cmua - ers cmua pou trm_final... · 2019. 3. 22. · contents savings estimation trm ers v 10....

147
Corporate Headquarters: 120 Water St., Suite 350 North Andover, Massachusetts 01845 California Office: 151 N. Sunrise Ave. Roseville, CA 95661 June 9, 2016 energy & resource solutions ers Savings Estimation Technical Reference Manual for the California Municipal Utilities Association

Upload: others

Post on 17-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Corporate Headquarters: 120 Water St., Suite 350

North Andover, Massachusetts 01845 California Office:

151 N. Sunrise Ave. Roseville, CA 95661

June 9, 2016

energy & resource solutions

ers

Savings Estimation 

Technical Reference Manual 

for the 

California Municipal Utilities 

Association  

Page 2: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Contents ers

Savings Estimation TRM i

ers

1. EXECUTIVE SUMMARY ........................................................................................................ 1-1

2. INTRODUCTION ..................................................................................................................... 2-1 2.1 Purpose .............................................................................................................................................. 2-1 2.2 Background ........................................................................................................................................ 2-1

2.2.1 What’s new in 2016 ..................................................................................................................... 2-1 2.3 Approach ............................................................................................................................................ 2-1 2.4 Manual Organization .......................................................................................................................... 2-2 2.5 Manual Update Process ..................................................................................................................... 2-3 2.6 Applicable State and Federal Codes ................................................................................................. 2-4

3. DEFINITIONS ......................................................................................................................... 3-1

4. COMMON DEFAULT FACTORS ............................................................................................ 4-1

5. HVAC MEASURES – NONRESIDENTIAL ............................................................................. 5-1 5.1 Commercial Air Conditioning Units and Heat Pumps ........................................................................ 5-1

5.1.1 Unit Efficiency Ratings – 5 Tons and Smaller ............................................................................. 5-2 5.1.2 Unit Efficiency Ratings ‒ Greater Than 5 Tons ........................................................................... 5-3

5.2 Packaged Terminal Air Conditioners & Heat Pumps ......................................................................... 5-4 5.2.1 Unit Efficiency Ratings ................................................................................................................. 5-5 5.2.2 Federal Code Efficiency Standards ............................................................................................. 5-5 5.2.3 Measure Cost .............................................................................................................................. 5-6

6. LIGHTING MEASURES – NONRESIDENTIAL ....................................................................... 6-1 6.1 Semi-Custom Lighting and Lighting Control Measures ..................................................................... 6-1

6.1.1 Lighting Control Default Savings Factor Table ............................................................................ 6-2 6.2 Reduced Wattage Lamp and Ballast ................................................................................................. 6-4

6.2.1 Energy Savings Table ................................................................................................................. 6-5 6.3 De-Lamp Fluorescent Fixture ............................................................................................................ 6-5 6.4 LED Lighting ....................................................................................................................................... 6-7 6.5 LED Refrigerated Display Case Lighting ........................................................................................... 6-8

6.5.1 Energy Savings and Cost Table ‒ LED Display Case Lighting ................................................... 6-9 6.5.2 Energy Savings and Cost Table ‒ LED Display Case Lighting with Occupancy Sensor ............ 6-10

6.6 Bi-Level Lighting Fixture – Stairwells, Hallways, and Garages ......................................................... 6-11 6.7 Compact Fluorescent Lamps (Commercial and Residential) ............................................................ 6-11

6.7.1 Energy Savings and Cost Table – Lamps for Commercial Buildings .......................................... 6-12 6.7.2 Energy Savings and Cost Table – High Bay Fixtures for Commercial Buildings ........................ 6-12 6.7.3 Energy Savings and Cost Table – Residential CFL Lamps ........................................................ 6-13

7. REFRIGERATION MEASURES – NONRESIDENTIAL .......................................................... 7-1 7.1 Commercial Ice Machines .................................................................................................................. 7-1 7.2 Commercial Solid Door & Glass Door Refrigerators .......................................................................... 7-2

7.2.1 Energy Savings Table ................................................................................................................. 7-3 7.2.2 Measure Cost Table .................................................................................................................... 7-3

Page 3: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Contents

ii Savings Estimation TRM

ers

7.3 EC Motor for Cold Storage Evaporator Fans ..................................................................................... 7-4 7.4 Refrigerated Display Case EC Motor Retrofit .................................................................................... 7-5 7.5 EC Motor with Fan Cycling Controls for Cold Storage Evaporator Fans ........................................... 7-6

7.5.1 Energy Savings Table ................................................................................................................. 7-7 7.6 Strip Curtain Infiltration Barrier for Refrigerated Space ..................................................................... 7-7

7.6.1 Energy Savings Table – Restaurant ............................................................................................ 7-8 7.6.2 Energy Savings Table – Grocery ................................................................................................ 7-9

7.7 Refrigerated Display Case with Doors ............................................................................................... 7-9 7.7.1 Energy Savings Table ................................................................................................................. 7-10

7.8 Auto-Closers for Main Cooler or Freezer Doors ................................................................................ 7-11 7.8.1 Energy Savings Table ................................................................................................................. 7-12

7.9 Anti-Sweat Heater Controls ............................................................................................................... 7-12 7.9.1 Energy Savings Table ................................................................................................................. 7-13

8. ALL OTHER NONRESIDENTIAL MEASURES ...................................................................... 8-1 8.1 Pump and Fan Variable Frequency Drive Control ............................................................................. 8-1

8.1.1 Performance Curve Charts .......................................................................................................... 8-3 8.2 Vending Machine Controller ............................................................................................................... 8-4 8.3 Vending Machine Controller ‒ Non-Refrigerated ............................................................................... 8-5 8.4 Insulated Holding Cabinets ................................................................................................................ 8-6 8.5 Commercial Combination Oven ......................................................................................................... 8-7 8.6 Commercial Electric Steam Cooker ................................................................................................... 8-8 8.7 Commercial Electric Convection Oven .............................................................................................. 8-9 8.8 Commercial Electric Fryer .................................................................................................................. 8-10 8.9 Commercial Electric Griddle............................................................................................................... 8-11 8.10 Commercial Dishwasher .................................................................................................................... 8-12

8.10.1 Energy Savings Table ................................................................................................................. 8-12 8.10.2 Measure Cost Table .................................................................................................................... 8-14

8.11 High Efficiency Clothes Washers in Multifamily Properties ............................................................... 8-14 8.12 ENERGY STAR Uninterrupted Power Supply ................................................................................... 8-15 8.13 Plug-Load Occupancy Sensor ........................................................................................................... 8-16 8.14 Smart Power Strip – Commercial Use ............................................................................................... 8-17 8.15 Kitchen Exhaust Hood Demand Ventilation Control System ............................................................. 8-18 8.16 Reflective Window Film ...................................................................................................................... 8-19

9. HVAC MEASURES – RESIDENTIAL ..................................................................................... 9-1 9.1 Residential Air Conditioners ............................................................................................................... 9-1

9.1.1 Code Baseline Efficiency Table ................................................................................................... 9-3 9.2 ENERGY STAR Room Air Conditioner .............................................................................................. 9-3

9.2.1 Energy Savings Table ................................................................................................................. 9-4 9.3 Whole-House Ventilation Fan ............................................................................................................ 9-5

9.3.1 Savings and Cost Table .............................................................................................................. 9-5 9.4 Duct Sealing ....................................................................................................................................... 9-7

9.4.1 Energy Savings Table – at 20% Duct Leakage Reduction ......................................................... 9-8 9.5 HVAC Tune-Up Measures ................................................................................................................. 9-8

9.5.1 Energy Savings Table – Refrigerant Charge ............................................................................... 9-9 9.5.2 Energy Savings Table – Coil Cleaning ........................................................................................ 9-10 9.5.3 Energy Savings Table – Airflow Adjustment ............................................................................... 9-10

10. LIGHTING MEASURES – RESIDENTIAL .............................................................................. 10-1 10.1 LED Lights .......................................................................................................................................... 10-1 10.2 LED Holiday Lights ............................................................................................................................. 10-2

10.2.1 Energy Savings Table ................................................................................................................. 10-3 10.2.2 Cost Table ................................................................................................................................... 10-3

Page 4: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Contents

Savings Estimation TRM iii

ers

10.3 ENERGY STAR Ceiling Fan .............................................................................................................. 10-3

11. APPLIANCES – RESIDENTIAL.............................................................................................. 11-1 11.1 ENERGY STAR Refrigerator ............................................................................................................. 11-1

11.1.1 Energy Savings Table ................................................................................................................. 11-2 11.2 Refrigerator and Freezer Recycling ................................................................................................... 11-2 11.3 Heat Pump Water Heater ................................................................................................................... 11-3

11.3.1 Energy Savings Tables ................................................................................................................ 11-4 11.4 ENERGY STAR Dishwasher, Compact and Standard Size .............................................................. 11-5 11.5 High Efficiency Residential Clothes Washer ...................................................................................... 11-6

11.5.1 Energy Savings Table ................................................................................................................. 11-7 11.6 ENERGY STAR Television ................................................................................................................ 11-7

11.6.1 Energy Savings and Cost Table .................................................................................................. 11-8 11.7 Heat Pump Clothes Dryers ................................................................................................................ 11-8

12. BUILDING ENVELOPE – RESIDENTIAL ............................................................................... 12-1 12.1 Ceiling Insulation ................................................................................................................................ 12-1

12.1.1 Energy Savings Table – weighted average for all HVAC types .................................................. 12-2 12.1.2 Energy Savings Table – air source heat pump ........................................................................... 12-3 12.1.3 Energy Savings Table – electric resistance heating.................................................................... 12-4

12.2 Wall Insulation .................................................................................................................................... 12-5 12.2.1 Energy Savings Table ................................................................................................................. 12-6 12.2.2 Measure Cost Table .................................................................................................................... 12-6

12.3 Solar Attic Fan .................................................................................................................................... 12-6 12.3.1 Energy Savings Table ................................................................................................................. 12-7

12.4 Reflective Window Film ...................................................................................................................... 12-8 12.4.1 Savings Table .............................................................................................................................. 12-8

12.5 Solar Screen ...................................................................................................................................... 12-9 12.5.1 Savings Table .............................................................................................................................. 12-10

12.6 Reduced Building Leakage ................................................................................................................ 12-10 12.6.1 Savings Table .............................................................................................................................. 12-11

12.7 Energy Efficient Window .................................................................................................................... 12-12 12.7.1 Energy Savings Table ................................................................................................................. 12-13

12.8 Radiant Barriers ................................................................................................................................. 12-13 12.8.1 Energy Savings Table ................................................................................................................. 12-14

13. ALL OTHER – RESIDENTIAL ................................................................................................ 13-1 13.1 Smart Power Strip .............................................................................................................................. 13-1 13.2 Variable Speed Residential Pool Pump ............................................................................................. 13-2

14. GAS MEASURES - NONRESIDENTIAL ................................................................................. 14-1 14.1 Tank Insulation ................................................................................................................................... 14-1

14.1.1 Energy Savings Table ................................................................................................................. 14-2 14.1.2 Measure Cost Table .................................................................................................................... 14-2

14.2 Hot Water and Steam Pipe Insulation ................................................................................................ 14-2 14.2.1 Energy Savings Table ................................................................................................................. 14-3 14.2.2 Measure Cost Table .................................................................................................................... 14-4

14.3 High Efficiency Commercial Gas Hot Water Heaters ........................................................................ 14-5 14.3.1 Energy Savings Table ................................................................................................................. 14-5 14.3.1 Unit Efficiency Ratings ................................................................................................................. 14-6 14.3.2 Measure Cost Table .................................................................................................................... 14-6

14.4 Ozone Laundry ................................................................................................................................... 14-7 14.5 Steam Traps ....................................................................................................................................... 14-8

Page 5: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Contents

iv Savings Estimation TRM

ers

15. GAS MEASURES – RESIDENTIAL ........................................................................................ 15-1 15.1 High Efficiency Residential Furnace & Boiler .................................................................................... 15-1

