cmos technologies – trends, scaling and issues

79
2010 IEDM SHORT COURSE 15nm CMOS Technology CMOS Technologies Trends, Scaling and Issues 1 IEDM 2010 Short Course CMOS Technologies – Trends, Scaling and Issues Thomas Skotnicki Instructor: Thomas Skotnicki, STMicroelectronics, Fellow and Director of Advanced Devices Crolles, France

Upload: others

Post on 16-Mar-2022

39 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CMOS Technologies – Trends, Scaling and Issues

2010 IEDM SHORT COURSE15nm CMOS Technology

CMOS Technologies – Trends, Scaling and Issues

1IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Scaling and Issues

Instructor: Thomas Skotnicki, STMicroelectronics, Fellow and Director of Advanced DevicesCrolles, France

Page 2: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

2IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 3: CMOS Technologies – Trends, Scaling and Issues

More Moore and More than Moore convergence for More Moore and More than Moore convergence for MultiMedia applicationsMultiMedia applicationsMore Moore and More than Moore convergence for More Moore and More than Moore convergence for MultiMedia applicationsMultiMedia applications

3IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Mobile Internet DevicesHigh-Speed >2GHzLow Operation VddLow Stdby Leakage

Digital imaging

Page 4: CMOS Technologies – Trends, Scaling and Issues

Technology trend Technology trend -- view view by ITRSby ITRSTechnology trend Technology trend -- view view by ITRSby ITRS

4IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Page 5: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

5IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 6: CMOS Technologies – Trends, Scaling and Issues

ITRS 2009 : CALCULATED WITH MASTAR, IMPORTANT CHANGES INTRODUCED IN METHODOLOGY

6IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Page 7: CMOS Technologies – Trends, Scaling and Issues

20

1

1.5

2

2.5

3

3.5

4

SC

AL

ING

AS

OF

ITR

S 2

005

HP Tox_el, nm

LOP Tox_el, nm

LSTP Tox_el, nm

HP Vdd, mV

LOP Vdd, mV

LSTP Vdd, mV

HP Lg, nm

Vdd, mV

Tox, nm

Lg, nm

Even less Vddscaling than

Lg LOP readsat around 40nmrather than 20nm!

Reality has turned out to be more difficult than ITRS predictions

7IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

20.5

2005 2006 2007 2008 2009 2010

YEAR

LOP Lg, nm

LSTP Lg, nm

E v o lu tio n o f V D D (L S T P )

0

0 , 5

1

1 , 5

2

2 , 5

3

3 , 5

4

4 , 5

5

1 9 8 0 1 9 9 2 1 9 9 5 1 9 9 8 2 0 0 0 2 0 0 2 2 0 0 4 2 0 0 7 2 0 1 0 2 0 1 5

Y e a r o f p r o d u c ti o n (I T R S )

Vo

lt

5 V p la te a u

1 .2 V p la te a u

1 2 0 9 0 6 5 3 22 5 03 5 07 0 0 4 5

1 .1 V

5 0 0 1 8 0

R e g u la r D e c r e a se in 1 0 y e a r s

F r o m 5 V to 1 .2 V (x 0 .7 p e r n o d e )

1 .0 V

E v o lu tio n o f V D D (L S T P )

0

0 , 5

1

1 , 5

2

2 , 5

3

3 , 5

4

4 , 5

5

1 9 8 0 1 9 9 2 1 9 9 5 1 9 9 8 2 0 0 0 2 0 0 2 2 0 0 4 2 0 0 7 2 0 1 0 2 0 1 5

Y e a r o f p r o d u c ti o n (I T R S )

Vo

lt

5 V p la te a u

1 .2 V p la te a u

1 2 0 9 0 6 5 3 22 5 03 5 07 0 0 4 5

1 .1 V

5 0 0 1 8 0

R e g u la r D e c r e a se in 1 0 y e a r s

F r o m 5 V to 1 .2 V (x 0 .7 p e r n o d e )

1 .0 V

scaling than predicted !

HK Introduction,but before and after this point stagnation in scaling

Page 8: CMOS Technologies – Trends, Scaling and Issues

STATIC POWER CRISIS ADDS TO DYNAMIC POWER CRISIS

8IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Page 9: CMOS Technologies – Trends, Scaling and Issues

POWER LIMITATION CHANGES PARADIGM

multicore

9IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Page 10: CMOS Technologies – Trends, Scaling and Issues

2500

3000

3500

Pe

rfo

rma

nce

In

de

x

SPEED-HUNGRY PARADIGM

DOES THE MOORE’s LAW CONTINUE ?

YES, since we sell to customers system performance rather than frequency

Pdyn = n x Frequency x Cload x Vdd2

10IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000

Frequency (MHz)

Pe

rfo

rma

nce

In

de

x

1 core

2 cores

+POWER-THRIFTY

PARADIGM

=HUMAN NATURE

Page 11: CMOS Technologies – Trends, Scaling and Issues

(CV/I)-1

SO….ONCE AGAIN WE NEED FREQUENCY, BUT BULK CANNOT OFFER IT ANY LONGER

ITRS 2009

11IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

RO FO=1

RO FO=4

Bulk

BulkFLAT

Page 12: CMOS Technologies – Trends, Scaling and Issues

DIFFICULT CHALLENGES

12IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Page 13: CMOS Technologies – Trends, Scaling and Issues

ITRS 2009 HP Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024Lgate HP nm 29 27 24 22 20 18 17 15.3 14.0 12.8 11.7 10.7 9.7 8.9 8.1 7.4

Vdd V 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.71 0.68 0.66 0.64 0.62 0.60

EOT, Bulk nm 1 0.95 0.88 0.75 0.65 0.55 0.53…….. SOI '' 0.7 0.68 0.60 0.57 0.57 0.54 0.5…….. DG '' 0.77 0.7 0.67 0.64 0.62 0.59 0.57 0.55 0.53 0.5

ITRS 2009 LOP Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

ITRS 2009 : MAIN FEATURES (1)

13IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

LOP Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024Lgate LOP nm 32 29 27 24 22 18 17 15.3 14.0 12.8 11.7 10.7 9.7 8.9 8.1 7.4

