◮ BK parameterises the matrix element of the four-quarkK 0 → K̄ 0 operator

BK ≡〈K 0|OVV+AA|K̄

0〉83 f 2

KM2K

OVV+AA = (s̄γµd)(s̄γµd) + (s̄γ5γµd)(s̄γ5γµd)

Page 17: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK

◮ BK parameterises the matrix element of the four-quarkK 0 → K̄ 0 operator

BK ≡〈K 0|OVV+AA|K̄

0〉83 f 2

KM2K

OVV+AA = (s̄γµd)(s̄γµd) + (s̄γ5γµd)(s̄γ5γµd)

◮ BK related to measure of indirect CP violation ǫK = KL→(ππ)KS→(ππ)

you →relation contains unknown direct CP violatingparameters.

Page 18: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK

◮ BK parameterises the matrix element of the four-quarkK 0 → K̄ 0 operator

BK ≡〈K 0|OVV+AA|K̄

0〉83 f 2

KM2K

OVV+AA = (s̄γµd)(s̄γµd) + (s̄γ5γµd)(s̄γ5γµd)

◮ BK related to measure of indirect CP violation ǫK = KL→(ππ)KS→(ππ)

you →relation contains unknown direct CP violatingparameters.

◮ ǫK known experimentally to high precision ⇒ BK constrainsunknown direct CP violating parameters.

Page 19: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Ensemble details

Page 20: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64 323 × 64

Page 21: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

Page 22: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.13

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

Page 23: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.13

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.25

Page 24: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.13

◮ a−1 = 1.729(28) GeV →(2.74 fm)3 lattice volume

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.25

Page 25: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.13

◮ a−1 = 1.729(28) GeV →(2.74 fm)3 lattice volume

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.25

◮ a−1 = 2.42(4) 0.47r0 (fm) GeV →

(2.61 fm)3 lattice volume

Page 26: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.13

◮ a−1 = 1.729(28) GeV →(2.74 fm)3 lattice volume

◮ Strange sea quark mass 0.04lattice units

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.25

◮ a−1 = 2.42(4) 0.47r0 (fm) GeV →

(2.61 fm)3 lattice volume

Page 27: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Details of ensembles

243 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.13

◮ a−1 = 1.729(28) GeV →(2.74 fm)3 lattice volume

◮ Strange sea quark mass 0.04lattice units

323 × 64

◮ 2+1f domain wall fermionensemble with Ls = 16

◮ Iwasaki gauge actionβ = 2.25

◮ a−1 = 2.42(4) 0.47r0 (fm) GeV →

(2.61 fm)3 lattice volume

◮ Strange sea quark mass 0.03lattice units

Page 28: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Up/down sea quark masses

243 × 64

latt. units mπ (MeV)

0.03 6260.02 5580.01 3450.005 331

323 × 64

latt. units mπ (MeV)

0.008 ∼ 4200.006 ∼ 3600.004 ∼ 300

Highly preliminary data asdatasets only partially complete

Page 29: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Measurement of BK

Page 30: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64 323 × 64

Page 31: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64

◮ 2 gauge-fixed wall sources att = 5, 59 for propagators

323 × 64

Page 32: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64

◮ 2 gauge-fixed wall sources att = 5, 59 for propagators

◮ Use p + a boundaryconditions → removesunwanted round-the-worldcontributions.

323 × 64

Page 33: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64

◮ 2 gauge-fixed wall sources att = 5, 59 for propagators

◮ Use p + a boundaryconditions → removesunwanted round-the-worldcontributions.

◮ Costs 4 inversions perconfiguration.

323 × 64

Page 34: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64

◮ 2 gauge-fixed wall sources att = 5, 59 for propagators

◮ Use p + a boundaryconditions → removesunwanted round-the-worldcontributions.

◮ Costs 4 inversions perconfiguration.

323 × 64

◮ 1 gauge-fixed wall source att = 0

Page 35: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64

◮ 2 gauge-fixed wall sources att = 5, 59 for propagators

◮ Use p + a boundaryconditions → removesunwanted round-the-worldcontributions.

◮ Costs 4 inversions perconfiguration.

