cmos device scaling, past, present, and future · 2013. 3. 15. · 6 leobandung, ibm t.j. watson...

29
IBM Research CMOS Device Scaling, Past, Present, CMOS Device Scaling, Past, Present, and Future and Future Effendi Leobandung IBM T.J. Watson Research Center Yorktown Heights, New York 10598

Upload: others

Post on 07-Sep-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

IBM Research

CMOS Device Scaling, Past, Present, CMOS Device Scaling, Past, Present, and Futureand Future

Effendi Leobandung

IBM T.J. Watson Research CenterYorktown Heights, New York 10598

Page 2: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

2 Leobandung, IBM T.J. Watson research Center

OUTLINEOUTLINE•Brief History of CMOS Scaling

•Current CMOS Devices:•FINFET on bulk and/or insulator•Ultra Thin Body SOI

•Future Scaling:•Nanowire•Higher mobility III-V/Ge Device•Beyond CMOS

•Conclusion

Page 3: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

3 Leobandung, IBM T.J. Watson research Center

Why is IBM in Semiconductor Business?Why is IBM in Semiconductor Business?

Mainframes Unix Servers

• Largest Area, highest frequency and power chips• Highest power-in, power-out, …

• Most “advanced” interconnect:• Most number of metal layers• Most number of “pins” on packages

• Most reliable• ……

Page 4: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

4 Leobandung, IBM T.J. Watson research Center

OUTLINEOUTLINE•Brief History of CMOS Scaling

•Current CMOS Devices:•FINFET on bulk and/or insulator•Ultra Thin Body SOI

•Future Scaling:•Nanowire•Higher mobility III-V/Ge Device•Beyond CMOS

•Conclusion

Page 5: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

5 Leobandung, IBM T.J. Watson research Center

CMOS Scaling: CMOS Scaling: DennardDennard’’ss TheoryTheory

p substrate, doping *NA

Scaled Device

L/ xd/

GATEn+ source

n+ drain

WIRINGVoltage, V /

W/tox/

SCALING:Voltage: V/aOxide: tox /aWire width: W/aGate Length: L/aDiffusion: xd /aSubstrate: a*NA

RESULTS:Higher Density: ~a2Higher Speed: ~aPower Density: ~Constant

SmallerFasterLower Power

Scaled technology generations

Power - Performance

Page 6: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

6 Leobandung, IBM T.J. Watson research Center

CMOS Scaling: A Closer Look @ Planar DeviceCMOS Scaling: A Closer Look @ Planar Device

SCALING:Voltage: V/aOxide: tox /aWire width: W/aGate Length: L/aDiffusion: xd /aSubstrate: a*NA

Hasn’t followed exactly Vdd/ scaling; Low power drives Vdd scaling but challenged by SRAM Vmin and non scaled VT.

SiO2 scaling hit a brick wall at ~ 90 nm generation. Saved by introduction of HK/MG. But further Tox scaling at 22nm and beyond challenged by gate lkg and reliability.

Gate length scaling in 65/45/32/22* are limited (10-15%) due to SCE. Also causes significant capacitance issue at 22nm node and beyond.

. Junction depth scaling & abruptness improvement – tradeoff in parasitic resistance, junction lkg and GIDL. Increased substrate doping for better SCE: increased jct lkg; increased Vtmm and AVT (driven by random dopant fluctuation) – gating SRAM Vmin

Page 7: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

7 Leobandung, IBM T.J. Watson research Center

Non Conventional ScalingNon Conventional Scaling

Silicon on Insulator– First introduced into production by IBM

– Parasitic Capacitance Reduction -> Better overall chip performance at same drive current.

– Floating Body Effect -> Dynamically lower threshold Voltage and increase overdrive . Careful modeling of hysteresis needed.