Vdd V 0.95 0.95 0.85 0.85 0.8 0.8 0.75 0.75 0.7 0.7 0.65 0.65 0.6 0.6 0.6 0.6EOT, Bulk nm 1 0.9 0.9 0.85 0.8…….. SOI 0.9 0.85 0.8 0.75 0.7 0.65…….. DG 0.8 0.8 0.75 0.73 0.7 0.7 0.65 0.65 0.6 0.6

ITRS 2009 LSTP Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024Lgate LSTP nm 38 32 29 27 22 18 17 15.3 14.0 12.8 11.7 10.7 9.7 8.9 8.1 7.4

Vdd V 1.05 1.05 1.05 1.00 0.95 0.95 0.95 0.85 0.85 0.85 0.85 0.75 0.75 0.75 0.75 0.75

EOT, Bulk nm 1.2 1.2 1.2 1 0.9…….. SOI 1 0.95 0.9 0.85 0.8…….. DG 1.1 1.1 1 1 0.9 0.9 0.8 0.8 0.7 0.7

Page 14: CMOS Technologies – Trends, Scaling and Issues

100.90

1.00

1.10

1.20

Lg, nm

Vdd, V

HP ITRS 2009

7nm = Big Litho Challenge

ITRS 2009 : MAIN FEATURES (2)

14IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

10.40

0.50

0.60

0.70

0.80

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

EOT,nm

Bulk

SOI DG

0.6V = +/- OK

0.5nm = very HK and no pedestal SiO2 ?

Relaxation in EOT; Bulk–>SOI->DG

Page 15: CMOS Technologies – Trends, Scaling and Issues

Kmob (mobilityimprovement) - 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8Kvs (saturation velocity impr.) - 1.10 1.11 1.11 1.12 1.13 1.13 1.14 1.15 1.15 1.16 1.17 1.17 1.18 1.19 1.20 1.20Kbal Idsat (imp. due to ballistictransport) - 1 1 1 1 1.06 1.12 1.19 1.26 1.34 1.42 1.50 1.59 1.69 1.79 1.90 2.01

Saturated !

Questionable !

Improbable !

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

HINT : WORK ON PMOS !!!

DIFFICULT TO BOOST CURRENT FURTHER

–YES, BUT IT ALREADY HAS BEEN +/- DONE !

15IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

~ X2.50

~ X1.14Data from Intel

In/Ip - 1.3 1.29 1.27 1.26 1.25 1.24 1.22 1.21 1.20 1.19 1.18 1.16 1.15 1.14 1.13 1.12

HINT : WORK ON PMOS !!! –YES, BUT IT ALREADY HAS BEEN +/- DONE !

Page 16: CMOS Technologies – Trends, Scaling and Issues

ORTHOGONAL CHANGE DUE TO POWER CRISIS AND PERFORMANCE CRISIS

HP ROADMAPS

16IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

ITRS 2011 ?

Page 17: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

17IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 18: CMOS Technologies – Trends, Scaling and Issues

Some Digital/Analog Some Digital/Analog SoCSoC ExamplesExamplesSome Digital/Analog Some Digital/Analog SoCSoC ExamplesExamples

W. Krenik et al., IEEE JSSC (2005) (TI)

18IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

STMicroelectronics STM32 - 32bit µcontroller

W. Krenik et al., IEEE JSSC (2005) (TI)

Intel’s 45nm CoreTM i7 processor (Nehalem).F. Bœuf, 2009 VLSI SC

Page 19: CMOS Technologies – Trends, Scaling and Issues

Main Elements of a Main Elements of a SoCSoCMain Elements of a Main Elements of a SoCSoC

High SpeedLogic

Critical LeakagePRCMU

eDRAMeNVM

Analog/RFRF ft,fmax,

matching, Noise

Extremely HighSpeed

in Burst mode

Static PowerVddRet as

Density, Process compatibility

High SpeedPdyn limited

19IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

PRCMU

High Voltage SRAM AreaLow Vdd op.

Vmin as low as possible

VddRet as low as possible

voltage, surfaceFt,Fmax,ESD

High Voltage Operation, data transfer

I/Os

F. Bœuf, 2009 VLSI SC

Page 20: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

20IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 21: CMOS Technologies – Trends, Scaling and Issues

IN

VDD

OUT

1

4

3

2

5

ττττ

2ττττ

0

34

5

76

1 2

ττττ2ττττ

0

Effective Effective CurrentCurrent ((IeffIeff) as ) as metricmetric of speedof speed

SWITCHING TRAJECTORY WHEN CHARGING /DISCHARGING THE LOAD

IDN

V =V /2

VGS=VDD2ττττ

Ion is NOT a speed indicator

21IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

IN OUT

CL

Vdd

Ref.: M.H. Na et al., IEDM 2002, p.121.

VDSVDD/2

VGS=VDD/2

0

ττττ

VDD

Ieff IS A GOOD SPEED INDICATOR

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVII

3

==+

===2

;;22

1 ddDddGddD

ddGeff

VVVVIVV

VVIIExample of CHARGING

Page 22: CMOS Technologies – Trends, Scaling and Issues

IEFF IEFF dependsdepends on DIBL on DIBL ––NEW !!!NEW !!!

-

Long channel

- short

SCE – Short Channel EffectSCE

ID

same IonVdd

Techno w/o DIBL

Techno w. DIBL

22IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

- SCE DIBL

Vds

DIBL – Drain Induced Barrier Lowering

- shortchannel

VdVdd/2 Vdd

DIBL

Ieff w.DIBL< Ieff w/o DIBL

Vdd/2

Page 23: CMOS Technologies – Trends, Scaling and Issues

600

800

1000

d (µA

)

150

11580DIBL=40

I2=810

I2=620

Ieff ≈≈≈≈(340+620)/2=480

Ieff ≈≈≈≈ (340+810)/2=575

∆f/f=∆Ieff/Ieff=95/480=20%

DIBL = NEW PERFORMANCE DRIVER

23IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0 0.2 0.4 0.6 0.8 10

200

400

Vd (V)

I d

Collboration STMicroelectronics & L. Wei, P. Wong (Stanford U.)

