classical mechanics lecture 18 - sfu.ca · general case of a person on a ladder...

25
Classical Mechanics Lecture 18 Today’s Concepts: a) Sta2c Equilibrium b) Poten2al Energy & Stability Mechanics Lecture 18, Slide 1

Upload: others

Post on 21-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

Classical Mechanics Lecture 18

Today’s  Concepts:   a)  Sta2c  Equilibrium

  b)  Poten2al  Energy  &  Stability

Mechanics    Lecture  18,  Slide  1

Page 2: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#
Page 3: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

Clicker Question

A  (sta2c)  mobile  hangs  as  shown  below.    The  rods  are  massless  and  have  lengths  as  indicated.    The  mass  of  the  ball  at  the  boJom  right  is  1 kg.

 

What  is  the  total  mass  of  the  mobile?    

A)    4 kg B)    5 kg C)    6 kg

D)    7 kg

E)    8 kg 1 kg

1 m 3 m

1 m 2 m

Mechanics    Lecture  18,  Slide  4

Page 4: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

CheckPoint

In  which  of  the  sta.c  cases  shown  below  is  the  tension  in  the  suppor.ng  wire  bigger?    In  both  cases  the  red  strut  has  the  same  mass  and  length.

A)    Case  1                            B)    Case  2                      C)    Same                        

Mechanics    Lecture  18,  Slide  7

300

L/2

T2

Case  2

300

T1

LM

Case  1

Page 5: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

CheckPointIn  which  of  the  sta2c  cases  shown  below  is  the  tension  in  the  suppor2ng  wire  bigger?    In  both  cases  the  red  strut  has  the  same  mass  and  length.

A)    Case  1                            

B)    Case  2                    

C)    Same                        

A)  Case  1  because  the  lever  arm  distance  is  the  largest  there  B)  The  torque  caused  by  gravity  is  equal  to  the  torque  caused  by  the  tension.  Since  in  Case  1,  the  lever  arm  is  longer,  the  force  does  not  need  to  be  as  long  to  equalize  the  torque  caused  by  gravity.  C)  The  angles  are  the  same  so  the  tensions  are  the  same,  the  lengths  do  not  maJer.  

Mechanics    Lecture  18,  Slide  8

Page 6: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

CM

Mg

T1 T2 T1 = T2 = TSame  distance  from  CM:

T = Mg/2So:

Mechanics    Lecture  18,  Slide  9

T1 + T2 = MgBalance  forces:

Homework Problem

Page 7: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

Mechanics    Lecture  18,  Slide  10

Homework Problem

Page 8: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

These  are  the  quan22es  we  want  to  find:

Mechanics    Lecture  18,  Slide  11

d

Mg y

x

α

T1

M

ACM

Page 9: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

What  is  the  moment  of  iner2a  of  the  beam  about  the  rota2on  axis  shown  by  the  blue  dot?

A)

B)

C)

L

Clicker Question

Mechanics    Lecture  18,  Slide  12

dM

Page 10: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

The  center  of  mass  of  the  beam  accelerates  downward.  Use  this  fact  to  figure  out  how  T1  compares  to  weight  of  the  beam?

A)    T1 = Mg

B)    T1 >  Mg

C)    T1 < Mg

Clicker Question

Mechanics    Lecture  18,  Slide  13

T1

Mgy

x

ACM

α

d

M

Page 11: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

The  center  of  mass  of  the  beam  accelerates  downward.  How  is  this  accelera2on  related  to  the  angular  accelera2on  of  the  beam?

A)    ACM  =  dα

B)    ACM = d /α

C)   ACM = α / d

Clicker Question

Mechanics    Lecture  18,  Slide  14

T1

Mgy

x

α

dM

ACM

Page 12: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

Apply  

Apply  

Plug  this  into  the  expression  for  T1

ACM = dα

Use ACM = dα to  find α

Mechanics    Lecture  18,  Slide  15

T1

Mgy

x

α

dM

ACM

Page 13: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

CM  demos

A\er  the  right  string  is  cut,  the  meters2ck  swings  down  to  where  it  is  ver2cal  for  an  instant  before  it  swings  back  up  in  the  other  direc2on.

What  is  the  angular  speed  when  the  meter  s2ck  is  ver2cal?