323 × 64

◮ 1 gauge-fixed wall source att = 0

◮ Use p + a and p − a

boundary conditions → givesforwards and backwardspropagating quarks.

Page 36: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 64

◮ 2 gauge-fixed wall sources att = 5, 59 for propagators

◮ Use p + a boundaryconditions → removesunwanted round-the-worldcontributions.

◮ Costs 4 inversions perconfiguration.

323 × 64

◮ 1 gauge-fixed wall source att = 0

◮ Use p + a and p − a

boundary conditions → givesforwards and backwardspropagating quarks.

◮ Costs 2 inversions perconfiguration.

Page 37: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK example plateaux

243 × 64 ml = 0.005

12 16 20 24 28 32 36 40 44 48 52t

0.5

0.55

0.6

0.65

BK

mx = 0.04 m

y =0.04

mx = 0.04 m

y =0.001

Preliminary 323 × 64 ml = 0.004

12 16 20 24 28 32 36 40 44 48 52t

0.5

0.55

0.6

0.65

BK

mx = 0.03 m

y = 0.03

mx = 0.03 m

y = 0.002

Page 38: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

The chiral extrapolation of BK

Page 39: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK chiral fit forms

◮ We use NLO SU(2) × SU(2) partially-quenched chiralperturbation theory (PQChPT) for maximum use ofensembles.

Page 40: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK chiral fit forms

◮ We use NLO SU(2) × SU(2) partially-quenched chiralperturbation theory (PQChPT) for maximum use ofensembles.

◮ Kaon sector is coupled to SU(2) soft pion loops at lowestorder in non-relativistic expansion

Page 41: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK chiral fit forms

◮ We use NLO SU(2) × SU(2) partially-quenched chiralperturbation theory (PQChPT) for maximum use ofensembles.

◮ Kaon sector is coupled to SU(2) soft pion loops at lowestorder in non-relativistic expansiontext→ direct connection to HMχPT

Page 42: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK chiral fit forms

◮ We use NLO SU(2) × SU(2) partially-quenched chiralperturbation theory (PQChPT) for maximum use ofensembles.

◮ Kaon sector is coupled to SU(2) soft pion loops at lowestorder in non-relativistic expansiontext→ direct connection to HMχPT

◮ 243 analysis [Allton et al arXiv:0804.0473] indicatedSU(3) × SU(3) PQChPT has large higher order correctionsand doesn’t fit data well up to physical strange quark mass(R. Mawhinney).

Page 43: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

Page 44: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K

Page 45: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

Page 46: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my+mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my+mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

Page 47: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

Page 48: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

Page 49: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

Page 50: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

◮ Use simultaneous pure SU(2) × SU(2) PQChPT fit (nocoupling to Kaon sector) to FPS and MPS to determine B andf (E. Scholz)

Page 51: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

SU(2) × SU(2) PQChPT fit form for BK

BK = B0K

[

1 + 2B(md+mres)c0

f 2 +2B(my +mres)c1

f 2

−2B(my+mres)

32π2f 2 log(

2B(my +mres)Λ2

χ

) ]

◮ 5 free parameters: B0K , B , f , c0, c1

◮ Use simultaneous pure SU(2) × SU(2) PQChPT fit (nocoupling to Kaon sector) to FPS and MPS to determine B andf (E. Scholz)

→ perform frozen 3-parameter fit to BK

Page 52: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Simultaneous PQChPT fits to FPS and MPS : fPS

243 × 64

0.08

0.09

0.1

0.11

0 0.01 0.02 0.03 0.04my

ml = 0.005, ms = 0.04fit: mavg ≤ 0.01

fxy

mx=0.001mx=0.005mx=0.01 mx=0.02 mx=0.03 mx=0.04

323 × 64

0 0.005 0.01 0.015 0.02 0.025 0.03m

y+m

res

0.055

0.06

0.065

0.07

0.075

0.08

mx = 0.03

mx = 0.025

mx = 0.008

mx = 0.006

mx = 0.004

mx = 0.002

fxy

ml = 0.004, m

s = 0.03

fit: mavg

<= 0.008

texttext

Page 53: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Simultaneous PQChPT fits to FPS and MPS : fPS