(*) in this example, all device have the same Ion, Ioff and capa environement

I1=340

=20%

Lower DIBL =

Higher Performance

23

Page 24: CMOS Technologies – Trends, Scaling and Issues

Inverter Speed (using IEFF current)

Iso-performance curves are more sensitive to DIBL for (HVT) high-Vth and/or low VDD

Ion

A/µ

m)

HVT Device

LVT Device

500

1200

Low Vdd / High VT

High Vdd / Low VT

( )thdd VV

DIBL

f

f

−∆−=∆ 2

24IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

For High Performance (LVT) devices, DIBL is a less important performance factor

Ion

A/µ

m)

DIBL (V)

Ion

A/µ

m)

DIBL (V)

Ref.: Lan Wei et al., SSDM 2009, ST-Stanford common paper

50 200300

DIBL (mV)

50 200DIBL (mV)900

Page 25: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

25IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 26: CMOS Technologies – Trends, Scaling and Issues

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

WHY DOES THE PLANAR MOSFET FAIL ?(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N° 3, 1998)

Suppose : Lel=2/3Lg

26IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

REF.: T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Group

Tdep=1/2Lg

Xj=1/2Lg

mVV 1401 43

201

4

31 4.2

2

2

=

+

Suppose : Lel=2/3Lg

Page 27: CMOS Technologies – Trends, Scaling and Issues

BULK :Increasing SCE and DIBL for Logic, and Variability for SRAM imply stagnation in Lgate scaling down

Area problem – to scale pitch with constant Lgate -contacts are dangerously approaching gate leading to techno difficulties and performance compromise due to increasing gate to contact capacitance

27IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Constant Lgate and increasing capacitance lead to saturation in performance growth, also due to stagnation in strain technologies

L C

Page 28: CMOS Technologies – Trends, Scaling and Issues

Main Mobility Enhancement Techniques

SixGe1-x

SSOI

Tensile bi-axial

SubstrateSubstrate--basedbased ProcessProcess--basedbased

Crystal/Channel

Bulk SOI

Natural µ enhancement

eSiGe

Comp.

SEG

eSiC

Tensile

Gate

Replac. Gate

Tensile

MEOL

Contact

Tensile

Liners

CESL SMT

Tensile Tensile

28IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

nMOS+pMOS

SSOI Channel Orient. Substrate Orient.

<100>

(110)

pMOS pMOS nMOS nMOS

pMOS

Compressive

nMOS nMOS nMOS

pMOS

Compressive

Page 29: CMOS Technologies – Trends, Scaling and Issues

SPEED Race w. Bulk Impossible !MoreSpeed

MoreMOS

Current

LessRC

Mobility Lg Reduce ReduceEOTVdd

New Transistor Structure

29IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Mobility-Strain

Boosters

Lgfaster

scaling

ReduceMetal

resistance

ReduceCapacitance

Si +/- none !III-V ?

EOTfasterscaling

VddOver-drive

NOSince Pdyn

New HKNot ready

Igate !

No lithoIoff, DIBLVariabilit

RatherIncreases !

RatherIncreases !No new LKavailableSOI

FinFETNanowires

Page 30: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

30IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 31: CMOS Technologies – Trends, Scaling and Issues

Published Data : Mobility

Company Type Mobility vs Si Lgate min

IMEC Ge (100) P MOSFET x2.2 65nm

LETI/ST Ge (100) P MOSFET X2.8 75nm / 30nm (tbp)

Stanford University Ge (111) N MOSFET x1.5 100µm

Tokyo University Ge (111) N MOSFET x1.5 300µm

IMEC InGaAs MOSFET x4x2

10µm1.5µm

31IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SEMATECH InGaAs MOSFET X4 5µm

Singapore University InGaAs MOSFET x2 95nm

Purdue University InGaAs MOSFET No data 160nm

Purdue University InGaAs FINFET No data 100nm

Tokyo University InGaAs-OI MOSFET x1.35 500µm

SEMATECH InGaAs QWFET X9 (Hall) 5µm

IBM InGaAs QWFET No data 90nm

INTEL InGaAs QWFET >10 (Hall) 75nm

Page 32: CMOS Technologies – Trends, Scaling and Issues

Limiting Velocity in Transistor Channel

2.3

2.8

3.3E

ffe

ctiv

e S

atu

rati

on

Ve

loci

ty (

10

7 c

m/s

)InGaAS MOSFET

Strained-Si nMOSFET

Ge pMOSFET

Strained-Si pMOSFET

32IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0.8

1.3

1.8

0 20 40 60 80 100

Eff

ect

ive

Sa

tura

tio

n V

elo

city

(1

0 7

cm

/s)

Gate Length (nm)Data : F. Bœuf

Page 33: CMOS Technologies – Trends, Scaling and Issues

Darkspace in III-V Materials

1.6

2.0

Cap

aciti

ve e

quiv

alen

t th

ickn

ess

(nm

)

1.6

2.0

Cap

aciti

ve e

quiv

alen

t th

ickn

ess

(nm

)

InGaAs

Parabolic bandstuctureNon- Parabolic bandstucture

Due to lower DOS, DS is bigger in III-V materials. Still, DS value dependson the non-parabolocity factor of the conduction band More research is needed to correctly describe this effect

33IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0.0 4.0x1012 8.0x10120.0

0.4

0.8

1.2

Cap

aciti

ve e

quiv

alen

t th

ickn

ess

(nm

)

Inversion density (cm-3)0.0 2.0x1012 4.0x1012 6.0x1012 8.0x1012 1.0x1013

0.0

0.4

0.8

1.2

Cap

aciti

ve e

quiv

alen

t th

ickn

ess

(nm

)

Inversion density (cm-3)

From Q. Raphay, IMEP, unpublished material

InGaAs

GaAsSi, GeInGaAs

GaAs

Si, Ge

+3~4A +5~6A

+10A

+3~4A

Page 34: CMOS Technologies – Trends, Scaling and Issues

High µ/vsat ~ Small Eg ~ High εεεε

SemiconductorEff. Electr

on mass

Bandgap(eV) at 300K

Dielectricconstant

Electron bulk mobility (cm2/Vs)