15.1.1 Energy Savings Table ................................................................................................................. 15-2 15.1.2 Unit Efficiency Ratings ................................................................................................................. 15-2 15.1.3 Measure Cost Table .................................................................................................................... 15-3

15.2 Domestic Hot Water Piping Insulation – Multifamily Recirculating System ....................................... 15-3 15.3 Domestic Hot Water Heater ............................................................................................................... 15-4

15.3.1 Energy Savings Table ................................................................................................................. 15-5 15.4 Low-Flow Showerheads ..................................................................................................................... 15-6 15.5 Faucet Aerators .................................................................................................................................. 15-7

16. CUSTOM MEASURE PROTOCOL ......................................................................................... 16-1 16.1 Baseline Use in Estimating Energy Savings ...................................................................................... 16-1

16.1.1 Baseline Examples ...................................................................................................................... 16-2 16.1.2 Dual Baseline............................................................................................................................... 16-3

16.2 Energy Savings Estimate Approach .................................................................................................. 16-3 16.3 Measure Description .......................................................................................................................... 16-4 16.4 Savings Calculation Methods ............................................................................................................. 16-5

16.4.1 Engineering Model ....................................................................................................................... 16-5 16.4.2 Model Transparency .................................................................................................................... 16-6 16.4.3 Measurement and Verification ..................................................................................................... 16-6

16.5 Quality Assurance and Savings Validation ........................................................................................ 16-6 16.6 Documentation ................................................................................................................................... 16-7

17. PROVISIONAL MEASURES .................................................................................................. 17-1 17.1 Web-Enabled Programmable Thermostats – Commercial Application ............................................. 17-2

17.1.1 Energy Savings Table – kWh per Ton of Cooling Capacity1 ....................................................... 17-3

17.1.2 Energy Savings Table – kWh per Square Foot of Conditioned Area .......................................... 17-3 17.1.3 Energy Savings Table – Therms per Ton of Cooling Capacity ................................................... 17-4 17.1.4 Energy Savings Table – Therms per Square Foot of Conditioned Area ..................................... 17-4

17.2 Smart Thermostats – Residential ....................................................................................................... 17-4 17.2.1 Energy Savings Table – kWh per Square Foot of Conditioned Area .......................................... 17-6 17.2.2 Energy Savings Table – Therms per Square Foot of Conditioned Area ..................................... 17-6

17.3 Tier II Advanced Power Strips - Residential ...................................................................................... 17-7 17.4 Home Energy Reports - Residential .................................................................................................. 17-8 17.5 T8 LED Tube Lamp Replacement – Nonresidential .......................................................................... 17-9

17.5.1 Energy Savings Table ................................................................................................................. 17-10

18. REFERENCES ........................................................................................................................ 18-1

TECHNICAL REFERENCE MANUAL (TRM) SPREADSHEETS

1. TRM100_NONRES AC AND HP UNITS_V2 18 2014.XLSX

2. TRM101_NONRES PTAC_2 18 2014.XLSX

3. TRM102_REDUCED WATTAGE LAMP AND BALLAST_V3 15 2016.XLSX

4. TRM103_DELAMP FLUORESCENT LAMP_V3-15-2016.XLSX

5. TRM104_LED LIGHTING_V3-15-2016.XLSX

6. TRM105_LED REFRIGERATED CASE LIGHTING_V2 18 2014.XLSX

7. TRM106_FOOD SERVICE_V2 18 2014.XLSX

8. TRM107_EC MOTOR FOR WI COOLERS_V3 15 2016.XLSX

9. TRM108_EC MOTOR WITH CONTROLLER FOR WI COOLER_V3 15 2016.XLSX

Page 6: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Contents

Savings Estimation TRM v

ers

10. TRM109_DISPLAY CASE EC MOTOR_V3 15 2016.XLSX

11. TRM110_STRIP CURTAINS_V2 18 2014.XLSX

12. TRM111_REFRIGERATED DISPLAY CASE WITH DOORS_V2 18 2014.XLSX

13. TRM112_AUTO DOOR CLOSERS_V2 18 2014.XLSX

14. TRM113_ASH CONTROLS_V2 18 2014.XLSX

15. TRM114_VENDING MACHINE CONTROLLER_NONREFRIGERATED_V2 182014.XLSX

16. TRM115_ENERGY STAR UPS_V2 18 2014.XLSX

17. TRM116_COMMERCIAL DISHWASHER_V4 28 2014.XLSX

18. TRM117 CFL_V3-15-2016.XLSX

19. TRM118 WINDOW FILM_NONRESIDENTIAL_V3-15-2016.XLSX

20. TRM200_RESIDENTIAL AC_V3-15-2016.XLSX

21. TRM201_ROOM AC_V2 18 2014.XLSX

22. TRM202_WHOLE HOUSE FAN_V2 18 2014.XLSX

23. TRM203_REDUCED BUILDING LEAKAGE_V2 18 2014.XLSX

24. TRM204_RESIDENTIAL LED_V3 15 2016.XLSX

25. TRM205_LED HOLIDAY LIGHTS_V3 15 2016.XLS

26. TRM206_RESIDENTIAL CEILING FANS_V2 18 2014.XLSX

27. TRM207_REFRIGERATOR RECYCLING_V4 23 2014.XLSX

28. TRM208_ENERGY STAR REFRIGERATORS_V3 15 2016.XLSX

29. TRM209_RES HOT WATER HEATER_V3 15 2016.XLSX

30. TRM210_RES ENERGY STAR DISHWASHER_V2 18 2014.XLSX

31. TRM211_ RESIDENTIAL CEILING INSULATION_V6 2 2016.XLSX

32. TRM211(A)_RESIDENTIAL CEILING INSULATION ELECTRIC HEAT_3-15-2016.XLSX

33. TRM212_WALL INSULATION_V2 18 2014.XLSX

34. TRM213_RESIDENTIAL SOLAR ATTIC FAN_V2 18 2014.XLSX

35. TRM214_VARIABLE SPEED RESIDENTIAL POOL PUMPS_V2 182014.XLSX

36. TRM215_ELECTRIC STORAGE WATER HEATER_OBSOLETE

37. TRM216_CLOTHES WASHER_V3 15 2016.XLSX

38. TRM217_MF CLOTHES WASHER_2 18 2014.XLSX

39. TRM218_RESIDENTIAL WINDOW FILM_V2 18 2014.XLSX

40. TRM219_RESIDENTIAL SOLAR SCREEN_V2 18 2014.XLSX

41. TRM220_HEAT PUMP CLOTHES DRYER_V3-15-2016.XLSX

42. TRM221_ENERGY STAR TELEVISIONS_TELEVISIONS_V3-15-2016.XLSX

43. TRM222_RESIDENTIAL WINDOW REPLACEMENTS_V3-15-2016.XLSX

44. TRM223_RADIANT BARRIERS_V3-15-2016.XLSX

45. TRM224_RESIDENTIAL_HVAC TUNE-UP_REFRIGERATION CHARGE_V3-15-2016.XLSX

46. TRM225_RESIDENTIAL_HVAC TUNE UP_AIRFLOW ADJUSTMENT_V3-15-2016.XLSX

47. TRM226_RESIDENTIAL_HVAC TUNE UP_COIL CLEANING_V3-15-2016.XLSX

48. TRM300_PIPE INSULATION_V2 18 2014.XLSX

49. TRM301_MF DHW PIPE INSULATION_V2 18 2014.XLSX

50. TRM302_OZONE LAUNDRY_V2 18 2014.XLSX

51. TRM303_TANK INSULATION_V2 18 2014.XLSX

52. TRM304_COMMERCIAL DHW_V3 15 2016.XLSX

53. TRM305_RESIDENTIAL FURNACE_V3 15 2016.XLSX

54. TRM306_LOW FLOW SHOWERHEADS_V2 18 2014.XLSX

55. TRM307_HEAT PUMP WATER HEATER_V2 18 2014.XLSX

Page 7: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Contents

vi Savings Estimation TRM

ers

56. TRM308_FAUCET AERATORS_V2 18 2014.XLSX

57. TRM400_ENERGY SAVINGS CALCULATOR_NONRES LIGHTING_V3-15-2016.XLSX

58. TRM401_ENERGY SAVINGS CALCULATOR_PUMP AND FAN VFD_V4 1 2014.XLSX

59. TRM402_ENERGY SAVINGS CALCULATOR_STEAM TRAPS_V4 2 2014.XLSX

60. TRM403_ENERGY SAVINGS CALCULATOR_DUCT SEALING_V2 18 2014.XLSX

61. TRM404_SIMPLIFIED NONRESIDENTIAL LIGHTING CALCULATOR_V3-15-2016.XLSX

62. TRM405_FAN VSD REBATE CALCULATOR_V3-15-2016.XLSX

63. TRM406_PARKING GARAGE FAN_VSD WITH CO2 SENSOR_V3-15-2016.XLSX

64. TRM407_PUMP VSD REBATE CALCULATOR_V3-15-2016.XLSX

65. TRM500_WEB ENABLED PROGRAMMABLE THERMOSTAT_COMMERCIAL_V3-15-2016.XLSX

66. TRM501_SMART THERMOSTAT-RESIDENTIAL_V3-15-2016.XLSX

67. TRM502_HOME ENERGY REPORTS_V3-15-2016.XLSX

68. TRM503_TIER II APS_RESIDENTIAL_V3-15-2016.XLSX

69. TRM504_T8 LED TUBE LAMP REPLACEMENT_V3-15-2016.XLSX

Page 8: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Executive Summary 1

Savings Estimation TRM 1-1

ers

1. EXECUTIVE SUMMARY

The savings estimation technical reference manual describes – for program administrators,

regulatory agencies, program evaluators, utility customers, and other interested stakeholders –

how California publicly owned utilities1 consistently, reliably, and transparently calculate

energy savings for their energy efficiency programs.

The reference manual provides the methods, formulas, and default assumptions used for

estimating energy savings and peak demand impacts from energy efficiency measures and

projects. The energy savings estimates are used to report program accomplishments and

measure progress towards program goals.

Energy efficiency measures are documented and classified as either unit energy savings

measures, provisional measures, semi-custom measures, or custom measures. The manual

presents both nonresidential and residential measures. Each measure type is presented in

separate sections and grouped by technology type. Measure information is presented in a

consistent tabular format.

The reference manual also includes spreadsheets that provide detailed and transparent measure

calculations and, for certain semi-custom measures, energy savings calculators for estimating

energy savings for project-specific measures. The measure spreadsheet includes summary tables

for transferring measure savings data into the program’s regulatory compliance reporting tool.

The current 2016 version of the manual includes updates to account for code changes since the

2014 version was published. It also includes several new measures and updates to existing

measures. Provisional measures are included for the first time in Section 17. TRM spreadsheets

were added or revised as needed. In addition, new TRM spreadsheets are added that simplify

the use of the lighting and VFD calculators.

1Utilities sponsoring the TRM include: Silicon Valley Power, City of Palo Alto Utilities, Alameda

Municipal Power, Biggs, Gridley, Healdsburg, Lodi Electric Utility, Lompoc, Plumas-Sierra Rural Electric

Cooperative, Port of Oakland, Redding Electric Utility, Roseville Electric, Truckee Donner Public Utility

District, Ukiah Public Utility, Anaheim Public Utilities, Azusa Light & Water, Banning Electric Utility,

Burbank Water & Power, Cerritos, Colton Electric Utility, Glendale Water & Power, Imperial Irrigation

District, Los Angeles Department of Water & Power, Pasadena Water & Power, Riverside Public Utilities,

Vernon Light & Power, Sacramento Municipal Utility District, Victorville, Trinity Public Utility District,

Corona Department of Water & Power, Lassen Municipal Utility District, Moreno Valley Utility, Merced

Irrigation District, Modesto Irrigation District, Needles, Island Energy, Rancho Cucamonga Municipal

Utility, San Francisco Public Utilities Commission, and Turlock Irrigation District.