Mechanics    Lecture  18,  Slide  16

M

y

x

d

T

ω

Conserve  energy:

Page 14: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

y

xMg

d ACM = ω2d

Centripetal  accelera2on

Mechanics    Lecture  18,  Slide  17

T

ω

Applying  

Page 15: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

Another HW problem:

We  will  now  work  out  the  general  case

Mechanics    Lecture  18,  Slide  18

Page 16: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

General Case of a Person on a Ladder

Bill  (mass  m)  is  climbing  a  ladder  (length  L,  mass  M)  that  leans  against  a  smooth  wall  (no  fric.on  between  wall  and  ladder).    A  fric.onal  force  f    between  the  ladder  and  the  floor  keeps  it  from  slipping.    The  angle  between  the  ladder  and  the  wall  is  φ.    

(The  wall  is  fric.onless.)

How  does  f  depend  on  the  angle  of  the  ladder  and  Bill’s  distance  up  the  ladder?

θ

L

m

f

y

x

MBill  

Mechanics    Lecture  18,  Slide  19

φ

Page 17: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

Balance  forces:

x: Fwall = f y: N = Mg + mg

Balance  torques:

Mg

mg

θ

L/2

f y

xN

Fwall

daxis

Mechanics    Lecture  18,  Slide  20

f =�mg

dL+

Mg2

�cot θ

Fwall =

�mg

dL+

Mg2

�cot θ

Page 18: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

f =�mg

dL+

Mg2

�cot θ

θf

d

M

m

Lets  try  it  out

Climbing  further  up  the  ladder  makes  it  more  likely  to  slip:

Making  the  ladder  more  ver2cal  makes  it  less  likely  to  slip:

This is the General Expression:

Mechanics    Lecture  18,  Slide  21 θ (radians)

cotangent θ

Page 19: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

f =�mg

dL+

Mg2

�cot θ

Moving  the  boJom  of  the  ladder  further  from  the  wall  makes  it  more  likely  to  slip:

If its just a ladder…

Mechanics    Lecture  18,  Slide  22

Page 20: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

In  the  two  cases  shown  below  iden2cal  ladders  are  leaning  against  fric2onless  walls.  In  which  case  is  the  force  of  fric2on  between  the  ladder  and  the  ground  the  biggest?

A)  Case  1     B)  Case  2     C)  Same

CheckPoint

Case  1 Case  2

Mechanics    Lecture  18,  Slide  23

Page 21: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

In  the  two  cases  shown  below  iden2cal  ladders  are  leaning  against  fric2onless  walls.  In  which  case  is  the  force  of  fric2on  between  the  ladder  and  the  ground  the  biggest?

A)    Case  1            B)  Case  2            C)  Same

Case  1 Case  2A)    Because  the  boJom  of  the  ladder  is  further  away  from  the  wall.  

B)    The  angle  is  steeper,  which  means  there  is  more  normal  force  and  thus  more  fric2on.  

C)    Both  have  same  mass.  

Mechanics    Lecture  18,  Slide  24

CheckPoint

Page 22: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

CheckPoint

Suppose  you  hang  one  end  of  a  beam  from  the  ceiling  by  a  rope  and  the  boKom  of  the  beam  rests  on  a  fric.onless  sheet  of  ice.    The  center  of  mass  of  the  beam  is  marked  with  an  black  spot.  Which  of  the  following  configura.ons  best  represents  the  equilibrium  condi.on  of  this  setup?

A)                                          B)                                            C)

Mechanics    Lecture  18,  Slide  25

Page 23: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

CheckPointWhich  of  the  following  configura.ons  best  represents  the  equilibrium  condi.on  of  this  setup?

A)                                                B)                                                    C)

If  the  tension  has  any  horizontal  component,  the  beam  will  accelerate  in  the  horizontal  direc2on.  

Objects  tend  to  aJempt  to  minimize  their  poten2al  energy  as  much  as  possible.  In  Case  C,  the  center  of  mass  is  lowest.  

Mechanics    Lecture  18,  Slide  26

Page 24: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

footprint

footprint

Stability & Potential Energy

Mechanics    Lecture  18,  Slide  27

Page 25: Classical Mechanics Lecture 18 - SFU.ca · General Case of a Person on a Ladder Bill#(mass#m)#is#climbing#aladder#(length# L,#mass#M)#thatleans# againstasmooth#wall#(no#fric.on#between#wall#and#ladder).##A#

A Question of Balance

Picking up $20

Everyone loves to pick up extra money. We bet you can't stand with your heels touching both a wall, the floor and each other, and then bend over (without bending your knees!) and pick up a $20 dollar bill that's lying in front of you without moving your heels away from the floor and the wall. (No fair using a wall with a baseboard either!) You must be able to resume your upright position again without having moved your heels. We're sure enough that this task is very difficult to stake money on it! All of you taking calculus-based introductory physics this semester who can perform this task before the end of the class period under the sharp eye of a bona fide instructor can share the $20 with any others taking the course who can also do the "pickup" job!