Saturation velocity

(107 cm/s)

InSb 0.014 0.17 15.9 77000 5

InAs 0.023 0.36 12. 30000 3.5

GaSb - 0.68 14.8 5000 -

34IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

InP - 1.27 12.1 4500 -

GaAs 0.063 1.43 11.5 8000 1.2

Ge 1.59/0.081 0.66 16 3600 0.6

Si 0.98/0.19 1.12 12 1350 1

Virtual III-V (~InGaAs) : µeff X10, vsat X3, εεεε X1.25, Tinv +2 upto +6.5Å

Page 35: CMOS Technologies – Trends, Scaling and Issues

How do ε & Dark Space impact DIBL and SS in III-V’s (1)

DS

el

dep

el

inv

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

Tinv=Tox+DS.εox/εsB

DSidep qN

Tφε2=

35IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

elelelox LLL ε

( )

Φ+

+++=

d

DS

el

dep

el

j

el

inv

ox

Si

dep

inv

ox

Si V

L

T

L

X

L

T

T

T

q

kTSS 1

4

31110ln

εε

εε

[8] T. Skotnicki et al., IEEE Trans. On Elec. Dev., Vol.55 ,Issue 1, pp 96-130, 2008

Page 36: CMOS Technologies – Trends, Scaling and Issues

250

300

350

400

DIB

L (m

V)

epsilon +3 (+25%)Tinv+6.5A (+59%)Reference (Si)

100

110

120

130

dec)

epsilon 15

(+25%)

Tinv+6.5A

How do ε & Dark Space impact DIBL and SS in III-V’s (2)

36IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

(b)

0

50

100

150

200

10nA/µm 100nA/µm 2µA/µm

DIB

L (m

V)

Ioff (nA/µm)

60

70

80

90

100

SS (m

V/d

ec

(+59%

Reference

(Si)

(b)

Page 37: CMOS Technologies – Trends, Scaling and Issues

Cumulative impact of the constructive and destructive effects for constant Ioff=10nA/µm, 22nm CMOS

IdealIII-V

+15%+23%

+25%

+53%

-22%

-18%

-12%

-42%

SSi

+49%

III-V w/ relaxed L

-29%

37IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Si Ref SSi

III-V

-42%

-55%

« III-V w/ relaxed L » – so as to remove penalty due to larger DIBL and SS

Page 38: CMOS Technologies – Trends, Scaling and Issues

Step-by-Step High-µ Material Analysisfor 16nm node at Ioff = 0.5nA/µm

35

40

a.u

.)

Material Epsilon Kvs Kµ DS (nm) remark

S-Si (n) 12 1.7 1.8 +0.3 Full Strain-Si

S-Si (p) 12 1.5 7 +0.5 Full Strain-Si

UTB 12 1.1 1.2 +0.3 Slightly Strained

Virtual III-V 13.8 >3 10 +0.5 High µ for electron

Ge 16 1.5 3 +0.5 High µ for holes

38IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0

5

10

15

20

25

30

Silicon

Lg=18nm

Strained – Si

Lg=18nm

High µ/velocity

Lg=16nm

Epsilon=13.8

Lg=16nm

DS +0.2nm

Lg=16nm

Relaxed NFET to 22nm

NA

ND

2 (

FO

3)

Fre

qu

en

cy (

a.u

BulkSi – Ref.BulkSi – Ref.

BulkS-SiBulkS-Si

Ideal III-V/ GeIdeal III-V/ Ge

RealIII-V/ GeRealIII-V/ Ge

RelaxedIII-V/ GeRelaxedIII-V/ Ge

III-V/ GeIII-V/ Ge

Page 39: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

39IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 40: CMOS Technologies – Trends, Scaling and Issues

FinFET - STATE OF THE ART

FinFET structure in a dense array with

FinFET

Source

Drain

40IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

CPPFinPitch

IBM Allience , Albany 2010

FinFET structure in a dense array with CPP=80nm and Fin pitch = 50nm

Page 41: CMOS Technologies – Trends, Scaling and Issues

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

WHY THE Double-Gate DOES NOT FAIL ?(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N° 3, 1998)

Suppose : Tsi=1/3Lg & Lel=2/3LgXj=1/2Tsi

41IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

REF.: T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Group

mVV 321 41

201

12

31 4.2

2

2

=

+

Suppose : Tsi=1/3Lg & Lel=2/3LgXj=1/2Tsi

Tdep=1/2Tsi

Xj=1/6Lg

Tdep=1/6Lg

Tsi=1/3Lg Impossible, suppose limited to 12nm =>

Page 42: CMOS Technologies – Trends, Scaling and Issues

ELECTROSTATICS FINFET(1) – vs – UTBB SOI:FinFET – COMMON GATES

=>BB IMPOSSIBLEFinFET

after ROTATIONFDSOI-

Utra Thin BOX

42IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

Tdep=Tsi/2

Xj=Tsi /2

Tsi ≥ 12nm

Tox = 1nm

Tbox = NONE

Tdep=Tsi+λTbox

Xj=Tsi

Tsi ≥ 6nm

Tox = 1nm

Tbox = 10nm

Lel=16nm, λ≈0.3

≥51mV

Vds=0.8V

≥77mV

Page 43: CMOS Technologies – Trends, Scaling and Issues

ELECTROSTATICS FINFET (2) – vs – UTBB SOI:FinFET – SEPARATE GATESBAD ELECTROSTATICS !!!