◮ For fixed ml chiral fit formsnon-analytic as mx/y → 0

323 × 64

0 0.005 0.01 0.015 0.02 0.025 0.03m

y+m

res

0.055

0.06

0.065

0.07

0.075

0.08

mx = 0.03

mx = 0.025

mx = 0.008

mx = 0.006

mx = 0.004

mx = 0.002

fxy

ml = 0.004, m

s = 0.03

fit: mavg

<= 0.008

texttext

Page 54: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Simultaneous PQChPT fits to FPS and MPS : fPS

◮ For fixed ml chiral fit formsnon-analytic as mx/y → 0

◮ Perform full PQChPT fit toall data points thenextrapolate to chiral limitalong unitary curvemx = my = ml → 0 toobtain physical fPS.

323 × 64

0 0.005 0.01 0.015 0.02 0.025 0.03m

y+m

res

0.055

0.06

0.065

0.07

0.075

0.08

mx = 0.03

mx = 0.025

mx = 0.008

mx = 0.006

mx = 0.004

mx = 0.002

fxy

ml = 0.004, m

s = 0.03

fit: mavg

<= 0.008

texttext

Page 55: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Simultaneous PQChPT fits to FPS and MPS : fPS

◮ For fixed ml chiral fit formsnon-analytic as mx/y → 0

◮ Perform full PQChPT fit toall data points thenextrapolate to chiral limitalong unitary curvemx = my = ml → 0 toobtain physical fPS.

◮ Unitary curve is finite valuedat chiral limit.

323 × 64

0 0.005 0.01 0.015 0.02 0.025 0.03m

y+m

res

0.055

0.06

0.065

0.07

0.075

0.08

mx = 0.03

mx = 0.025

mx = 0.008

mx = 0.006

mx = 0.004

mx = 0.002

fxy

ml = 0.004, m

s = 0.03

fit: mavg

<= 0.008

texttext

Page 56: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Simultaneous PQChPT fits to FPS and MPS : MPS

243 × 64

4.2

4.4

4.6

4.8

5

0 0.01 0.02 0.03 0.04my

ml = 0.005, ms = 0.04fit: mavg ≤ 0.01

mxy2 / (mavg+mres)

mx=0.001mx=0.005mx=0.01 mx=0.02 mx=0.03 mx=0.04

323 × 64

0 0.005 0.01 0.015 0.02 0.025 0.03m

y+m

res

3.3

3.4

3.5

3.6

3.7

3.8

mx = 0.03

mx = 0.025

mx = 0.008

mx = 0.006

mx = 0.004

mx = 0.002

m2

xy/(m

avg+m

res)

ml = 0.004, m

s = 0.03

fit: mavg

<= 0.008

texttext

Page 57: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

PQChPT fits to BK

243 × 64

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0 0.01 0.02 0.03 0.04mx

my = 0.04fit: mx ≤ 0.01

Bxy

ml=0.005 ml=0.01 mx=ml mx=ml=mud

323 × 64

0 0.002 0.004 0.006 0.008 0.01m

x+m

res

0.54

0.56

0.58

0.6

0.62

ml = 0.008

ml = 0.006

ml = 0.004

mx = m

l

Bxy

my = 0.03

fit: mx <= 0.008

◮ Unitary curve is fixed ms , mx = ml → mphysl

Page 58: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

PQChPT fits to BK

243 × 64

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0 0.01 0.02 0.03 0.04mx

my = 0.04fit: mx ≤ 0.01

Bxy

ml=0.005 ml=0.01 mx=ml mx=ml=mud

323 × 64

0 0.002 0.004 0.006 0.008 0.01m

x+m

res

0.54

0.56

0.58

0.6

0.62

ml = 0.008

ml = 0.006

ml = 0.004

mx = m

l

Bxy

my = 0.03

fit: mx <= 0.008

Stat err?

◮ Unitary curve is fixed ms , mx = ml → mphysl

Page 59: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 BK chiral limit results – Allton et al

[arXiv:0804.0473]

◮ 243 × 64 B latK = 0.565(10).