Page 9: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Introduction 2

Savings Estimation TRM 2-1

ers

2. INTRODUCTION

The savings estimation technical reference manual describes – for program administrators,

regulatory agencies, program evaluators, utility customers, and other interested stakeholders –

how publicly owned utilities consistently, reliably, and transparently calculate energy savings

for their energy efficiency programs.

2.1 Purpose

The reference manual provides the methods, formulas, and default assumptions used for

estimating energy savings and peak demand impacts from energy efficiency measures and

projects. The energy savings estimates are used to report program accomplishments and

measure progress towards program goals.

2.2 Background

California publicly owned utilities annually report their program accomplishments to the

California Energy Commission. As mandated by California state law (SB1037, AB2021, Section

9505 of the Public Utilities Code), each utility reports its program energy savings on an annual

basis. Since 2006, California publicly owned utilities have collaborated to develop tools and

resources for consistently and reliably reporting program energy savings.

The first source of energy savings estimates used to report program savings was published in

2006 and subsequently updated in 2008 and 2009. In 2014, the previous versions of the manual

were superseded by a new version of the manual.

2.2.1 What’s New in 2016

The current 2016 version of the manual includes updates to account for code changes since the

2014 version was published. It also includes several new measures and updates to existing

measures. Provisional measures are included for the first time in Section 17. TRM spreadsheets

were added or revised as needed. In addition, new TRM spreadsheets are added that simplify

the use of the lighting and VFD calculators.

2.3 Approach

The reference manual documents and classifies energy efficiency measures in three ways: unit

energy savings (UES) measures, provisional measures, semi-custom measures, and custom

measures.

Page 10: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 2 Introduction

2-2 Savings Estimation TRM

ers

UES measures, previously defined as deemed savings measures, are normalized savings

estimates that represent the most typical savings expected from a range of similar measures.

These savings estimates are used for reporting savings at the program or at a regional level.

The UES measures provided in this manual are based on credible and reliable sources of

energy savings estimates and savings estimate parameters, generally those that have been

documented and vetted through either peer engineering review or a regulatory process

governing efficiency programs. As such, the UES savings estimates are based on the most

current and best available resources.

Semi-custom measures are measures for which the savings estimates can vary significantly

depending on how or where the measure is used. Savings estimates are calculated using

standard methodologies based on project-specific parameters. For semi-custom measures, the

manual documents the savings methodology and may also provide a standardized savings

calculator for use in estimating energy savings.

Custom measures are project-specific actions, equipment changes, or system improvements

that reduce energy consumption. This manual outlines a protocol for program administrators

to use that will consistently and reliably estimate and document energy savings estimates for

custom measures.

Provisional unit energy savings measures are measures that do not yet meet the reliability

standard of a UES measure. The most typical are emerging technology or newly-adopted

program measures that exhibit significant energy saving potential. Provisional savings

estimates provide an interim solution for reporting measure savings while testing, evaluation,

or demonstration efforts are under way to validate energy savings estimates.

2.4 Manual Organization

The reference manual consists of both this document and its supporting spreadsheets.

The manual presents both nonresidential and residential measures. Each measure type is

presented in separate sections and grouped by technology type. Measure information is

presented in a consistent tabular format consisting of the following sections:

Measure summary information – Provides a brief description of the measure, its

applicability, savings type (UES, semi-custom), energy savings, incremental measure cost,

and effective useful life (EUL)

Baseline and efficient case conditions – Defines the baseline type (see Section 3 –

Definitions) and provides a brief description of the baseline and efficient case conditions.

Savings calculation – Documents the savings methodology and algorithms used to

estimate savings

Key parameters – Lists key operating parameters that have the most influence on energy

savings estimates

Page 11: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Introduction Section 2

Savings Estimation TRM 2-3

ers

Quality assurance, design, installation, commissioning, and operation – Provides key

quality assurance checks to help ensure that the estimated savings are realized

Important notes – Provide further explanation, clarifications, or relevant supporting

information

All references and data resources are identified in the table footnotes.

As needed, each section also contains supplementary tables and charts to provide additional

measure details. Measures with multiple savings values (savings by size, building use, varying

levels of efficiency, etc.) will have savings and cost data listed in a supplementary table. If the

number of measures is too large to include in a supplementary table, they are listed in the

supporting spreadsheet summary table. The spreadsheet summary table allows measures to be

filtered by climate zone and, if applicable, by building type.

The last section of the manual provides the custom measure protocol, which outlines a process

for estimating and documenting custom measure savings.

The reference manual spreadsheets provide the detailed measure calculations. For UES

measures, the spreadsheet consists of a summary table, a calculation narrative, measure savings

calculations, and reference data. The summary table is constructed to provide easy transfer of

measure data into the program’s regulatory compliance reporting tool.

Energy savings calculators are also provided as part of the reference manual. The calculators

are Excel spreadsheet-based engineering models for estimating semi-custom measures per the

described methodology. They provide a simple and transparent approach for estimating

project-specific energy savings.

2.5 Manual Update Process

In order to maintain the most current and best available estimates of energy savings, the

reference manual should be reviewed and updated on a regular basis. Measures should be

reviewed to determine if newly adopted code changes will affect the energy savings estimates.

Measure savings estimates may need to be updated based on new sources of information, such

as market research studies, technology studies, or program impact evaluation reports. In

addition, assumptions used in the measure baseline definitions may over time become obsolete

or otherwise no longer applicable.

Manual review and updates to incorporate code changes should occur on an annual basis, or at

the time when code updates go into effect. Updates for measures which represent a significant

amount of program energy savings should occur on an annual basis. Manual updates to

incorporate the most current and best available information for all measures should occur every

2 to 3 years.

Page 12: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 2 Introduction

2-4 Savings Estimation TRM

ers

2.6 Applicable State and Federal Codes

Within each measure description, the measure savings estimate baseline is described. Where the

appropriate baseline is determined to be code, the applicable state or federal code is identified.

The codes used in determining savings estimate baselines include:

California 2012 and 2015 Appliance Efficiency Regulations (California Code of

Regulations, Title 20, sections 1601‒1608)

California 2013 and 2016 Building Energy Efficiency Standards for Residential and

Nonresidential Buildings (California Code of Regulations, Title 24, part 6 and associated

administrative regulations, part 1)

Department of Energy Code of Federal Regulations, Title 10

Page 13: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Definitions 3

Savings Estimation TRM 3-1

ers

3. DEFINITIONS

In this manual, the following definitions apply:

custom measure – Any measure not defined by this manual as either a unit energy savings

measure or a semi-custom measure. In more general terms, a custom measure is defined as an

energy-related project, action, equipment change, or system improvement that reduces energy

consumption.

effective useful life (EUL) – An estimate of the median number of years (from a statistically

representative sample) that an installed measure is expected to be operable and capable of

performing its intended function. The primary source of EUL is the California Public Utilities

Commission’s Database for Energy Efficient Resources (DEER).

efficient case – Describes the affected equipment or system condition after an energy efficiency

measure has been implemented or installed. Also referred to as the post-retrofit condition.

energy use baseline – Energy use that is compared to the efficient case energy use for the

purposes of estimating future annual energy savings. The baseline is identified as being one of

the four following types:

natural replacement – code – Describes an energy use baseline that is based on current

minimum energy efficiency code requirements as established by the applicable local,

state, or federal jurisdiction.

natural replacement – current practice – Describes an energy use baseline that is based

on standard industry practice or market availability.

natural replacement – preexisting conditions – Describes the projected energy use

baseline that is based on the energy performance of the existing systems or

equipment that was in place before a measure was implemented. This baseline is

applicable if retaining the preexisting conditions over the entire effective useful life

of the measure is a realistic option.

dual baseline – early retirement – Describes the use of two energy use baselines to

determine energy savings where equipment with remaining useful life (RUL) is

replaced. In general, the first baseline is based on preexisting conditions and the

second baseline is one of the three types of natural replacement. See Section 16.1 for

a description of how a dual baseline is used in estimating measure cost-effectiveness.

measure cost – The incremental cost of implementing the energy savings measure. For

measures with an adjusted baseline, it is the incremental cost of the more-efficient measure

Page 14: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 3 Definitions

3-2 Savings Estimation TRM

ers

compared to the cost of a code-compliant or current practice measure. For a preexisting

baseline, it is the full implementation cost of the measure. Installation costs not directly

associated with the energy savings measure are not included.

peak demand – The California grid-level average hourly peak demand occurring during a 3-

hour time period (2:00 p.m. – 5:00 p.m.) on a summer weekday from June to September. It also

can be defined for weather-sensitive measures as the maximum hourly peak demand occurring

between 2:00 p.m. and 5:00 p.m. during 3 consecutive weekdays containing the weekday with

the hottest temperature of the year.

semi-custom measure – An energy savings measure for which the savings estimates varies

significantly depending on how or where the measure is used (project-specific parameters).

Semi-custom measure savings are calculated using standard methodologies or standardized

saving estimate models (e.g., spreadsheet models).

UES measure – A unit energy savings measure that has unitized savings estimates (e.g., savings

per motor, savings per hp) that represent an average or weighted average of similar savings

measures. UES measures were previously known as deemed savings measures.

The UES measures provided in this manual are based on credible and reliable sources of

energy savings estimates and savings estimate parameters, generally those that have been

documented and vetted through either peer engineering review or a regulatory process

governing efficiency programs.

Provisional measure – A measure that does not meet the reliability standard of a UES

measure. The most typical are emerging technology or newly adopted program measures that

exhibit significant energy saving potential. Provisional savings estimates provide an interim

solution for reporting measure savings while testing, evaluation, or demonstration efforts are

under way to validate energy savings estimates.

Page 15: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Common Default Factors 4

Savings Estimation TRM 4-1

ers

4. COMMON DEFAULT FACTORS

This section provides the default values used in estimating energy savings for UES and semi-

custom lighting measures. Three default values are used: HVAC interactive effect, operating

hours, and peak demand factors.

Energy efficient lighting measures reduce the internal heat gain of air-conditioned spaces. This

reduction in heat gain reduces the cooling energy consumption and increases heating energy

consumption. Default interactive effect factors have been developed as part of the DEER

resources2 to account for these interactions in typical building end-use types. These default

interactive effects are used in the savings estimates for UES and semi-custom measures

provided in this manual.

Tables 4-1 through 4-4 provide the air-conditioning cooling interactive effect factors (HVAC IE

factors) used for lighting measures.