FinFETafter ROTATION

FDSOI-Utra Thin BOX

BB – STILL IMPOSSIBLE

43IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

Tdep=Tsi+λTbox

Xj=Tsi

Tsi ≥ 12nm

Tox = 1nm

Tbox = Tox

Tdep=Tsi+λTbox

Xj=Tsi

Tsi ≥ 6nm

Tox = 1nm

Tbox = 10nm

Lel=16nm, λ≈0.3

≥144mV

Vds=0.8V

≥77mV

BB – STILL IMPOSSIBLEIF MORE THAN 1 Fin

…… AND BB STILL IMPOSSIBLE , see next slide

Page 44: CMOS Technologies – Trends, Scaling and Issues

FinFET’s INCOMPATIBILITY W. BODY-BIAS

FDSOI = 2D FinFET w. COMMON GATE

gate

drain

Thin Silicon film

FinFET w. SEPARATE GATES

LOST ADVANTAGE IN DIBL !

gate

drain

Lg

44IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

gate

source

Body-BiasAs on Bulk

Body-BiasSince

GATE=BACK-BODY

gate

source

Lg

Body-Bias

SinceGate(N+1)=Body(N)

And NO ROOM for CONTACTS

Fin1 2 3 4

Page 45: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

45IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 46: CMOS Technologies – Trends, Scaling and Issues

FDSOI FDSOI devicesdevices on SOI Waferson SOI Wafers

K. Cheng et al., VLSI 2009 (IBM)Krivokapic et al., IEDM

2002(AMD)

M. Fujiwara et al., IEEE SOI Conference 2005 ( Toshiba)C. Fenouillet-Beranger et

al., unpublished

46IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

N.Sugii et al., IEDM 2008 (Hitachi)

« SOTB»DST

R.Chau et al., IEDM 2001(Intel)

Hybrid FDSOI

C. Fenouillet-Beranger et al., IEDM 2009(ST/LETIl)

al., unpublished(ST/LETIl)

0.

FDSOI BULK

Page 47: CMOS Technologies – Trends, Scaling and Issues

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

WHY DOES THE UTB SOI/SON DO BETTER ?(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N° 3, 1998)

Suppose : Tsi=1/3Lg & Lel=2/3Lg

47IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

REF.: T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Group

Xj=Tsi

mVV 751 21

201

2

11 4.2

2

2

=

+

Suppose : Tsi=1/3Lg & Lel=2/3LgTdep=Tsi

Xj=1/3Lg

Tdep=1/3Lg

Page 48: CMOS Technologies – Trends, Scaling and Issues

Gate

Saddle point: reveals strong DIBL

Gate

No Saddle point !

BOX = 10nm

Source Drain Source Drain

Why thin BOX?

48IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

BOX = 100nm BOX = 10nm

Electrostatic potentialThin BOX can suppress the lateral electrostatic coupling between Drain and Channel

Drain-to-ChannelCoupling via BOX

REF.: T. Skotnicki et al., ECS Symp, SOI Techn. & Dev XI, edit S. Cristoloveanu , 2003

NO Coupling to channel via BOX

Page 49: CMOS Technologies – Trends, Scaling and Issues

2030405060708090

DIB

L(m

V)

NMOS FDSOITox 1nm Vdd 1VTsi 5nm Lg 30nm

Lg 40nm

Closed symbol: TCAD simulation

ElectrostaticsElectrostatics of UTB SOIof UTB SOIT. Skotnicki et al. IEEE EDL, March’88 & IEDM’1994

XjTdep

Bulk

T

Sij

TTT

TX

λ+→

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

C.Fenouillet-Beranger, et al., SOI Conference 2003

49IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

010

0 20 40 60 80 100 120 140 160Tbox(nm)

Closed symbol: TCAD simulationOpen symbol: MASTAR

TBOX

TSi boxSidep TTT λ+→

box

el

el

box

el

box

T

L

L

T

L

Ttgh

+

−+= 09.01150.1121.0λ

UTBDS

el

boxSi

el

ox

el

Si

ox

Si VL

TT

L

T

L

TDIBL

λεε +

+=

2

2

180.0

Page 50: CMOS Technologies – Trends, Scaling and Issues

Body Bias – Powerful booster

pMOSnMOS

As

AsAsBOX

In

B B

B

Vb=0Vb=FBBVb=RBB

Vb=VddVb=FBBVb=RBB

BOXAs

Normalspeed+20% (1/2 amplit.)

Pstat / 3 (1/2 amplit.)

Full Amplitude RBB and FBB

50IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Vsub(p)=0

np

FBB – Forward Body BiasRBB – Reverse Body Bias

Full Amplitude RBB and FBB

Page 51: CMOS Technologies – Trends, Scaling and Issues

Multi-VT capability with 2 Metals

0

0,2

0,4

0,6

0,8

Th

resh

old

vo

ltag

e (V

)

LVT RVT HVT SHVT

GP-N GP-P

GP-PGP-N

nMOS

BOX

TiN

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

BOX

TiN

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

Metal change

GP change

LVT

RVT

BOX

TiN

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

BOX

TiN

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

Metal change

GP change

LVT

RVT

nMOS pMOSnMOS pMOSnMOS pMOS

Logic SRAM DRAM

51IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Large range of VTs for SoC are possible on FDSOI w/o SiGe (contrarily to bulk) and with a dual gate approach (similarly as for bulk)

-0,8

-0,6

-0,4

-0,2

0

Th

resh

old

vo

ltag

e (V

)

GP-P GP-NGP-NGP-P

pMOSGP change metal

change

TiN TaAlN/TaN

BOX

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

BOX

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

TiN

TiN

HVT

SHVT

BOX

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

BOX

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

TiN

TiN

BOX

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

BOX

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

TiN

TiN

HVT

SHVT

Page 52: CMOS Technologies – Trends, Scaling and Issues

Body Bias with UTBOX =>+20% in speed (FBB) and Pstat/3 (RBB)

0

0.2

0.4

0.6

-1.5 -1 -0.5 0 0.5 1 1.5

VB (V)

VT (V) LG=18nm

VD=0.05V

TBOX=10nm

52IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Good back bias capability with both N-type or P-type GPs That remains true even with very short MOSFETs (18nm !)