Page 60: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 BK chiral limit results – Allton et al

[arXiv:0804.0473]

◮ 243 × 64 B latK = 0.565(10).

◮ 323 × 64 extrapolation not yet available, dataset only partiallycompletetext– Stat uncertainties in data sets, unknown physical quarkmasses

Page 61: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

The non-perturbative renormalisation of BK

Page 62: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Why NPR?

◮ Lattice perturbative (DWF) calculations exist but:

Page 63: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Why NPR?

◮ Lattice perturbative (DWF) calculations exist but:◮ exist only at low order

Page 64: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Why NPR?

◮ Lattice perturbative (DWF) calculations exist but:◮ exist only at low order◮ are poorly convergent

Page 65: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Why NPR?

◮ Lattice perturbative (DWF) calculations exist but:◮ exist only at low order◮ are poorly convergent◮ involve prescription dependent ambiguities such as MF

improvement

Page 66: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Why NPR?

◮ Lattice perturbative (DWF) calculations exist but:◮ exist only at low order◮ are poorly convergent◮ involve prescription dependent ambiguities such as MF

improvement

◮ Use Rome-Southampton RI/MOM scheme

Page 67: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

Page 68: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =Zq

ZA=

Zq

ZVshould hold.

Page 69: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =Zq

ZA=

Zq

ZVshould hold.

◮ Therefore can use ΛA or ΛV as a measure ofZq

ZA.

Page 70: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =Zq

ZA=

Zq

ZVshould hold.

◮ Therefore can use ΛA or ΛV as a measure ofZq

ZA.

◮ ΛA and ΛV expected to differ at low momenta due to QCDspontaneous chiral symmetry breaking.

Page 71: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =Zq

ZA=

Zq

ZVshould hold.

◮ Therefore can use ΛA or ΛV as a measure ofZq

ZA.

◮ ΛA and ΛV expected to differ at low momenta due to QCDspontaneous chiral symmetry breaking.

◮ However, even at high momenta we find ΛA 6= ΛV at 2% level

Page 72: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =Zq

ZA=

Zq

ZVshould hold.

◮ Therefore can use ΛA or ΛV as a measure ofZq

ZA.

◮ ΛA and ΛV expected to differ at low momenta due to QCDspontaneous chiral symmetry breaking.

◮ However, even at high momenta we find ΛA 6= ΛV at 2% leveltext→ difference caused by kinematic choice : Exceptionalmomentum configuration

Page 73: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =Zq

ZA=

Zq

ZVshould hold.

◮ Therefore can use ΛA or ΛV as a measure ofZq

ZA.

◮ ΛA and ΛV expected to differ at low momenta due to QCDspontaneous chiral symmetry breaking.

◮ However, even at high momenta we find ΛA 6= ΛV at 2% leveltext→ difference caused by kinematic choice : Exceptionalmomentum configurationtext→ Gives weak 1/p2 suppression of low energy chiralsymmetry breaking.

Page 74: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

Page 75: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

◮ p2 → ∞ behaviour governed by subgraphwith least negative degree of divergencethrough which we can route all hard

external momenta.

Page 76: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

◮ p2 → ∞ behaviour governed by subgraphwith least negative degree of divergencethrough which we can route all hard

external momenta.

◮ For p1 6= p2 this is the entire graph.

Page 77: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

◮ p2 → ∞ behaviour governed by subgraphwith least negative degree of divergencethrough which we can route all hard

external momenta.

◮ For p1 6= p2 this is the entire graph.

◮ Can connect to low-energy subgraphswhich are affected by spont. chiralsymmetry breaking, but:

Page 78: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

◮ p2 → ∞ behaviour governed by subgraphwith least negative degree of divergencethrough which we can route all hard

external momenta.

◮ For p1 6= p2 this is the entire graph.

◮ Can connect to low-energy subgraphswhich are affected by spont. chiralsymmetry breaking, but:text→ Low energy subgraph notcontained within circled subgraph

Page 79: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

◮ p2 → ∞ behaviour governed by subgraphwith least negative degree of divergencethrough which we can route all hard

external momenta.