2 DEER, Lighting HVAC Interactive Effects_9 Sept 2013.xls

Page 16: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 4 Common Default Factors

4-2 Savings Estimation TRM

ers

Table 4-1 HVAC IE Factors for Climate Zones 2, 3, 4, and 5

Building Type

CZ02 CZ03 CZ04 CZ05

Energy Demand Energy Demand Energy Demand Energy Demand

Assembly 1.03 1.18 1.02 1.18 1.05 1.18 1.03 1.17

Primary school 1.06 1.00 1.07 1.00 1.08 1.62 1.06 1.23

Secondary school 1.04 1.00 1.04 1.00 1.07 1.32 1.04 1.22

Community college 1.09 1.20 1.08 1.12 1.11 1.36 1.08 1.22

University 1.10 1.20 1.10 1.14 1.12 1.27 1.10 1.23

Relocatable classroom 1.02 1.00 1.00 1.00 1.05 1.22 1.02 1.26

Grocery 0.91 1.19 0.87 1.18 0.94 1.24 0.87 1.17

Hospital 1.10 1.19 1.11 1.16 1.11 1.22 1.09 1.19

Nursing home 1.03 1.19 1.02 1.13 1.05 1.24 1.01 1.14

Hotel 0.97 1.23 0.98 1.20 1.01 1.24 0.97 1.21

Motel 1.02 1.21 1.03 1.19 1.05 1.22 1.02 1.20

Bio/tech mfg. 1.11 1.19 1.12 1.14 1.12 1.15 1.11 1.18

Light industrial mfg. 1.04 1.17 1.04 1.11 1.05 1.15 1.03 1.17

Large office 1.11 1.26 1.11 1.16 1.12 1.28 1.10 1.23

Small office 1.05 1.20 1.05 1.13 1.07 1.24 1.06 1.19

Sit-down restaurant 1.01 1.21 1.00 1.18 1.04 1.20 1.00 1.19

Fast-food restaurant 1.03 1.17 1.02 1.14 1.05 1.18 1.02 1.15

Department store 1.07 1.19 1.08 1.19 1.09 1.20 1.08 1.18

Big box retail 1.06 1.19 1.06 1.19 1.08 1.20 1.06 1.19

Small retail 1.06 1.18 1.06 1.17 1.08 1.19 1.06 1.17

Conditioned storage 0.95 1.21 0.92 1.01 0.98 1.26 0.91 1.15

Unconditioned storage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Refrig. warehouse 1.59 1.32 1.63 1.29 1.62 1.32 1.58 1.26

Exterior 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Page 17: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Common Default Factors Section 4

Savings Estimation TRM 4-3

ers

Table 4-2 HVAC IE Factors for Climate Zones 8, 9, 10, and 11

Building Type

CZ08 CZ09 CZ10 CZ11

Energy Demand Energy Demand Energy Demand Energy Demand

Assembly 1.13 1.23 1.12 1.26 1.09 1.22 1.05 1.18

Primary school 1.18 1.34 1.16 1.86 1.13 1.88 1.06 1.00

Secondary school 1.16 1.31 1.15 1.84 1.12 1.77 1.07 1.00

Community college 1.17 1.28 1.16 1.31 1.15 1.29 1.12 1.44

University 1.17 1.27 1.16 1.27 1.15 1.26 1.12 1.34

Relocatable classroom 1.11 1.29 1.11 1.29 1.11 1.31 1.04 1.00

Grocery 1.05 1.25 1.06 1.27 1.05 1.28 0.99 1.28

Hospital 1.17 1.26 1.17 1.28 1.14 1.27 1.11 1.23

Nursing home 1.10 1.29 1.10 1.31 1.09 1.32 1.06 1.25

Hotel 1.11 1.28 1.10 1.29 1.07 1.29 1.02 1.25

Motel 1.15 1.27 1.14 1.30 1.12 1.30 1.05 1.23

Bio/tech mfg. 1.18 1.26 1.18 1.26 1.14 1.26 1.12 1.34

Light industrial mfg. 1.11 1.20 1.11 1.22 1.08 1.21 1.04 1.15

Large office 1.18 1.33 1.17 1.33 1.17 1.32 1.13 1.29

Small office 1.16 1.28 1.15 1.32 1.13 1.29 1.07 1.28

Sit-down restaurant 1.12 1.24 1.11 1.26 1.09 1.23 1.04 1.19

Fast-food restaurant 1.11 1.22 1.11 1.24 1.09 1.22 1.05 1.18

Department store 1.17 1.22 1.15 1.25 1.13 1.23 1.07 1.19

Big box retail 1.15 1.24 1.14 1.27 1.12 1.25 1.06 1.20

Small retail 1.15 1.23 1.14 1.26 1.12 1.24 1.06 1.19

Conditioned storage 1.05 1.32 1.04 1.34 1.04 1.31 0.98 1.21

Unconditioned storage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Refrig. warehouse 1.60 1.25 1.59 1.26 1.58 1.26 1.55 1.25

Exterior 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Page 18: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 4 Common Default Factors

4-4 Savings Estimation TRM

ers

Table 4-3 HVAC IE Factors for Climate Zones 12, 14, 15, and 16

Building Type

CZ12 CZ14 CZ15 CZ16

Energy Demand Energy Demand Energy Demand Energy Demand

Assembly 1.04 1.18 1.07 1.14 1.19 1.20 0.99 1.19

Primary school 1.07 1.00 1.09 1.40 1.21 1.34 0.97 1.00

Secondary school 1.06 1.00 1.09 1.47 1.21 1.30 0.98 1.00

Community college 1.11 1.28 1.12 1.33 1.24 1.34 1.04 1.24

University 1.12 1.22 1.13 1.28 1.20 1.28 1.06 1.23

Relocatable classroom 1.04 1.00 1.09 1.33 1.19 1.31 1.00 1.00

Grocery 0.96 1.28 1.05 1.32 1.13 1.30 0.96 1.25

Hospital 1.11 1.23 1.13 1.28 1.19 1.29 1.06 1.23

Nursing home 1.05 1.25 1.08 1.32 1.16 1.33 0.99 1.27

Hotel 1.00 1.25 1.03 1.30 1.16 1.29 0.90 1.27

Motel 1.04 1.23 1.08 1.32 1.20 1.32 0.96 1.25

Bio/tech mfg. 1.11 1.20 1.14 1.23 1.19 1.26 1.07 1.21

Light industrial mfg. 1.04 1.18 1.06 1.20 1.15 1.29 0.99 1.19

Large office 1.12 1.31 1.16 1.31 1.23 1.32 1.08 1.29

Small office 1.07 1.23 1.11 1.30 1.21 1.30 1.01 1.27

Sit-down restaurant 1.03 1.18 1.07 1.16 1.17 1.26 0.99 1.21

Fast-food restaurant 1.05 1.18 1.07 1.23 1.15 1.23 1.00 1.20

Department store 1.07 1.21 1.09 1.21 1.17 1.24 0.99 1.21

Big box retail 1.06 1.20 1.09 1.26 1.17 1.26 0.98 1.21

Small retail 1.06 1.20 1.09 1.20 1.17 1.24 0.99 1.21

Conditioned storage 0.98 1.25 1.01 1.29 1.11 1.30 0.91 1.27

Unconditioned storage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Refrig. warehouse 1.57 1.32 1.52 1.32 1.63 1.26 1.38 1.27

Exterior 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Page 19: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Common Default Factors Section 4

Savings Estimation TRM 4-5

ers

Table 4-4 HVAC IE Factors – California Average

Building Type

CA Average

Energy Demand

Assembly 1.08 1.21

Primary school 1.11 1.33

Secondary school 1.10 1.28

Community college 1.13 1.28

University 1.13 1.26

Relocatable classroom 1.07 1.20

Grocery 0.99 1.25

Hospital 1.14 1.23

Nursing home 1.07 1.25

Hotel 1.04 1.25

Motel 1.09 1.25

Bio/tech mfg. 1.15 1.23

Light industrial mfg. 1.07 1.18

Large office 1.14 1.27

Small office 1.11 1.25

Sit-down restaurant 1.07 1.22

Fast-food restaurant 1.07 1.20

Department store 1.12 1.21

Big box retail 1.10 1.23

Small retail 1.10 1.21

Conditioned storage 1.00 1.24

Unconditioned storage 1.00 1.00

Refrig. warehouse 1.59 1.29

Exterior 1.00 1.00

Lighting UES measure energy savings are based on lighting run times (operating hours) for the

same typical end-use space types. Table 4-5 provides the default factors.

Table 4-5 Default Lighting Operating Hours

Building Type Operating

Hours Building Type Operating

Hours

Assembly 2,610 Light industrial mfg. 3,220

Primary school 2,140 Large office 2,640

Secondary school 2,280 Small office 2,590

Community college 2,420 Sit-down restaurant 4,830

University 2,350 Fast-food restaurant 4,840

Re-locatable classroom 2,480 Department store 3,380

Grocery 4,910 Big box retail 4,270

Hospital 5,260 Small retail 3,380

Nursing home 4,160 Conditioned storage 3,420

Hotel 1,950 Unconditioned storage 3,420

Motel 1,550 Refrigerated warehouse 4,770

Bio/tech mfg. 3,530

Page 20: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 4 Common Default Factors

4-6 Savings Estimation TRM

ers

To determine the peak demand reduction associated with lighting measures, the lighting

measure reduction in lighting power is multiplied by a default peak coincident demand factor

(CDF). Tables 4-6 and 4-7 provide the factors for twelve climate zones and Table 4-8 provides

the statewide average factors.

Table 4-6 Peak Coincident Demand Factors (CDF)

Building Type CZ02 CZ03 CZ04 CZ05 CZ08 CZ09

Assembly 0.53 0.53 0.53 0.53 0.53 0.53

Primary school 0.02 0.02 0.02 0.62 0.62 0.02

Secondary school 0.02 0.02 0.02 0.71 0.71 0.02

Community college 0.49 0.49 0.49 0.81 0.81 0.49

University 0.44 0.44 0.44 0.72 0.72 0.44

Relocatable classroom 0.02 0.02 0.02 0.70 0.70 0.02

Grocery 0.69 0.69 0.69 0.69 0.69 0.69

Hospital 0.83 0.83 0.83 0.83 0.83 0.83

Nursing home 0.68 0.68 0.68 0.68 0.68 0.68

Hotel 0.24 0.24 0.24 0.24 0.24 0.24

Motel 0.17 0.17 0.17 0.17 0.17 0.17

Bio/tech mfg. 0.85 0.85 0.85 0.85 0.85 0.85

Light industrial mfg. 0.92 0.92 0.92 0.92 0.92 0.92

Large office 0.71 0.71 0.71 0.71 0.71 0.71

Small office 0.69 0.69 0.69 0.69 0.69 0.69

Sit-down restaurant 0.80 0.80 0.80 0.80 0.80 0.80

Fast-food restaurant 0.81 0.81 0.81 0.81 0.81 0.81

Department store 0.76 0.76 0.76 0.76 0.76 0.76

Big box retail 0.85 0.85 0.85 0.85 0.85 0.85

Small retail 0.88 0.88 0.88 0.88 0.88 0.88

Conditioned storage 0.70 0.70 0.70 0.70 0.70 0.70

Unconditioned storage 0.70 0.70 0.70 0.70 0.70 0.70

Refrig. warehouse 0.56 0.56 0.56 0.56 0.56 0.56

Exterior 0.00 0.00 0.00 0.00 0.00 0.00

Page 21: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Common Default Factors Section 4

Savings Estimation TRM 4-7

ers

Table 4-7 Peak Coincident Demand Factors (CDF)

Building Type CZ10 CZ11 CZ12 CZ14 CZ15 CZ16

Assembly 0.53 0.53 0.53 0.53 0.53 0.53

Primary school 0.02 0.02 0.02 0.02 0.02 0.02

Secondary school 0.02 0.02 0.02 0.02 0.02 0.02

Community college 0.49 0.49 0.49 0.49 0.49 0.49

University 0.44 0.44 0.44 0.44 0.44 0.44

Relocatable classroom 0.02 0.02 0.02 0.02 0.02 0.02

Grocery 0.69 0.69 0.69 0.69 0.69 0.69

Hospital 0.83 0.83 0.83 0.83 0.83 0.83

Nursing home 0.68 0.68 0.68 0.68 0.68 0.68

Hotel 0.24 0.24 0.24 0.24 0.24 0.24

Motel 0.17 0.17 0.17 0.17 0.17 0.17

Bio/tech mfg. 0.85 0.85 0.85 0.85 0.85 0.85

Light industrial mfg. 0.92 0.92 0.92 0.92 0.92 0.92

Large office 0.71 0.71 0.71 0.71 0.71 0.71

Small office 0.69 0.69 0.69 0.69 0.69 0.69

Sit-down restaurant 0.80 0.80 0.80 0.80 0.80 0.80

Fast-food restaurant 0.81 0.81 0.81 0.81 0.81 0.81

Department store 0.76 0.76 0.76 0.76 0.76 0.76

Big box retail 0.85 0.85 0.85 0.85 0.85 0.85

Small retail 0.88 0.88 0.88 0.88 0.88 0.88

Conditioned storage 0.70 0.70 0.70 0.70 0.70 0.70

Unconditioned storage 0.70 0.70 0.70 0.70 0.70 0.70

Refrig. warehouse 0.56 0.56 0.56 0.56 0.56 0.56

Exterior 0.00 0.00 0.00 0.00 0.00 0.00

Page 22: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 4 Common Default Factors

4-8 Savings Estimation TRM

ers

Table 4-8 Peak Coincident Demand Factors (CDF)

Building Type CA

Average

Assembly 0.53

Primary school 0.12

Secondary school 0.14

Community college 0.53

University 0.48

Relocatable classroom 0.14

Grocery 0.69

Hospital 0.83

Nursing home 0.68

Hotel 0.24

Motel 0.17

Bio/tech mfg. 0.85

Light industrial mfg. 0.92

Large office 0.71

Small office 0.69

Sit-down restaurant 0.80

Fast-food restaurant 0.81

Department store 0.76

Big box retail 0.85

Small retail 0.88

Conditioned storage 0.70

Unconditioned storage 0.70

Refrig. warehouse 0.56

Exterior 0.00

Page 23: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Nonresidential 5

Savings Estimation TRM 5-1

ers

5. HVAC MEASURES – NONRESIDENTIAL

5.1 Commercial Air Conditioning Units and Heat Pumps

Measure Summary Information

Measure description Installation of new high efficiency air conditioning (AC) units, including single unitary package units and split system units. Both AC and heat pump units are included.