Strain Silicon:– Embedded SiGe source drain for PFET -> Enhanced hole mobility with unaxial

stress. First introduced by Intel– Dual Stress Contact Liner -> Applicable for both NFET and PFET. First introduced

by IBM in 90 nm node– Stress Memorization Technique -> Mainly use to enhance electron mobility. First

introduced by TSMC. High-k Metal Gate:

– Enable gate dielectric scaling by reducing poly depletion and increasing intrinsic gate capacitance

– Two alternate path -> Gate Last (Intel) and Gate First (IBM&Alliance)

Page 8: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

8 Leobandung, IBM T.J. Watson research Center

Historical account on SOIHistorical account on SOI Concept was introduced around 1980’s Key benefit:

– Parasitic capacitance reduction in source/drain junction due to lower k in buried oxide

– Floating body induced threshold lowering during switching.

– Stacked circuit Benefit Easier to integrate Significant initial challenges due to

defect introduced with lateral seeding and SIMOX.

IBM works with vendor to overcome material and substrate challenges.

– Today we have established SOI wafer infrastructure.

Accurate SOI Model is also a key challenges:

– IBM has worked with academic and vendor to provide accurate SOI model that take into account floating body benefit and hysteresis

Buried Oxide

Substrate

Gate

Source Drain Cj

Majority carriercharge accumulation

Leobandung et al.

45% faster

Page 9: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

9 Leobandung, IBM T.J. Watson research Center

Mobility enhancement using Mobility enhancement using eSiGeeSiGe Embedded SiGe:

– Replace source drain with SiGe. Larger lattice constant -> Net effect compression under the channel

– Likely deliver the highest stress magnitude since due to stress proximity to channel

Introduced by Intel in 90 nm Key challenges:

– Cavity shape and distance to balance stress with short channel effects

– Selective epitaxy and preclean -> Introduction of insitu epi preclean help tremendously.

SiGe SiGe

Thompson et al., Intel

Page 10: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

10 Leobandung, IBM T.J. Watson research Center

Mobility enhancement with Dual Stress LinerMobility enhancement with Dual Stress Liner

Yang et al.

Dual Stress Liner:– Utilized Compressive and Tensile

Nitride Liner to stress silicon channel

– NFET Ieff improvement by up to 20% and PFET Ieff improvement by up to 32%

In production in IBM for more than 10 years

Challenges:– Deposit conformal film under

stress/strain without peeling

– IBM collaborate with tool vendor to modify film property successfully.

Yang et al.

Page 11: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

11 Leobandung, IBM T.J. Watson research Center

Scaling of gate dielectric with HighScaling of gate dielectric with High--k k

Two existing flow in production Gate First: High-k and Metal Gate

Prior to Source Drain Anneal:– More scalable to higher Cinv

– More manufacturable -> similar to conventional Poly/SiON

– PFET Work function difficult to achieve

Gate Last: Use dummy gate which is replaced with Metal gate Post source drain anneal:

– Easier to set PFET Work Function

– Integration flow and planarity requirement very challenging

– More compatible with future device flow

IBM Gate First

Intel Gate Last

Page 12: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

12 Leobandung, IBM T.J. Watson research Center

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

10100Technology Node

Tinv

or [

EOT+

0.4n

m] (

nm)

32 22

Gate Last ReferencesK. Mistry e al., IEDM’07 S. Natarajan et al., IEDM’08 C. Auth et al., VLSI’12

Gate First ReferencesD-G. Park et al., VLSI’04V. Narayanan et al., VLSI’06M. Chudzik et al., VLSI’07F. Arnaud et al., IEDM’09B. Greene, et al., IEDM’09S.Narasimha et al., IEDM’12(IBM 22nm SOI)

Gate First

Gate Last

Gate First AdvantageGate First Advantage

Industry-leading Tinv values achieved by Gate First(Narasimha, IEDM’12)