◮ For p1 6= p2 this is the entire graph.

◮ Can connect to low-energy subgraphswhich are affected by spont. chiralsymmetry breaking, but:text→ Low energy subgraph notcontained within circled subgraphtext→ Adding extra external legs tocircled subgraph increases suppression ofthe graph

Page 80: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ However in case p2 − p1 = 0 then highmomenta do not enter internal subgraphs

Page 81: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ However in case p2 − p1 = 0 then highmomenta do not enter internal subgraphs

◮ Graph free to couple to low-energy chiralsymmetry breaking subgraphs with nofurther suppression

Page 82: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ However in case p2 − p1 = 0 then highmomenta do not enter internal subgraphs

◮ Graph free to couple to low-energy chiralsymmetry breaking subgraphs with nofurther suppression

◮ This is an exceptional momentumconfiguration

Page 83: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral symmetry breaking and exceptional momenta

◮ However in case p2 − p1 = 0 then highmomenta do not enter internal subgraphs

◮ Graph free to couple to low-energy chiralsymmetry breaking subgraphs with nofurther suppression

◮ This is an exceptional momentumconfiguration

◮ Chiral symmetry breaking inducesdifference between ΛA and ΛV → use12(ΛA + ΛV ) ≈

Zq

ZA

Page 84: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

Page 85: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

◮ Amputate vertex with ensemble averaged unrenormalisedpropagator, giving ΛOVV+AA

Page 86: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

◮ Amputate vertex with ensemble averaged unrenormalisedpropagator, giving ΛOVV+AA

◮ Renormalisation condition: Fix to tree level value at µ2 = p2

ZVV+AA

Z 2q

ΛOVV+AA= Otree

VV+AA

Page 87: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

◮ Amputate vertex with ensemble averaged unrenormalisedpropagator, giving ΛOVV+AA

◮ Renormalisation condition: Fix to tree level value at µ2 = p2

ZVV+AA

Z 2q

ΛOVV+AA= Otree

VV+AA

◮ DefineZ

RI/MOM

BK ≡ ZVV+AA

Z2A

=(

Z2q

Z2A

)

ZVV+AA

Z2q

Page 88: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

◮ Amputate vertex with ensemble averaged unrenormalisedpropagator, giving ΛOVV+AA

◮ Renormalisation condition: Fix to tree level value at µ2 = p2

ZVV+AA

Z 2q

ΛOVV+AA= Otree

VV+AA

◮ DefineZ

RI/MOM

BK ≡ ZVV+AA

Z2A

=(

Z2q

Z2A

)

ZVV+AA

Z2q

◮ Use 12(ΛA + ΛV ) ≈

Zq

ZA

Page 89: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

243 × 32 323 × 64

Page 90: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

323 × 64

Page 91: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

◮ Average over 4 sourcelocations on 75configurations on ourml = 0.03, 0.02 and 0.01ensembles.

323 × 64

Page 92: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

◮ Average over 4 sourcelocations on 75configurations on ourml = 0.03, 0.02 and 0.01ensembles.

◮ Momentum applied byapplying phase differencebetween propagator sourceand sink. Solution can begiven arbitrary momentum.

323 × 64

Page 93: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

◮ Average over 4 sourcelocations on 75configurations on ourml = 0.03, 0.02 and 0.01ensembles.

◮ Momentum applied byapplying phase differencebetween propagator sourceand sink. Solution can begiven arbitrary momentum.

323 × 64

◮ Use lattice volume sources,vertex formed at propagatorsink. (D. Broemmel)

Page 94: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

◮ Average over 4 sourcelocations on 75configurations on ourml = 0.03, 0.02 and 0.01ensembles.

◮ Momentum applied byapplying phase differencebetween propagator sourceand sink. Solution can begiven arbitrary momentum.

323 × 64

◮ Use lattice volume sources,vertex formed at propagatorsink. (D. Broemmel)

◮ Average over all sinklocations, lattice volumefactor gain over pointapproach.

Page 95: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

◮ Average over 4 sourcelocations on 75configurations on ourml = 0.03, 0.02 and 0.01ensembles.