End use HVAC

Project eligibility Applicable to both retrofit and new construction

Savings type UES

Unit energy savings See TRM100 spreadsheet summary table. Savings vary based on unit size, 1.building type, and climate zone. With thirty-two unit types, twenty-two building types, and twelve climate zones, savings for more than 8,000 measure savings estimates are provided.

All savings are listed per ton of cooling. 2.

Incremental measure cost See TRM100 spreadsheet summary table 1.

All costs1 are listed per ton of cooling 2.

EUL 15 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code 1.

Dual baseline – early retirement 2.

Baseline description 1. For natural replacement, the baseline is the minimum unit efficiency allowed by code.

2. For the remaining useful life (RUL) time period, the baseline is the preexisting unit vintage efficiency weighted by building vintage.

Efficient case description New units with efficiency levels consistent with CEE Tier I and Tier II3

efficiency

levels. Unit efficiency ratings are provided in the Unit Efficiency Ratings Table. Savings Calculation

Annual energy savings formula

Savings for AC and heat pumps are obtained from the DEER 2014 database (EQUEST parametric modeling simulations), which includes updates based on the 2013 Title 24 code requirements.

For SEER 15 measures (units 5 tons or less) not provided in DEER, DEER data was extrapolated to estimate savings (7.2 percent savings increase over SEER 14).

Peak demand reduction See above

Definitions Vintage =

EER =

IEER =

SEER =

Year that the building type was built

Energy efficiency ratio = 12 × kW/ton cooling

Integrated energy efficiency ratio – Weighted average of part-load efficiencies of an HVAC unit for a specified set of loads and outdoor air temperatures (OATs)

Seasonal energy efficiency ratio – Weighted average of part-load efficiencies of an HVAC unit for a specified set of loads and OATs

Key Parameters

Building type Determines the average hours of operation and internal building loads

HVAC unit size Measure name includes unit cooling capacity in both units of tons and kBtu/h. Tons are representative of the nominal cooling capacity of equipment sizes available from most equipment manufacturers. kBtu/h savings are useful for comparison to code requirements and CEE unit size categories.

Page 24: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 5 HVAC Measures – Nonresidential

5-2 Savings Estimation TRM

ers

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Determine if new unit will be replacing a functional unit or a failed unit.

2. If new unit is replacing existing functional unit and RUL savings will be applied, record age, make, model, size, and type of unit to be replaced.

3. Verify that new unit meets minimum efficiency requirements.

4. Verify that new unit is properly installed and commissioned.

Important Notes

N/A

1Measure cost data was derived from the following sources:

a. PG&E work paper, PGECOHVC126, “Unitary Air-Cooled Commercial Air Conditioners and Heat Pumps <65kBtu/h Revision #3,” 6/20/2012

b. PG&E work paper, PGECOHVC128, “Unitary Air-Cooled Commercial Air Conditioners and Heat Pumps >= 65 kBtu/h,” Revision # 3, 6/20/2012

2DEER_EUL_Summary_10-1-2008.xls

3Consortium for Energy Efficiency (CEE) Commercial Unitary AC and HP Specification, Effective January, 6, 2012.

http://www.cee1.org/files/CEE_CommHVAC_UnitarySpec2012.pdf

5.1.1 Unit Efficiency Ratings – 5 Tons and Smaller

This table lists peak (EER) and seasonal (SEER) efficiency ratings for both AC and heat pump

units that are 5 tons or less in capacity. It also indicates the applicable CEE tier level. For all

units 5 tons and smaller, the minimum efficiency rating allowed by code (2012 Appliance

Standards) is 13 SEER and 7.7 HSPF (heat pumps only).

Measure Name EER

Rating SEER Rating

HSPF Rating

CEE Tier I

CEE Tier II

AC split unit – < 5 tons (55 kBtu/h) -14 SEER 12 14 X

AC split unit – 5 tons (55-64 kBtu/h) -14 SEER 12 14 X

AC pkg unit – < 5 tons (55kBtu/h) -14 SEER 11.6 14 X

AC pkg unit – 5 tons (55-64 kBtu/h) -14 SEER 11.6 14 X

AC split unit – < 5 tons (55 kBtu/h) -15 SEER 12.5 15 X

AC split unit – 5 tons (55-64 kBtu/h) -15 SEER 12.5 15 X

AC pkg unit – < 5 tons (55kBtu/h) -15 SEER 12 15 X

AC pkg unit – 5 tons (55-64 kBtu/h) -15 SEER 12 15 X

HP split unit – < 5 tons (55 kBtu/h) -14 SEER 8.5 HSPF 12 14 8.5 X

HP split unit – 5 tons (55-64 kBtu/h) -14 SEER 8.5 HSPF

12 14 8.5 X

HP pkg unit – < 5 tons (55 kBtu/h) -14 SEER 8.0 HSPF 11.6 14 8.0 X

HP pkg unit – 5 tons (55-64 kBtu/h) -14 SEER 8.0 HSPF 11.6 14 8.0 X

HP split unit – < 5 tons (55 kBtu/h) -15 SEER 9 HSPF 12.5 15 9.0 X

HP split unit – 5 tons (55-64 kBtu/h) -15 SEER 9 HSPF 12.5 15 9.0 X

HP pkg unit – < 5 tons (55 kBtu/h) -15 SEER 8.5 HSPF 12 15 8.5 X

HP pkg unit – 5 tons (55-64 kBtu/h) -15 SEER 8.5 HSPF 12 15 8.5 X

Page 25: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Nonresidential Section 5

Savings Estimation TRM 5-3

ers

5.1.2 Unit Efficiency Ratings ‒ Greater Than 5 Tons

This table lists peak load (EER) efficiency ratings for both air conditioner and heat pump units

larger than 5 tons in capacity. It also indicates the applicable CEE Tier level and unit size

minimum full load and part-load efficiency ratings required by code (2013/2016 Title 24).

Measure Name EER

Rating HSPF Rating

T24 Min Eff Rating

1

CEE Tier I

CEE Tier II

AC unit – 6 to 8.5 tons (65–109 kBtu/h) -11.5 EER 11.5 N/A 11.0 EER

11.2 IEER

X

AC unit – 10 tons (110–134 kBtu/h) -11.5 EER 11.5 N/A 11.0 EER

11.2 IEER

X

AC unit – 12 to 17 tons (135–239 kBtu/h) -11.5 EER 11.5 N/A 10.8 EER

11.0 IEER

X

AC unit – 20 to 60 tons (240–759 kBtu/h) -10.5 EER 10.5 N/A 9.8 EER

9.9 IEER

X

AC unit – 6 to 8.5 tons (65–109 kBtu/h) -12 EER 12 N/A 11.0 EER

11.2 IEER

X

AC unit – 10 tons (110–134 kBtu/h) -12 EER 12 N/A 11.0 EER

11.2 IEER

X

AC unit – 12 to 17 tons (135–239 kBtu/h) -12 EER 12 N/A 10.8 EER

11.0 IEER

X

AC unit – 20 to 60 tons (240–759 kBtu/h) -10.8 EER 10.8 N/A 9.8 EER

9.9 IEER

X

AC unit – >60 tons (760 kBtu/h) -10.2 EER 10.2 N/A 9.5 EER

9.6 IEER

X

HP unit – 6 to 8.5 tons (65–109 kBtu/h) -11.5 EER 3.4 COP

11.5 3.4 10.8 EER

11.0 IEER

X

HP unit – 6 to 8.5 tons (65–109 kBtu/h) -12 EER 3.4 COP

12 3.4 10.8 EER

11.0 IEER

X

HP unit – 10 tons (110–134 kBtu/h) -11.5 EER 3.4 COP 11.5 3.4 10.8 EER

11.0 IEER

X

HP unit – 10 tons (110–134 kBtu/h) -12 EER 3.4 COP 12 3.4 10.8 EER

11.0 IEER

X

HP unit – 12 to 17 tons (135–239 kBtu/h) -11.5 EER 3.2 COP

11.5 3.2 10.4 EER

10.5 IEER

X

HP unit – 12 to 17 tons (135–239 kBtu/h) -12 EER 3.2 COP

12 3.2 10.4 EER

10.5 IEER

X

HP unit – 20 tons (240 kBtu/h) -10.8 EER 3.2 COP 10.8 3.2 9.3 EER

9.4 IEER

X

1For units with electric resistance heat, add 0.2 to both EER and IEER to determine minimum rating requirements

Page 26: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 5 HVAC Measures – Nonresidential

5-4 Savings Estimation TRM

ers

5.2 Packaged Terminal Air Conditioners & Heat Pumps

Measure Summary Information

Measure description Installation of a new high efficiency packaged terminal AC units (PTAC) or heat pumps (PTHP) in hotel or motel facility.

End use HVAC

Project eligibility 1. For retrofits, the units meet the regulatory definition of replacement units: non-standard sized units (less than 16 inches high or less than 42 inches wide with a cross-section area less than 670 square inches) specially manufactured for replacement applications. The units are designed to fit into the sleeve of the replaced unit.

2. For new construction, the units exceed the new construction (standard size) code efficiency requirements ‒ see the Unit Efficiency Ratings Table.

3. New construction measures are limited to units with a capacity of less than 7,000 Btu/h.

Savings type UES

Unit energy savings 1. Measure savings are found in the TRM101 spreadsheet.

2. With twelve climate zones, sixteen unit types, and two building types, savings for 384 measures are provided.

3. Each replacement unit measure has both natural replacement-code and dual baseline-early retirement savings values.

4. All savings are listed per ton of cooling.

Incremental measure cost 1. $144 per ton for replacement units1

2. $34 per ton for new construction unit costs2

EUL 15 years3

Baseline and Efficient Case Conditions

Applicable baseline types 1. Natural replacement – code

Baseline description 1. For retrofit units, the baseline efficiencies are based on non-standard, replacement

units as defined in Federal Code of Regulations2. The federal code requirements can

also be found in the 2013/2016 Title 24 code requirements.

2. For new construction units, the baseline efficiencies are based on standard units as defined in the Federal Code of Regulations..

Efficient case description 1. For retrofit units, the minimum unit efficiency rating meets the requirements listed in the Unit Efficiency Ratings Table.

2. For new construction units, the minimum unit efficiency rating meets the requirements listed in the Unit Efficiency Ratings Table.

Savings Calculation

Annual energy savings formula

1. Savings for this measure were derived from figures contained within the 2011 DEER database. The DEER database contains savings for code and weighted by vintage preexisting unit baselines.

2. For new construction units, savings are extrapolated from DEER savings values by comparing the new construction net efficiency improvements to the DEER net efficiency improvements. See TRM101 Savings spreadsheet for savings calculations.

Peak demand reduction See above.

Definitions

EER =

Energy efficiency ratio = 12 × kW/ton cooling

Key Parameters

Building type Used in DEER to determine the average hours of operation and internal building loads.

HVAC unit size Total full-load cooling capacity in tons; unit savings assume units are properly sized.

Quality Assurance: Design, Installation, Commissioning, and Operation

Determine if unit meets the definition of retrofit (replacement) or new construction unit. 1.