Page 13: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

13 Leobandung, IBM T.J. Watson research Center

OUTLINEOUTLINE•Brief History of CMOS Scaling

•Current CMOS Devices:•FINFET on bulk and/or insulator•Ultra Thin Body SOI

•Future Scaling:•Nanowire•Higher mobility III-V/Ge Device•Beyond CMOS

•Conclusion

Page 14: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

14 Leobandung, IBM T.J. Watson research Center

Advantage of Advantage of UndopedUndoped FullyFully--Depleted FinFETsDepleted FinFETs

Short channel effect controlled by the thickness of the thin body instead of channel doping

– Reduced random dopant fluctuation– Improved mobility due to lower vertical field and less coulombic scattering– Improved DIBL and SS

D. Frank et al, IEDM 1992 W. Haensch et al, IBM J of R&D July 2006

Planar bulk Planar FDSOI FD DGFET/FinFET

Source

Source

DrainGate Source

Source

DrainGate

Lg

Dfin

m

TinvSource

Drain

Hfin

Terminology: Terminology: HfinHfin, , DfinDfin

Page 15: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

15 Leobandung, IBM T.J. Watson research Center

A Decade of FINFET R&D at IBM/AllianceA Decade of FINFET R&D at IBM/Alliance

High speed FinFET deviceN&P (2001)

FinFETfully-depleted RO demo(2003)

Funtional SRAM 0.22um2 (2002)

0.063um2 SRAM with FinFET (2010)

FinFETCMOS demo(2002)

Conformal doping in FinFET(2011)

MultiVt solution in FINFET (2012)

0.1

1

10

100

1000

10000

400 500 600 700 800

Ieff (uA/um)

Ioff

(nA

/um

)

WF-Tuned-Multi_VtNch-Tuned-Multi_VtLdes-Tuned-Multi_VtDfin-Tuned-Multi_VtCounterDoping (WF f ixed at highest VT)

Dfin fr

om 1

0 to

6nm

Lg from 18 to 30nm

Nchfrom 5e16 to 4.5e18cm

-3

Page 16: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

16 Leobandung, IBM T.J. Watson research Center

DamageDamage--free Conformal Dopingfree Conformal Doping

implanted

Conformal doping

■ Avoid implant damage on Fins – no TED ■ Improve junction gradient ■ Reduce external resistance■ Many other conformal doping idea out there such as plasma doping, solid

phase doping, etc-> need collaboration with tooling vendor

Epi-merge

T. Yamashita, VLSI 2011

Page 17: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

17 Leobandung, IBM T.J. Watson research Center

Fully Depleted (FD) Device Fully Depleted (FD) Device

FINFET (14nm node)

– Demonstrated A 0.063 μm2 FinFET SRAM cell demonstration with conventional lithography using a novel integration

– Conformal doping is crucial for 3D devices to reduce parasitic resistance.

V. Basker et al. VLSI ’10

Page 18: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

18 Leobandung, IBM T.J. Watson research Center

silicon substrate

HCH

HCS

silicon substrate

Junction-IsolatedBulk FinFET

Dielectric-IsolatedBulk FinFET

Gate Electrode Gate Electrode

Fin Fin

Punch-through stop

dep/etch ox.dep/etch ox.

ReplacementOxide fill

SOI is built for SOI is built for FinFETFinFET TechnologyTechnology

Fin on bulk–Fin height controlled by ox etch –Complex isolation scheme–Fin doping control possible issue–Uses bulk wafer

silicon substrate

Dielectric-IsolatedSOI FinFET

Gate Electrode

Fin

BOX

Fin on SOI–Fin height set by substrate–Simpler isolation scheme–Requires SOI wafer

Fin on oxide over bulk–Doping isolation requirement removed–Isolation scheme still complex–Uses bulk wafer

Courtesy : G. Patton

Page 19: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

19 Leobandung, IBM T.J. Watson research Center

6nm SiGe channel

Ge Hf Ti Ni

SiGeRSD

40nm

BOX

gate

State-of-the-art ETSOI SiGe Transistor

•6nm cSiGe

•22nm Lgate

•100nm contacted gate pitch

•Gate-first HK / MG

• ISBD SiGe RSD

Contact

(K.Cheng et al., IEDM’12)