◮ Momentum applied byapplying phase differencebetween propagator sourceand sink. Solution can begiven arbitrary momentum.

323 × 64

◮ Use lattice volume sources,vertex formed at propagatorsink. (D. Broemmel)

◮ Average over all sinklocations, lattice volumefactor gain over pointapproach.

◮ Volume source has fixedmomentum as phase mustbe applied to source latticesites before inversion.

Page 96: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Method comparison

163 × 32

◮ Use point sources, 4 quarkvertex formed at sourcelocation.

◮ Average over 4 sourcelocations on 75configurations on ourml = 0.03, 0.02 and 0.01ensembles.

◮ Momentum applied byapplying phase differencebetween propagator sourceand sink. Solution can begiven arbitrary momentum.

323 × 64

◮ Currently calculated 5independent momenta (10total) on 10 configurationson our ml = 0.006 and0.004 ensembles

Page 97: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

ZRI/MOM

BK (µ)

163 × 32

0 0.5 1 1.5 2 2.5(aµ)2

0.8

0.9

1

1.1

ZB

K

ml = 0.01

ml = 0.02

ml = 0.03

chiral limit

texttext

323 × 64

texttext

Page 98: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

ZRI/MOM

BK (µ)

163 × 32

0 0.5 1 1.5 2 2.5(aµ)2

0.8

0.9

1

1.1

ZB

K

ml = 0.01

ml = 0.02

ml = 0.03

chiral limit

texttext

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.8

0.9

1

1.1

ZB

K

ml = 0.006

ml = 0.004

chiral limitPoint m

l = 0.006

texttext

Page 99: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

ZRI/MOM

BK (µ)

163 × 32

0 0.5 1 1.5 2 2.5(aµ)2

0.8

0.9

1

1.1

ZB

K

ml = 0.01

ml = 0.02

ml = 0.03

chiral limit

texttext

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.91

0.92

0.93

0.94

0.95

ZB

K

ml = 0.006

ml = 0.004

chiral limit

texttext

Page 100: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral extrapolation – 323 × 64

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008m

l

0.91

0.92

0.93

0.94

ZB

K

0.6939570.9252751.310811.619231.92766

texttexttext

◮ For each ZBK (µ), perform alinear chiral extrapolation tom = −mres

Page 101: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral extrapolation – 323 × 64

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008m

l

0.91

0.92

0.93

0.94

ZB

K

0.6939570.9252751.310811.619231.92766

texttexttext

◮ For each ZBK (µ), perform alinear chiral extrapolation tom = −mres

◮ 323 lever-arm forextrapolation smallcompared to extrapolationdistance

Page 102: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Chiral extrapolation – 323 × 64

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008m

l

0.91

0.92

0.93

0.94

ZB

K

0.6939570.9252751.310811.619231.92766

texttexttext

◮ For each ZBK (µ), perform alinear chiral extrapolation tom = −mres

◮ 323 lever-arm forextrapolation smallcompared to extrapolationdistancetext→ Future: Addml = 0.008 dataset

Page 103: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Exceptional momenta systematic error

◮ 323 stat errors smallcompared to systematicerror from exceptionalmomenta.

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.91

0.92

0.93

0.94

0.95

0.96

ZB

K

ZBK

using (ΛA

+ΛV

)/2

ZBK

using ΛA

ZBK

using ΛV

Page 104: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Exceptional momenta systematic error

◮ 323 stat errors smallcompared to systematicerror from exceptionalmomenta.

◮ On 243 we attributed a1.5% sys error to this alone.

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.91

0.92

0.93

0.94

0.95

0.96

ZB

K

ZBK

using (ΛA

+ΛV

)/2

ZBK

using ΛA

ZBK

using ΛV

Page 105: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Exceptional momenta systematic error

◮ 323 stat errors smallcompared to systematicerror from exceptionalmomenta.

◮ On 243 we attributed a1.5% sys error to this alone.