Verify that new unit meets minimum efficiency requirements. 2.

Verify that new unit is properly installed and commissioned. 3.

Page 27: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Nonresidential Section 5

Savings Estimation TRM 5-5

ers

Important Notes

Due to the recent federal code changes, there are currently (as of March 2013) no ENERGY STAR-qualified PTAC or PTHP units.

Most new construction units available (per AHRI directory) do not exceed code efficiency requirements by enough to provide sufficient savings to be a cost-effective measure. Therefore, the only size category included in the new construction savings estimates is for PTHP and PTAC units with a capacity of less than 7,000 Btu/h.

Based on a 2011 market survey conducted by U.S. EPA4, there are a limited number of replacement units available at the

efficiency ranges assumed by DEER (nearly 20% greater than code).

1PG&E work paper, PGECOHVC114 PTAC and PTHP Revision 3, June 21, 2012.

2Federal Code of Regulations, 10 CFR part 431.

3DEER_EUL_Summary_10-1-2008.xls.

4ENERGY STAR Market & Industry Scoping Report, Packaged Terminal Air Conditioners and Heat Pumps, December 2011.

5.2.1 Unit Efficiency Ratings

This table shows the unit efficiencies used to estimate savings.

Unit Size and Type

Retrofit Baseline

Efficiency (EER)

Retrofit Installed Unit

Efficiency (EER)

New Construction

Baseline Efficiency

(EER)

New Construction Installed Unit

Efficiency (EER)

PTHP Units

PTHP – <7,000 Btu/h 9.31 11.17 11.9 12.2

PTHP – 7,000 to 15,000 Btu/h 8.46 10.15 10.7 N/A

PTHP – >15,000 Btu/h 7.61 9.13 9.5 N/A

PTAC Units

PTAC – <7,000 Btu/h 9.41 11.29 11.7 13.2

PTAC – 7,000 to 15,000 Btu/h 8.56 10.27 10.5 N/A

PTAC – >15,000 Btu/h 7.71 9.29 9.3 N/A

The efficiency rating for PTAC retrofit units in the 7,000 to 15,000 Btu/h size range is based on a

unit size of 11,000 Btu/h. To determine the efficiency rating for all unit sizes within this range

that provide the same level of energy savings, the following formula is used: EER = 13 - (0.25 ×

Cap/1000), where Cap is the unit-rated cooling capacity in Btu/h. For PTHP retrofit units, the

formula is: EER = 13 - (0.255 × Cap/1000).

5.2.2 Federal Code Efficiency Standards

The following table shows the minimum unit efficiency rating as required by code.

Page 28: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 5 HVAC Measures – Nonresidential

5-6 Savings Estimation TRM

ers

Equipment Category Cooling Capacity (Btu/h) Minimum Efficiency Rating

PTHP Standard size <7,000 EER = 11.9

COP = 3.3

7,000 to 15,000 EER = 14.0 - (0.30 x Cap /1000)

COP = 3.7 - (0.052 x Cap/1000)

> 15,000 EER = 9.5

COP = 2.9

Non-standard size

<7,000 EER = 9.3

COP = 2.7

7,000 to 15,000 EER = 10.8 - (0.213 x Cap/1000)

COP = 2.9 - (0.026 x Cap/1000)

> 15,000 EER = 7.6

COP = 2.5

PTAC Standard size <7,000 EER = 11.7

7,000 to 15,000 EER = 13.8 - (0.30 x Cap /1000)

> 15,000 EER = 9.3

Non-standard size

<7,000 EER = 9.4

7,000 to 15,000 EER = 10.9 - (0.213 x Cap/1000)

> 15,000 EER = 7.7

5.2.3 Measure Cost

The incremental measure cost for all retrofit units is $144 per ton of cooling capacity. For all

new construction units, the incremental measure cost is $34 per ton of cooling.

Page 29: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential 6

Savings Estimation TRM 6-1

ers

6. LIGHTING MEASURES – NONRESIDENTIAL

6.1 Semi-Custom Lighting and Lighting Control Measures

Measure Summary Information

Measure description Lighting retrofits, lighting controls, lighting fixture replacements, and new lighting fixtures

End use Lighting

Project eligibility Covers measures not specified as a UES lighting measure; however, UES measures with project-specific parameters are eligible under this measure

Savings type Semi-custom

Unit energy savings Project-specific savings are calculated using the energy savings calculators. The calculators can also be used to develop program-specific unit energy savings estimates for common lighting measure retrofits

Measure cost Project-specific costs are used to determine cost-effectiveness

EUL Rated lamp life divided by default annual operating hours for each building type 1.

8 years for lighting controls1 2.

Baseline and Efficient Case Conditions

Applicable baseline types 1. Natural replacement – preexisting conditions

2. Natural replacement – code

Baseline description Either the code minimum lighting power density requirement or preexisting light fixture power

Efficient case description Retrofitted fixtures, replacement fixtures, newly installed fixtures, or newly installed lighting controls

Savings Calculation

Annual energy savings Savings can be estimated using one of the lighting savings calculators, which are Excel 2010 spreadsheet models for estimating energy savings.

The TRM400 energy savings calculator for nonresidential lighting is intended for use by utility program administrators and covers all lighting measure types. Savings calculation formulas and methodologies are fully documented in the calculator.

The TRM404 spreadsheet provides a simplified lighting rebate calculator. It provides an easy-to-use interface for the lighting calculator. It includes a program administrator section where incentive rates, climate zones, and estimated code impacts can be set or adjusted. If a code baseline is applicable, the saving estimates are adjusted by a predetermined factor.

Peak demand reduction Default CDF factors are used to estimate peak demand reduction.

Page 30: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 6 Lighting Measures – Nonresidential

6-2 Savings Estimation TRM

ers

Key Parameters

The TRM savings calculators allows the use of either default operating hours by building type or manual input of operating hours based on building operator interviews or field-measured data.

Lighting control savings factors are primarily based on studies2 with measured field data. However, given the 1.

large variability in control savings, project-specific measured data may be preferred over the default values. In addition, Title 24 requires controls for many end-use space types. Where applicable, the TRM400 lighting calculator includes code-required controls in the measure baseline.

Space end-use types are used to determine default operating hours. 2.

Where code baseline requirements will be applied, the TRM400 calculator uses space end-use types to 3.determine the lighting power allowance used in determining the space baseline lighting power.

Quality Assurance: Design, Installation, Commissioning, and Operation

Confirm that the existing fixture quantity, fixture type, location/end-use type, and control type are correctly 1.entered into the calculator.

The retrofit and replacement fixture type selected in the calculator should be verified as an appropriate 2.replacement for the existing fixture.

Lighting operating hours should be verified through operator interviews or field measurement. 3.

New lighting controls installed should be verified to be applicable to the space where they are applied. 4.

New lighting controls installed should be commissioned to ensure they are properly functioning. 5.

Important Notes

March 2016: The lighting calculators include revised lighting power allowances from the 2016 Title 24 code that goes into effect on January 1, 2017. For 2016 Title 24 lighting alterations, the calculator code application tables will no longer be needed. The CEC will be creating lighting alteration compliance documentation that can be used by the program administrator to determine code applicability and lighting power allowances.

1DEER_EUL_Summary_10-1-2008.xls

2LBNL– A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings, 2011

6.1.1 Lighting Control Default Savings Factor Table

The savings calculator is capable of estimating savings from the installation of lighting controls.

Users may input savings factors based on project-specific measured data, or select the

appropriate default savings factor. Controls savings are determined by multiplying the lighting

operating hours by the default control savings factor.

Space Type

Occupancy Sensor, Wall- or Ceiling-

Mounted1

Daylight Sensor1

Combined Occupancy &

Daylight Sensors1

Assembly 36% 36% 40%

Break room 20% 20% 40%

Classroom 18% 29% 34%

Computer room 35% N/A 34%

Conference room 35% 18% 40%

Dining 35% 18% 40%

Gymnasium 35% 35% 40%

Hallway 15% 15% N/A

Hospital room 45% N/A N/A

Industrial 45% N/A N/A

Page 31: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential Section 6

Savings Estimation TRM 6-3

ers

Space Type

Occupancy Sensor, Wall- or Ceiling-

Mounted1

Daylight Sensor1

Combined Occupancy &

Daylight Sensors1

Kitchen 30% N/A N/A

Library 15% 18% 34%

Lobby 25% 18% 40%

Lodging (guest rooms) 45% N/A 40%

Open office 22% 27% 40%

Parking garage 15% 18% 40%

Private office 22% 27% 40%

Process 45% N/A 40%

Public assembly 36% 36% 40%

Restroom 40% N/A 40%

Retail 15% 29% 34%

Stairs 25% N/A N/A

Storage 45% N/A 40%

Technical area 35% 18% 40%

Warehouses 31% 28% 40%

Other 7% 18% 34%

1Data sources for lighting savings factors:

a. LBNL – A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings, 2011

b. CA IOU SPC Manual

c. Efficiency Maine TRM

After July 1, 2014, Title 24 code requires occupancy sensor controls for several space end-use

types. Where applicable, the occupancy control savings factor is included in the baseline energy

use calculation.

Daylight controls may also be applicable to a space if the lighting power exceeds a certain

threshold. However, actual application of daylight controls is determined through space

daylight zone analysis. If this analysis indicates that fixture daylight control is required, the

daylight sensor savings factor should be applied to the preexisting (baseline) conditions.

Page 32: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 6 Lighting Measures – Nonresidential

6-4 Savings Estimation TRM

ers

6.2 Reduced Wattage Lamp and Ballast

Measure Summary Information

Measure description Install 4-foot reduced wattage T8 lamp & ballast system in existing fluorescent fixture

End use Lighting

Project eligibility For replacement of T12 or first generation T8 lamps and ballasts 1.

Not applicable for a lamp-only retrofit 2.

Savings are applicable for retrofits exempt from 2013/2016 Title 24 requirements 3.

Savings type UES

Unit energy savings See Energy Savings Table for average savings by climate zone. See TRM102 spreadsheet for energy savings by each building type in each climate zone

Measure cost $21.13 per installed lamp, based on weighted average cost for various fixture configurations1

EUL See Energy Savings Table. The full range of EUL values (5–15 years) can be found in the TRM spreadsheet. EUL is the rated lamp life divided by default annual operating hours for each building type)

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions, code

Baseline description First-generation, 4-foot T8 lamps with normal light output ballasts

Efficient case description CEE2

reduced wattage system, consisting of a 4-foot, 25 W, or 28 W reduced wattage 1.

T8 lamp with high efficiency ballast. 32 W high performance T8 lamp with high efficiency ballast that achieves the same or 2.

greater levels of efficiency than a reduced wattage lamp and ballast system

Savings Calculation

Annual energy savings formula

( )( )

Peak demand reduction ( )( )

Definitions

kWavg =

hrs =

IE =

IEd =

CDF=

Weighted average demand reduction for a range of fixtures

Default operating hours by building type3

HVAC interactive effects, energy3

HVAC interactive effects, demand3

Coincident demand factor3

Key Parameters

Operating hours Default operating hours by building type are used in the savings estimates3.

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that new lamp and ballast is listed on CEE qualified products list. 1.

Verify that ballast efficacy factor (BEF) for new lighting system meets CEE specifications for ballast performance 2.characteristics.

Important Notes

1. Savings for interior fixtures by building type include climate-specific HVAC interactive effects.

2. Savings do not include the project-specific impacts associated with the 2013/2016 Title 24 requirements. If code requirements apply, the lighting savings calculator can be used to estimate savings for reduced wattage lamp and ballast retrofits.