Page 20: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

21 Leobandung, IBM T.J. Watson research Center

OUTLINEOUTLINE•Brief History of CMOS Scaling

•Current CMOS Devices:•FINFET on bulk and/or insulator•Ultra Thin Body SOI

•Future Scaling:•Nanowire•Higher mobility III-V/Ge Device•Beyond CMOS

•Conclusion

Page 21: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

22 Leobandung, IBM T.J. Watson research Center

G

Si NW

SD

20 nm

5 nmHKMG

Poly-SiSiO2

Si Si nanowirenanowire gate all around (GAA) devicegate all around (GAA) device

GAA devices offer improved electrostatics and a further scaling path Fabrication challenges (8nm & beyond)

(Sarunya et al. VLSI’10)

Page 22: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

24 Leobandung, IBM T.J. Watson research Center

RRextext vs. vs. NanoNano Wire SizeWire Size

As the NW size gets smaller, an increase in series resistance, REXT is observed.

This is largely due to an unscaled spacer width with respect to nanowire size.

NW

Epithicken

Gate

NW

Epithicken

Gate

Bangsaruntip et al.

Page 23: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

25 Leobandung, IBM T.J. Watson research Center

NanoWireNanoWire Capacitance Capacitance

Capacitance measured for NW array as small as DEFF ~ 3 nm. C/A for NW diverges from planar limit and shows dependency in NW size, as is expected for

cylindrical capacitors. Parasitic cap in RO structure is approximately half of the total capacitance.

Gated p-i-n NW Diode )1ln(1

rtoxrA

C

2rE =

Bangsaruntip et al.

Page 24: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

26 Leobandung, IBM T.J. Watson research Center

Why nonWhy non--Si Channels? Si Channels? –– High Electron & Hole High Electron & Hole MobilitiesMobilities

0.1785077000InSb

0.7310003000GaSb

0.3550040000InAs

0.7430012000InGaAs(53%)

1.424008500GaAs

1.342005400InP

0.6619003900Ge

1.124801350Si

Eg(eV)

µh(cm2/Vs)

µe(cm2/Vs)

Material

Page 25: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

27 Leobandung, IBM T.J. Watson research Center

IIIIII--V CMOS ChallengesV CMOS Challenges

Czornomaz et al.

Page 26: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

28 Leobandung, IBM T.J. Watson research Center

- Gate-first UTB III-V on insulator MOSFET with Si ICL- Self-aligned S/D metal alloy- Clear benefit of on-insulator structure compared to planar on InAlAs- Large size wafer supply, ESH, tooling are key area needing innovations

SOI is also built for handling III-V on Insulator

(L.Czonomaz et al., IEDM’12)

•UTB III-V MOSFET •DIBL•GF & RSD

Page 27: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

29 Leobandung, IBM T.J. Watson research Center

First Demonstration of high mobility CMOSFirst Demonstration of high mobility CMOS

Page 28: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

30 Leobandung, IBM T.J. Watson research Center

Beyond CMOS ? Beyond CMOS ?

Example : Single Electron Quantum Dot Transistor

Page 29: CMOS Device Scaling, Past, Present, and Future · 2013. 3. 15. · 6 Leobandung, IBM T.J. Watson research Center CMOS Scaling: A Closer Look @ Planar Device SCALING: Voltage: V/a

31 Leobandung, IBM T.J. Watson research Center

SummarySummary

Conventional Scaling lasted until around 90 nm node

Since then new device structure has manage to fill in the gap:– SOI

– Stressor

– High-k

– FINFET

Where do we go from here:– Likely both new device structure and new material is needed

– High mobility III-V/Ge

– Other speculative structure : CNT, graphene, quantum devices, etc.