-0.6

-0.4

-0.2

-1.5 -1 -0.5 0 0.5 1 1.5

PMOS w p-type GP

PMOS w n-type GP

NMOS w p-type GP

NMOS w n-type GP

11nm7nm

Page 53: CMOS Technologies – Trends, Scaling and Issues

I/O devices for ESD protectionsI/O devices for ESD protectionsI/O devices for ESD protectionsI/O devices for ESD protections

Circuit to be

protected

Trigger Circuit

Vdd

gnd

IOIO11 IOIO22

ESD devices types:

53IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

ESD Commitments: Transparency (DC) and Robustness for ESD (typical ESD Commitments: Transparency (DC) and Robustness for ESD (typical values ~100ns& 1values ~100ns& 1--2 A))2 A))

Best cases: at same robustness, less areaBest cases: at same robustness, less area

PWELL

N+P+ STIP+

N+ P+NWELL

gate P+

N+ PWELL

gate

N+

STI diodeSTI diode gated diodegated diode MOS transistorMOS transistor

ESD devices types:

Page 54: CMOS Technologies – Trends, Scaling and Issues

Gated Diodes / ESD are critical in FDSOIGated Diodes / ESD are critical in FDSOIGated Diodes / ESD are critical in FDSOIGated Diodes / ESD are critical in FDSOI

T.Benoist et al, EOS/ESD Symposium, 2010

Bulk gated diodes without HKMG

width Ron(Ω) It2 (mA/um)

10 x (2.5 um) 1.78 12

10 x ( 5 um) 1.08 11

10 x (10 um) 0.72 11

40 x (5 um) 0.32 10

FDSOI gated diodes with HKMG

54IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

FDSOI gated diode

Breakdown current is Breakdown current is divided by 4 vs Bulk!divided by 4 vs Bulk! Robustness (breakdown current It2) and Resistance On

(Ron) for FDSOI gated diodes

FDSOI gated diodes with HKMG

width Ron(Ω) It2 (mA/um)

10 x (2.5 um) 16 2.8

10 x ( 5 um) 7.8 2.5

10 x (10 um) 4.2 2.4

40 x (5 um) 2.7 2.2

On FDSOI, the area of ESD protections (as based on gated-diodes) would need to by increased X4 !!! SOLUTION=COINTEGRATION =>

Page 55: CMOS Technologies – Trends, Scaling and Issues

Protection layer Si +BOX removal

Easy CoEasy Co--Integration Integration of FDSOI with Bulk (thin BOX)of FDSOI with Bulk (thin BOX)Easy CoEasy Co--Integration Integration of FDSOI with Bulk (thin BOX)of FDSOI with Bulk (thin BOX)

SOI

FDSOI

55IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

UTBB area Bulk areaC. Fenouillet et al., IEDM 2009 (ST/LETI )

FDSOI BULK

Page 56: CMOS Technologies – Trends, Scaling and Issues

HK dielectric

Metal electrode

HK dielectric

Metal electrodeThick Oxide

Dual Gate Oxide Integration with HK/MG on FDSOIDual Gate Oxide Integration with HK/MG on FDSOIDual Gate Oxide Integration with HK/MG on FDSOIDual Gate Oxide Integration with HK/MG on FDSOI

56IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

K.Cheng et al, IEDM09

C. Fenouillet et al., IEDM 2009 (ST/LETI )

Page 57: CMOS Technologies – Trends, Scaling and Issues

Very Good UTB-FDSOI Analog Properties

1

10

100

1000

0,01 0,1 1

An

alo

g ga

in, G

m/G

d

Bulk [2]

UTB [1]

Analog Performance

G=30@5Lmin

1

10

100

1000

An

alo

g g

ain

, Gm

/Gd

I/O

UTB [1]

Analog Precision

G=100@10Lmin

Bulk

FDSOI

Bulk

FDSOI

57IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0,01 0,1 1

Lg(µm)

1

0,1 1 10

Lg (µm)

0

50

100

150

200

250

300

350

400

0 100 200 300

Fmax

(GH

z)

Lgate (nm)

Bulk Silicon Data (Lit.)ITRSUTBFinFET

0

50

100

150

200

250

300

350

400

450

500

10 100

FT

(GH

z)

Lgate (nm)

Bulk&PDSOI Data (lit.)

ITRS

FDSOI

FinFET FDSOI

Page 58: CMOS Technologies – Trends, Scaling and Issues

UTBB SOI scalability to node 11nm and beyond

• TCAD extrapolation for channel Si thickness

• Model is calibrated on Si dataBOX=50nm

Lg=

10nm

58IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

O. Faynot et. al. FDSOI Workshop Oct. 15, 2009; Courtesy of CEA-LETI

BOX scaling is an additional weapon of FDSOI BOX scaling enables FDSOI scalability even beyond node

11nm with TSi no thinner than ~ 6-7nm This leaves a comfortable margin w/r to Quantum Realm

QUANTUM REALM

Page 59: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

59IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 60: CMOS Technologies – Trends, Scaling and Issues

DSel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

+=

2

2

180.0εε

Tdep=3/4Lel

WHO DOES BETTER w. DIBL THAN BULK DOES ??(Ref.: T. Skotnicki, et al., Electron Device Letters, Vol 9, N° 3, 1998)

Xj=3/4LelBULK

III-V

Tox +2A

+15%

140mV/V

εεεεsi

210mV/V

Log(Id)

Vg

DIBL

Vdd0.1V

60IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Tdep=Tsi/2

Xj=Tsi/2

Tsi ≥ 10nm

FDSOI

FinFET

Tdep=Tsi+λTbox

Xj=Tsi ≥6nm

80mV/V

70mV/V

ETSOI

UTBB

110mV/V

Page 61: CMOS Technologies – Trends, Scaling and Issues

Tdep=3/4Lel

WHO DOES BETTER THAN BULK w. Pstat??(Ref.: T. Skotnicki, et al., IEEE TED, pp. 96-130, Jan. 2008

Xj=3/4Lel

BULK

III-V

Tox +2A

+15%

Pstat=Nx

10nA/µmxVdd(S=95 mV/dec)

εεεεsi

Φ+

+++=

d

ds

el

dep

el

j

el

ox

ox

Si

ox

dep V

L

T

L

X

L

T

C

C

q

kTS 21

4

311)10ln(

εε

Pstat X5(S=110mV/dec)

S –SubthresholdSlope

Log(Id)

Vg

61IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

RBB =>Pstat /3

Tdep=Tsi/2

Xj=Tsi/2

FDSOI

FinFET

Tdep=Tsi+λTbox

Xj=TsiETSOI

UTBB

Vg

Pstat /3(S=85mV/dec)

Pstat /15(S=75mV/dec)

Pstat /10(S=65mV/dec)

Page 62: CMOS Technologies – Trends, Scaling and Issues

80

100

120

140

160IN

V (

FO

1)

Fre

qu

en

cy (

a.u

.)