Note: Where an early retirement baseline with T12 lamps is justified, the savings for the remaining useful life time period can determined by multiplying the savings values in the TRM102 spreadsheet by 2.8. Remaining useful life is limited to 1 year or one-third of the effective useful life. 1Variety of sources were used to derive costs – See TRM reduced wattage lamp and ballast spreadsheet

2Consortium for Energy Efficiency (CEE) High Performance and Reduced Wattage T8 Specifications

http://www.cee1.org/com/com-lt/com-lt-main.php3 3Operating hours, peak coincident demand factors, and HVAC interactive effects from DEER 2011

Page 33: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential Section 6

Savings Estimation TRM 6-5

ers

6.2.1 Energy Savings Table

The following table provides the average annual energy savings per lamp and measure life

values for all building types. Refer to the TRM102 reduced wattage lamp and ballast

spreadsheet for savings, demand reduction, and measure life values for each building type. The

TRM spreadsheet provides building type values based on the specific climate zone selected.

Climate Zone Energy Savings

(kWh/yr) EUL (Years)

2 16 8

3 16 8

4 16 8

5 16 8

8 17 8

9 17 8

10 17 8

11 16 8

12 16 8

14 17 8

15 18 8

16 15 8

6.3 De-Lamp Fluorescent Fixture

Measure Summary Information

Measure description Permanent removal of fluorescent lamp and lamp holder in existing fluorescent fixture

End use Lighting

Project eligibility Applicable for removal of T12 or first generation T8 lamps

Savings type UES

Unit energy savings See TRM103 spreadsheet. Savings vary depending on lamp length, building type, and climate zone.

Measure cost $9.56 per removed lamp for all lamp lengths1

EUL Range of 10–15 years (rated ballast life divided by annual operating hours for each building type)

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions, code

Baseline description First generation T8 lamp with normal output ballast 1.

4-foot lamp: T8, nominal wattage 32 W lamp (actual wattage 28 W) 2.

2-foot lamp: T8, nominal wattage 17 W lamp (actual wattage 16 W) 3.

3-foot lamp: T8, nominal wattage 25 W lamp (actual wattage 22 W) 4.

8-foot lamp: T8, nominal wattage 59 W lamp (actual wattage 55 W) 5.

Efficient case description Lamp and lamp holder permanently removed or disabled, resulting in fixture with fewer lamps than preexisting conditions.

Savings Calculation

Annual energy savings formula

( )( )

Peak demand reduction ( )( )

Page 34: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 6 Lighting Measures – Nonresidential

6-6 Savings Estimation TRM

ers

Definitions

kW =

hrs =

IE =

IEd =

CDF=

Removed lamp wattage

Default operating hours by building type2

HVAC interactive effects(varies by climate zone), energy2

HVAC interactive effects (varies by climate zone), demand2

Coincident demand factor, varies by climate zone2

Key Parameters

Operating hours Default operating hours by building type are used in the savings analysis2

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that lamps and lamp holders are permanently removed or otherwise permanently disabled.

Important Notes

Savings account for HVAC interactive effects

Note: Where an early retirement baseline with T12 lamps is justified, the savings for the remaining useful life time period can be determined by multiplying the savings shown in the TRM table by: 1.54 for 4-foot lamps, 1.75 for 2-foot lamps, and 1.5 for 3-foot lamps. Remaining useful life is limited to 1 year or one-third of the effective useful life.

1 Based on time required to remove a lamp and lamp holder from fixture as part of a fixture lamp and ballast retrofit. Derived from

U.S. DOE and lighting contractor interviews. 2Operating hours, peak coincident demand factors, and HVAC interactive effects from DEER 2013

Page 35: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential Section 6

Savings Estimation TRM 6-7

ers

6.4 LED Lighting

Measure Summary Information

Measure description Installation of a new high efficiency LED lamps and fixtures

End use Lighting

Project eligibility 1. ENERGY STAR and DesignLights Consortium qualified LED lamps and fixtures 2. For fixture replacements, savings are applicable for retrofits exempt from 2016

Title 24 requirements. For screw-based lamp replacements, 2016 Title 24 requirements do not apply.

Savings type UES

Unit energy savings See savings summary table in the TRM104 spreadsheet. Savings are available for nineteen retrofit measures:

1. LED parking lot fixture (existing W<250)

2. LED parking lot fixture (existing W≥250)

3. LED wall pack (existing W<250)

4. LED wall pack (existing W≥250)

5. LED parking garage fixture (existing W<250)

6. LED parking garage fixture (existing W≥250)

7. LED fuel pump canopy fixture (existing W<250)

8. LED fuel pump canopy fixture (existing W≥250)

9. LED outdoor pole decorative fixture (existing W<250)

10. LED outdoor pole decorative fixture (existing W≥250)

11. LED down light fixture, 9–15 W, interior, replacing incandescent

12. LED down light fixture, 9–15 W, interior, replacing (2) 26 W CFL

13. LED down light, screw-in lamp, 1–3 W, interior

14. LED down light, screw-in lamp, 4–20 W, interior

15. LED MR16, pin-based lamp, interior

16. LED troffer, 2 ft x 2 ft and 4 ft x 4 ft

17. LED troffer retrofit kit, 2 ft x 2 ft and 4 ft x 4 ft

18. LED high bay fixture

19. LED low bay fixture

Savings vary by fixture or lamp size, building type, and climate zone. With 125 measures available for each climate zone, there are more than 3,000 savings estimates provided.

Measure cost See TRM104 spreadsheet

EUL Range of 5–15 years (rated fixture or lamp life divided by annual operating hours for each building type)

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description The baselines are based on typical existing fixtures and lamps.

Efficient case description ENERGY STAR1

and DesignLights Consortium2

qualified LED lamps and fixtures

Savings Calculation

Annual energy savings formula

( )( )

Peak demand reduction ( )( )

No peak demand reduction for exterior fixtures

Definitions =

hrs = IE = IEd = CDF=

Average kW reduction of typical retrofits

Default operating hours by building type3

HVAC interactive effects (varies by climate zone), energy3

HVAC interactive effects(varies by climate zone), demand3

Coincident demand factor, varies by climate zone3

Page 36: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 6 Lighting Measures – Nonresidential

6-8 Savings Estimation TRM

ers

Key Parameters

Operating hours Default hours by building type used in savings estimate3

Assumed wattage reduction Based on typical LED replacement wattages for existing fixtures and lamps

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that new fixture or lamp is listed on ENERGY STAR or DesignLights Consortium qualified products list.

Important Notes

1. Savings for interior fixtures includes HVAC interactive effects.

2. Savings do not include the project-specific impacts associated with the 2013/2016 Title 24 requirements. If code requirements apply, the TRM lighting savings calculator can be used to estimate savings.

1ENERGY STAR lists qualified LED fixtures and qualified screw-in LED lamps:

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=LU

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=LB

2DesignLights Consortium Qualified Products List: http://www.designlights.org/

3Operating hours, peak coincident demand factors, and HVAC interactive effects from DEER 2013

6.5 LED Refrigerated Display Case Lighting

Measure Summary Information

Measure description Replacement of an existing fluorescent lighting with LED lighting in refrigerated display cases.

End use Lighting

Project eligibility Refrigerated display lighting retrofit. Also applicable to display lighting in walk-in coolers.

Savings type UES

Unit energy savings 299‒1,364 kWh per fixture. See Energy Savings and Cost Table.

Measure cost $144‒$1951. See Energy Savings and Cost Table.

Effective useful life (EUL) 16 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description For 5-foot fixtures, T8HO lamp 1.

For 6-foot fixtures, T12HO lamp 2.

For all other lengths, T8HO lamp 3.

Efficient case description LED lighting and LED lighting with occupancy sensor

Page 37: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential Section 6

Savings Estimation TRM 6-9

ers

Savings Calculation

Annual energy savings formula

( )( )( )( ). See TRM105 LED refrigerated case lighting spreadsheet for full calculation details.

Peak demand reduction ( )( )

Definitions

kW =

hrs =

IE =

IEd =

CDF=

OS =

%P =

Baseline fixture wattage (kW) – Installed fixture wattage (kW)

Default grocery store operating hours (4,910)2

Refrigeration interactive effects, energy (1.59)2

Refrigeration interactive effects, demand (1.29)2

Coincident demand factor (0.56)2

Occupancy sensor operating hour reduction factor (35%)3

LED lighting power in occupied (100%) and unoccupied (0%, 20%, & 40%) mode

Key Parameters

Length of light fixture, vertical or horizontal orientation, occupancy sensor control, existing fixture number of lamps, and occupancy sensor control strategy

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify existing lamp type, length, and location. 1.

Manufacturer specifications sheets should be obtained for verification of fixture power and efficacy. 2.

Occupancy sensors should be commissioned to ensure proper operation. 3.

Important Notes

For accurate project-specific savings estimates, use the TRM400 lighting savings calculator.

1PG&E work paper, LED Refrigeration Case Lighting with Occupancy Sensors, June 2012.

2Operating hours, peak coincident demand factors, and HVAC interactive effects from DEER 2013

3Occupancy sensor operating hour reduction factor based on PNNL study (Demonstration Assessment of LED Freezer Case

Lighting, Pacific Northwest National Laboratory, October 2009)

6.5.1 Energy Savings and Cost Table ‒ LED Display Case Lighting

This table provides the cost and savings data for LED display case lighting.

Measure Name Cost Units Peak kW Annual

kWh

LED refrigerator display case lighting, 5 ft, center & end mount, replacing single lamp fixture

$144 Fixture 0.044 299

LED refrigerator display case lighting, 5 ft, center & end mount, replacing multi-lamp lamp fixture

$144 Fixture 0.089 649

LED refrigerator display case lighting, 6 ft, center & end mount, replacing single lamp fixture

$173 Fixture 0.100 720

LED refrigerator display case lighting, 6 ft, center & end mount, replacing multi-lamp lamp fixture

$173 Fixture 0.175 1,304

LED refrigerator display case lighting, all other lengths, horizontal and vertical mount, replacing single and multi-lamp fixture

$29 Linear feet of fixture

0.011 73.9

Page 38: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 6 Lighting Measures – Nonresidential

6-10 Savings Estimation TRM

ers

6.5.2 Energy Savings and Cost Table ‒ LED Display Case Lighting with Occupancy Sensor

This table provides the cost and savings values for LED display case lighting controlled by

occupancy sensors.

Measure Name Cost Units Peak kW Annual

kWh

LED refrigerator display case lighting, 5 ft, center & end mount, replacing single-lamp fixture ‒ with occupancy sensor

$162 Fixture 0.044 340

LED refrigerator display case lighting, 5 ft, center & end mount, replacing multi-lamp lamp fixture ‒ with occupancy sensor

$162 Fixture 0.089 690

LED refrigerator display case lighting, 6 ft, center & end mount, replacing single-lamp fixture ‒ with occupancy sensor

$195 Fixture 0.100 780

LED refrigerator display case lighting, 6 ft, center & end mount, replacing multi-lamp lamp fixture ‒ with occupancy sensor

$195 Fixture 0.176 1,364

LED refrigerator display case lighting, all other lengths, horizontal and vertical mount, replacing single- and multi-lamp fixtures ‒ with occupancy sensor

$32 Linear feet of fixture

0.011 78.2

Page 39: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential Section 6

Savings Estimation TRM 6-11

ers

6.6 Bi-Level Lighting Fixture – Stairwells, Hallways, and Garages

Measure Summary Information

Measure description Automated bi-level lighting fixture with integrated motion sensors installed in a stairwell, garage, or hallway. The fixture provides lower levels of lighting during unoccupied periods. Fixtures have fail-safe operation with minimum 15-minute timer duration.

End use Lighting

Project eligibility Fixtures with integrated occupancy sensors with fail-safe feature. 1.

Fixtures operate at low light levels during unoccupied periods. 2.

Low light fixture power is a maximum of 35% of full fixture power. 3.

Low lighting levels must meet life safety code requirements. 4.

Savings type UES

Unit energy savings 248 kWh per fixture1

Measure cost $229 per fixture1

EUL 8 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Two-lamp, T8 fixture with no occupancy sensor

Efficient case description Two-lamp T8 bi-level fixtures with integrated sensor, 62 W at full fixture power, 18 W at low fixture power

Savings Calculation

Annual energy savings formula

IOU work paper1

savings analysis assumes the fixture operates 8,760 hours and 69% of the time at low fixture power.