◮ Difference greatly reducedby using non-exceptionalmomentum configurationp1 6= p2

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.91

0.92

0.93

0.94

0.95

0.96

ZB

K

ZBK

using (ΛA

+ΛV

)/2

ZBK

using ΛA

ZBK

using ΛV

Page 106: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Exceptional momenta systematic error

◮ 323 stat errors smallcompared to systematicerror from exceptionalmomenta.

◮ On 243 we attributed a1.5% sys error to this alone.

◮ Difference greatly reducedby using non-exceptionalmomentum configurationp1 6= p2

◮ Unfortunately noperturbative calculationavailable for non-exceptional(Y. Aoki)

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.91

0.92

0.93

0.94

0.95

0.96

ZB

K

ZBK

using (ΛA

+ΛV

)/2

ZBK

using ΛA

ZBK

using ΛV

Page 107: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Removal of lattice artefacts

0 0.5 1 1.5 2 2.5

(aµ)2

0.8

1

1.2

1.4

1.6

ZB

K

chiral limitSI

(aµ)2 fit

texttexttext

◮ Divide out perturbativerunning: Quantity is scaleinvariant up to latticeartefacts

Page 108: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Removal of lattice artefacts

0 0.5 1 1.5 2 2.5

(aµ)2

0.8

1

1.2

1.4

1.6

ZB

K

chiral limitSI

(aµ)2 fit

texttexttext

◮ Divide out perturbativerunning: Quantity is scaleinvariant up to latticeartefacts

◮ Expect quadraticdependence of latticeartefacts on lattice spacing

→ fit to form ZSIBK + B(aµ)2

Page 109: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Extrapolation of Z SIBK

163 × 32 323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.8

1

1.2

1.4

1.6

ZB

K

chiral limitSI

(aµ)2 fit

Page 110: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Extrapolation of Z SIBK

163 × 32

0 0.5 1 1.5 2 2.5

(aµ)2

0.8

1

1.2

1.4

1.6

ZB

K

RI/MOM

SI

(aµ)2 fit

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)2

0.8

1

1.2

1.4

1.6

ZB

K

chiral limitSI

(aµ)2 fit

Page 111: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

Page 112: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

Page 113: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

◮ ZMSBK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

Page 114: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

◮ ZMSBK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

◮ Sys errors:

Page 115: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

◮ ZMSBK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

◮ Sys errors:◮ O(αs) ⇒ 0.0177 corrections due to truncation of perturbative

analysis

Page 116: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

◮ ZMSBK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

◮ Sys errors:◮ O(αs) ⇒ 0.0177 corrections due to truncation of perturbative

analysis◮ ⇒ 0.0007 unphysical strange mass correction

Page 117: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

◮ ZMSBK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

◮ Sys errors:◮ O(αs) ⇒ 0.0177 corrections due to truncation of perturbative

analysis◮ ⇒ 0.0007 unphysical strange mass correction◮ ⇒ 0.0131 correction for use of exceptional momenta

Page 118: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSIBK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor ZRI/MOM

BK → ZMSBK

◮ ZMSBK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

◮ Sys errors:◮ O(αs) ⇒ 0.0177 corrections due to truncation of perturbative

analysis◮ ⇒ 0.0007 unphysical strange mass correction◮ ⇒ 0.0131 correction for use of exceptional momenta

◮ Current 323 ZMSBK stat error ∼ 0.0013.

Page 119: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

Conclusions and Outlook

Page 120: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 final value and 323 outlook

◮ Combining chirally extrapolated BK with aforementioned ZBK

result

Page 121: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 final value and 323 outlook

◮ Combining chirally extrapolated BK with aforementioned ZBK

result text→ BMSK (2GeV) = 0.524(10)stat(13)ren(25)sys

resulttext→mmmp[arXiv:0804.0473]

Page 122: Chris Kelly University of Edinburgh RBC & UKQCD Collaborations · BK chiral fit forms We use NLO SU(2) ×SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum

243 × 64 final value and 323 outlook

◮ Combining chirally extrapolated BK with aforementioned ZBK

result text→ BMSK (2GeV) = 0.524(10)stat(13)ren(25)sys

resulttext→mmmp[arXiv:0804.0473]

◮ Improved techniques for 323 in use; results expected soon:Watch this space!