L=26nmw/stressors

L=20nmNo stressors

L=20nmNo stressors

L=20nmNo stressors

20L

P U

TB

B w

/ FB

B

20L

P U

TB

B w

/ Ful

l FB

B

L=20nmNo stressors

L=20nmNo stressors

Reduced DIBL and FBB (Forward-Body Bias) provide the winning solution with FDSOI @ 20nm

Vdd=0.9V FDSOI

20L

P F

INF

ET

feas

ible

62IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0

20

40

60

BULK 20LP ETSOI UTBB UTBB/FBB UTBB/F-FBB FinFET

INV

(F

O1

) F

req

ue

ncy

(a

.u.)

Technology

20L

P B

UL

K

20L

P E

TSO

I

20L

P U

TB

B

20L

P U

TB

B w

/ FB

B

20L

P U

TB

B w

/ Ful

l FB

B

Tsi=10nmTbox=145nm

Tsi=6nmTbox=25nm

20L

P F

INF

ET

Not

yet

feas

ible

Tsi=5nmTbox=145nm

Tsi=6nmTbox=25nm

Tsi=6nmTbox=25nm

Page 63: CMOS Technologies – Trends, Scaling and Issues

Dynamic Power @ constant Frequency, 20nm node

0.6

0.8

1

1.2

No

rma

lize

d D

yn

ma

nic

PO

we

r IN

V (

FO

1)

Vdd=0.9V

Vdd=0.8V Vdd=0.79V

Vdd=0.74V Vdd=0.68V

20nm LP CMOS Same Frequency = F(Bulk 20LP)

-40% Pdyn-55% Pdyn

63IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0

0.2

0.4

0.6

BULK 20LP ETSOI UTBB UTBB/FBB UTBB/F-FBB FinFET

No

rma

lize

d D

yn

ma

nic

PO

we

r IN

V (

FO

1)

Technology

Vdd=0.74V

Vdd=0.66V

Vdd=0.68V

Page 64: CMOS Technologies – Trends, Scaling and Issues

DG

Bulk /w strain

Single Gate FDSOI

Multigate Gate UTBVdd=0.8V

16nm

UT

BB

w/ F

BB

Reduced DIBL along w. FBB (Forward-Body Bias) provide the winning solution with FDSOI @ 16nm

64IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

20L

P@0.

9V

16L

P

16nm

ET

SOI

16nm

UT

BB

16nm

Pla

nar

DG

16nm

Fin

FET

22/1

8nm

Hig

h-µ

16nm

UT

BB

w/ F

BB

III-V / Ge Bulk

relaxed Lg Tsi=4nmTbox=145nm

Tsi=6nmTbox=10nm Tsi=6nm

Tbox=10nm

Tsi=10nmTbox=145nm Tsi=10nm

Tbox=145nm

Page 65: CMOS Technologies – Trends, Scaling and Issues

Dynamic Power Dissipation @ constant frequency, 16nm

0.6

0.8

1

1.2N

orm

aliz

ed

Pd

yn

(FO

1)

@ 2

5%

sp

ee

d im

pro

vem

en

t Vdd=0.9V

Vdd=0.88V

Vdd=0.81V

Same Frequency = F(20LP) + 33%

65IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0

0.2

0.4

0.6

BULK 20LP BULK III-V / Ge

Bulk

ETSOI UTBB UTBB w/F-

FBB

DG FinFET

No

rmal

ize

d P

dyn

(F

O1

) @

25

% s

pe

ed

imp

rove

me

nt

Technology

Vdd=0.81V

Vdd=0.79VVdd=0.8V

Vdd=0.67V

Vdd=0.69V Vdd=0.69V

Page 66: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

66IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SOC requirements and prerogatives

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 67: CMOS Technologies – Trends, Scaling and Issues

44 3

2

4ch

el

ox

ox

Fsth N

WL

TqV

εϕε

δ =

8k-MOSFET ARRAY, Tox=11nm, Nch=7.1e16cm-3

VARIABILITY - FLUCTUATIONS:

A 4.2 nm MOSFET in production 2023

67IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

T. Mizuno et al., IEEE TED, Nov. 1994Courtesy of A. Asenov, Glasgow Univ., UK

Electron concentration

Page 68: CMOS Technologies – Trends, Scaling and Issues

Line Edge Roughness (LER)and Poly Grains (PGG) vs RandomDopant Distribution (RDD) – RDD is the dominant effect !

68IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Courtesy Prof. A. Asenov Glasgow U.

A. Cathignol et al. , EDL, 2008 (ST)

Page 69: CMOS Technologies – Trends, Scaling and Issues

Fluctuations –IMPACT ON LOGIC and on SRAM

SNM w/o process spread

Microelectronics Journal 36 (2005) 789–800Huifang Qin

LWA

LWT

NqV vtox

ox

dcsth

112

0

4 30 ≡

Φ=

εεεε

δ

69IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

SNM with process spread

Courtesy Prof. A. Asenov

Page 70: CMOS Technologies – Trends, Scaling and Issues

LESS VARIABILITY W. SOI - EXPLANATION:

70IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

σVt(SOI)/ σVt(Bulk)

=(NaSOI/NaBulk)1/4

=(1/100)1/4

≈ 1/3Ref.: Denis Flandre, UCL Louvain-La-Neuve, BE

Page 71: CMOS Technologies – Trends, Scaling and Issues

CONTINUITY OF SRAM SIZE SCALING:

71IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

F. Bœuf, 2009 VLSI SC

Page 72: CMOS Technologies – Trends, Scaling and Issues

SRAM: Minimum Operating Voltage SRAM: Minimum Operating Voltage

VminVmin depends strongly on the depends strongly on the nMOSnMOS& & pMOSpMOS Vt’sVt’s

– Variation in VtN or VtP will cause strong Vmin degradation, i.e. non functionnal SRAM circuit

– Statistical dispersion of VtN and VtP can cause circuit fails (due to SNM/WM dispersion)

WriteFail

ReadFail

∆Vt

∆Vt

72IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

to SNM/WM dispersion)

N.Planes et al., SSDM 2008

Fail

P. Stolk at al., T-ED 1998 (NXP)Conflict with electrostatics when

L shrink

Conflict when Area shrink

Conflict with cell-leakage

F. Bœuf, 2009 VLSI SC

Page 73: CMOS Technologies – Trends, Scaling and Issues

SMALL IS DIFFICULT

Bulk_poly_0.276µm2

PU W/L= 55/80PD W/L=215/55PG W/L=170/65

in nm0.6

0.8

1.0

Vou

t (re

sp. V

in)

Bulk_poly_0.276µm2

PU W/L= 55/80PD W/L=215/55PG W/L=170/65

in nm0.6

0.8

1.0

Vou

t (re

sp. V

in)

Bulk_poly_0.164µm2Bulk_poly_0.164µm2Bulk_poly_0.211µm2Bulk_poly_0.211µm2

73IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Vin (resp. Vout)

Vou

t (re

sp. V

in)

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Vin (resp. Vout)

Vou

t (re

sp. V

in)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Vin (resp. Vout)V

ou

t (r

esp

. Vin

)

Bulk_poly_0.164µm2

PU W/L= 45/32PD W/L=105/32PG W/L= 90/45

in nm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Vin (resp. Vout)V

ou

t (r

esp

. Vin

)

Bulk_poly_0.164µm2

PU W/L= 45/32PD W/L=105/32PG W/L= 90/45

in nm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Vin (resp. Vout)

Vou

t (re

sp. V

in)

Bulk_poly_0.211µm2

PU W/L= 55/45PD W/L=150/45PG W/L=120/55

in nm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Vin (resp. Vout)

Vou

t (re

sp. V

in)

Bulk_poly_0.211µm2

PU W/L= 55/45PD W/L=150/45PG W/L=120/55

in nm

After: T. Skotnicki et al. Innovative materials, devices and CMOS technologies for low-power mobile multimedia, pp. 96-130, IEEE TED, Jan. 2008

Page 74: CMOS Technologies – Trends, Scaling and Issues

VDD=1.1V

0.6

0.8

1.0

1.2

Vo

ut (

resp

. Vin

)

VDD=1.1V

0.6

0.8

1.0

1.2

Vo

ut (

resp

. Vin

)

VDD=0.9V

0.6

0.8

1.0

1.2

Vo

ut

(res

p. V

in)

VDD=0.9V

0.6

0.8

1.0

1.2

Vo

ut

(res

p. V

in)

VDD=0.7V

0.6

0.8

1.0

1.2

Vo

ut

(res

p. V

in)

VDD=0.7V

0.6

0.8

1.0

1.2

Vo

ut

(res

p. V

in)

LP IS DIFFICULT

74IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vin (resp. Vout)

Vo

ut (

resp

. Vin

)

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vin (resp. Vout)

Vo

ut (

resp

. Vin

)

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vin (resp. Vout)

Vo

ut

(res

p. V

in)

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vin (resp. Vout)

Vo

ut

(res

p. V

in)

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vin (resp. Vout)

Vo

ut

(res

p. V

in)

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vin (resp. Vout)

Vo

ut

(res

p. V

in)

After: T. Skotnicki et al. Innovative materials, devices and CMOS technologies for low-power mobile multimedia, pp. 96-130, IEEE TED, Jan. 2008

Page 75: CMOS Technologies – Trends, Scaling and Issues

2005 2007 2010 2013 2016 2019

Tolerable Die Fail 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Memory Size(Mbits) 8 16 32 64 128 256

Tolerable Bit Fail 1.25E-11 6.25E-12 3.13E-12 1.56E-12 7.81E-13 3.91E-13

Required SNM/σσσσSNM 6.8 6.85 6.95 7 7.15 7.25

SRAM: Minimum Operating Voltage SRAM: Minimum Operating Voltage

75IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Vmin reduction

Page 76: CMOS Technologies – Trends, Scaling and Issues

BULK

Avt ~ 3.3 Vdd,nom=0.9V

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Avt

(mV.

µm

)

Tox (nm)

Bulk

UTB

World record by LETI !

O. Weber et al. IEDM 2008 (LETI)

Variability and LP SRAM:

Data : F. Bœuf

76IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.2 1.4 1.6 1.8 2

Vmin

(V)

AVt (mV.µm)

FD

SOI

Vmin~0.6V

Bul

kVmin~0.75V

FDSOI/UTBOXAvt ~ 1.4

Vdd,nom=0.9V

Bulk: Avt = 2FDSOI: Avt = 1.4

Page 77: CMOS Technologies – Trends, Scaling and Issues

Introduction

CMOS Technology Roadmap (ITRS) overview Density scaling (Gate length/pitch)Power scaling (low power/leakage) Voltage scaling

SOC requirements and prerogatives

OUTLINE

77IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

Performance scaling – New insightBULKIII-V CHANNELSFINFETFDSOI

Variability for logic/for SRAM

Perspective

Page 78: CMOS Technologies – Trends, Scaling and Issues

PERSPECTIVEAll rational reasonings indicate that 15nm CMOS (at

least the 14nm LP) should switch from Bulk to UTBB (Ultra Thin Body and BOX) SOI

Once this accomplished, UTBB will remain the principal platform for 2-3 generations, since itsscalability (thanks to thin BOX) is very good, similar to

78IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

scalability (thanks to thin BOX) is very good, similar to that of FinFET

For further nodes, scaling may stop and thus renderperformance increase with high-µ materials (e.g. III-V) more efficient, as these materials manifest theiradvantage only with relaxed geometry (n-1 withrespect to n)

Page 79: CMOS Technologies – Trends, Scaling and Issues

TO KNOW MORE :

T. Skotnicki et al. Innovative materials, devices and CMOS technologies for low-power mobile multimedia, pp. 96-130, IEEE TED, Jan. 2008

79IEDM 2010 Short Course • CMOS Technologies – Trends, Scaling and IssuesThomas Skotnicki

MASTAR , ITRS web page, http://www.itrs.net/models.html