Peak demand reduction 0.002 kW

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Low fixture power lighting levels should meet life safety code requirements.

Important Notes

Savings for this measure are limited to applications where the 2013/2016 Title 24 code requirements do not apply.

1PG&E work paper, PGECOLT101, Revision 3, 6/18/2012

6.7 Compact Fluorescent Lamps (Commercial and Residential)

Measure Summary Information

Measure description Compact fluorescent lamp (CFL) replacing incandescent lamps and CFL high bay fixtures replacing metal halide or high pressure sodium high bay fixtures

End use Lighting – nonresidential and residential

Project eligibility CFL replacement of incandescent, metal halide, or high pressure sodium lamps or fixtures

Savings type UES

Unit energy savings See Energy Savings and Cost Table for savings by lamp size

Measure cost See Energy Savings and Cost Table

EUL 4 years for CFL lamps and 12 years for high bay fixtures

Page 40: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 6 Lighting Measures – Nonresidential

6-12 Savings Estimation TRM

ers

Applicable baseline types

Natural replacement – preexisting conditions

Baseline description CFL lamp wattages are based on typical power reductions.1

High bay fixtures are based on preexisting fixtures with equivalent light output.

Efficient case description

CFL lamp or high bay CFL fixture

Savings Calculation

Annual energy savings formula

( )( )

See TRM117 spreadsheet for development of operating hours

Peak demand reduction ( )( )

No peak demand reduction for exterior fixtures

Key Parameters

Definitions

=

hrs =

IE =

IEd =

CDF=

Average kW reduction of typical retrofits

Default operating hours by building type

HVAC interactive effects, energy

HVAC interactive effects, demand1

Coincident demand factor

See TRM117 spreadsheet for development of interactive effects and demand factor.

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A 12013-2014_LightingRetrofit_Disposition-12November2014.docx

6.7.1 Energy Savings and Cost Table – Lamps for Commercial Buildings

CFL Lamp Size Range, Watts

kWh Savings

Peak Demand Reduction,

kW Measure

Costs

9 – 13 83 0.018 $1.65

13 – 15 106 0.023 $3.00

18 – 25 162 0.036 $3.33

23 – 30 200 0.044 $3.66

30 – 55 321 0.071 $4.59

6.7.2 Energy Savings and Cost Table – High Bay Fixtures for Commercial Buildings

CFL Fixture Size Range, Watts

Baseline Wattage

Fixture Location

kWh Savings

Peak Demand Reduction, kW Costs

≤ 360 400 Interior 117 0.026 $300

≤ 244 400 Interior 458 0.102 $300

≤ 192 177 – 399 Interior 282 0.063 $300

≤ 128 101 – 175 Interior 29 0.007 $300

≤ 70 100 Interior 88 0.020 $260

≤ 70 100 Exterior 105 0.000 $260

Page 41: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Nonresidential Section 6

Savings Estimation TRM 6-13

ers

6.7.3 Energy Savings and Cost Table – Residential CFL Lamps

CFL Size Range, Watts

Lamp Location

kWh

Savings

Peak Demand

Reduction, Kw

Measure Costs

9 – 13 Interior 20 0.002 $1.65

13 – 15 Interior 25 0.002 $3.00

18 – 25 Interior 38 0.004 $3.33

9 – 13 Exterior 45 0.000 $3.66

13 – 15 Exterior 57 0.000 $4.59

18 – 25 Exterior 88 0.000 $5.59

Page 42: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential 7

Savings Estimation TRM 7-1

ers

7. REFRIGERATION MEASURES – NONRESIDENTIAL

7.1 Commercial Ice Machines

Measure Summary Information

Measure description Installation of a new high efficiency ice machine generating small ice cubes (2 oz or smaller).

End use Refrigeration

Project eligibility Applicable to air-cooled batch machines (self-contained, icemaker heads, or 1.remote condensing).

Equipment is listed on the Food Service Technology Center's Qualifying Appliance 2.List or listed as ENERGY STAR-qualified.

Machines make ice cubes (2 oz or smaller) flaked, crushed, or fragmented ice. 3.

Machine performance is tested using ARI Standard 810. 4.

Remote machines are used with qualifying remote condenser or remote 5.condenser/compressor unit.

Savings type UES

Unit energy savings (Ice harvest rate) – (savings) 1

101–300 lbs/day – 805 kWh/yr

301–500 lbs/day – 1,117 kWh/yr

501–1000 lbs/day – 1,807 kWh/yr

1001–1500 lbs/day – 2,601 kWh/yr

>1500 lbs/day – 3,641 kWh/yr1

Measure cost 101–300 lbs/day – $3061

301–500 lbs/day – $266 501–1000 lbs/day – $249 1001–1500 lbs/day – $589 >1500 lbs/day – $939

EUL 10 years 2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Minimum efficiency units compliant with California Appliance Standards (Title 20)

Efficient case description ENERGY STAR or FSTC qualified high-efficiency units

Page 43: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 7 Refrigeration Measures – Nonresidential

7-2 Savings Estimation TRM

ers

Savings Calculation

Annual energy savings formula

Unit capacity is assumed to be the midpoint of the capacity bin. 1.

Annual ice production (Prod) = .75 × Rated daily capacity × 365 days 2.

Baseline efficiency (BE) = Title 20 minimum efficiency3 3.

Installed efficiency (IE) = Value from PG&E work paper1 4.

Annual savings (kWh/yr) = [Prod (lbs/yr)/BE(kWh/lbs)] – [Prod (lbs/yr)/IE (kWh/lbs)] 5.

Peak demand reduction ARI Standard 810 provides the assumed standard operating conditions of the machines during the demand period. A coincidence factor of 0.9 is applied as per DEER methodology.

101–300 lbs/day – 0.092 kW

301–500 lbs/day – 0.115 kW

501–1000 lbs/day – 0.186 kW

1001–1500 lbs/day – 0.267 kW

>1500 lbs/day – 0.374 kW

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify units are listed on the Food Service Technology Center's Qualifying Appliance List and/or meet ENERGY

STAR Version 2.0 (2013) requirements4.

Important Notes

Federal regulations will update efficiency standards for ice machines in January 2018. At that time, savings for this measure will be obsolete. 1

PG&E work paper PGECOFST108, “Commercial Ice Machines,” Revision 3, 5/30/2012

2DEER 2011 Version 2011.4.01

3 2007 California Energy Commission (CEC) Title 20 Appliance Efficiency Regulations, CEC 400-2007-016, p. 112

4ENERGY STAR Commercial Ice Makers Specification V2.0, in effect on February 1, 2013

7.2 Commercial Solid Door & Glass Door Refrigerators

Measure Summary Information

Measure description Self-contained energy efficient commercial reach-in solid and glass door refrigerators and freezers.

End use Refrigeration

Project eligibility For self-contained refrigeration units ‒ not applicable to refrigerators with remote 1.condensing units

Equipment is listed on Food Service Technology Center's Qualifying Appliance 2.List ‒ all units listed meet the ENERGY STAR 2.0 Commercial Refrigerators and Freezers Program requirements

Savings type UES

Unit energy savings See Energy Savings Table – Varies based on unit type and size.

Measure cost See Cost Table – Varies based on unit type and size.

EUL 12 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Minimum efficiency units compliant with 2015 California Appliance Efficiency

Regulations (Title 20)2

Efficient case description High efficiency units listed on Food Service Technology Center's Qualifying Appliance List and meeting ENERGY STAR 2.0 Commercial Refrigerators and Freezers Program requirements

Page 44: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential Section 7

Savings Estimation TRM 7-3

ers

Savings Calculation

Annual energy savings formula

California appliance efficiency standards in effect since 2010 and ENERGY STAR 2.0 standards have a series of formulas that define the maximum daily rated energy use of a refrigerators and freezers with solid and glass doors. These formulas are used to find the daily energy usage of the baseline and proposed units. Units are

assumed to operate 8,760 hours per year.3

Peak demand reduction Savings are assumed to be constant throughout any 24-hour period. As such, the annual savings figure is divided by 8,760 and a coincidence factor of 0.9 is applied as per the DEER methodology.

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List.

Important Notes

Federal regulations will update efficiency standards for commercial refrigerators in 2018. At that time, savings for this measure will be obsolete. 1DEER 2011 Version 2011.4.01

2 2015 California Appliance Efficiency Regulations (Title 20)

3 PG&E work paper, PGECOFST123, “Reach-In Refrigerators and Freezers – Commercial,” Revision 0, 6/8/2012

7.2.1 Energy Savings Table

This table provides the ranges of savings values for each refrigerator & freezer type for a variety

of sizes and door styles.

Unit Volume (Cu ft)

Door Type < 15 15–29 29–49 >49

Refrigerator savings (kWh/yr)

Solid door 270 493 854 1,279

Glass door 723 661 773 934

Freezer savings (kWh/yr)

Solid door 595 869 2,074 4,552

Glass door 1,693 2,010 4,599 8,103

7.2.2 Measure Cost Table

This table provides the incremental measure cost.

Unit Volume (Cu ft)

Door Type < 15 15–29 29–49 >49

Refrigerator incremental cost ($)

Solid door $961 $1,241 $1,732 $2,396

Glass door $91 $760 $947 $1,363

Freezer incremental cost ($)

Solid door $227 $1,200 $1,370 $1,732

Glass door $22 $109 $189 $791

Page 45: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 7 Refrigeration Measures – Nonresidential

7-4 Savings Estimation TRM

ers

7.3 EC Motor for Cold Storage Evaporator Fans

Measure Summary Information

Measure description Replacement of an existing standard efficiency shaded-pole evaporator fan motor with an electronically commutated motor (EC motor) of the same size for evaporator fans in walk-in coolers and freezers

End use Refrigeration – all climate zones

Project eligibility This measure is valid only for early retirement of a shaded-pole motor that is less 1.than 15 years old.

Savings estimate are not applicable for replacement of a permanent split 2.capacitor (PSC) motor. Savings are approximately 60% less if a PSC motor is replaced.

Savings type UES

Unit energy savings Remaining useful life (RUL) savings are based on motor size and are per motor1

16 W ‒ 408 kWh 1.

1/15 hp and 1/20 hp ‒ 1,064 kWh 2.

1/5 hp ‒ 1,409 kWh 3.

1/3 hp ‒ 1,994 kWh 4.

1/2 hp ‒ 2,558 kWh 5.

3/4 hp ‒ 2,782 kWh 6.

The savings for the second baseline (after the RUL time period) is 0 kWh.

Measure cost $231 per motor1

EUL 15 years1 If the age of the motor being replaced is unknown, the default RUL

is 5 years. Otherwise, the RUL is equal to 15 years minus the age of the motor.

Baseline and Efficient Case Conditions

Applicable baseline types Dual baseline – early retirement

Baseline description Shaded-pole evaporator fan motor in walk-in cooler or freezer

Efficient case description High efficiency EC motor; electrical motor efficiency of at least 66%

Savings Calculation

Annual energy savings Savings obtained from IOU work paper1

and are based on the following data and assumptions:

1. Motor wattages: baseline and replacement motors

Motor Specification SHP Motor

Wattage EC Motor Wattage

16 W 92 48

1/15 or 1/20 hp 186 72

1/5 hp 361 210

1/3 hp 563 349

1/2 hp 799 524

3/4 hp 1,087 788

Peak demand reduction 16 W ‒ 0.047kW 1.

1/15 hp and 1/20 hp ‒ 0.0121 kW 2.

1/5 hp ‒ 0.161 kW 3.

1/3 hp ‒ 0.228 kW 4.

1/2 hp ‒ 0.292 kW 5.

3/4 hp ‒ 0.318 kW 6.

Page 46: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential Section 7

Savings Estimation TRM 7-5

ers

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify EC motor size and efficiency and verify the age and type of motor being replaced.

Important Notes

2015 federal efficiency regulations (CFR-2013-Title 10, Volume 3, part 431, subpart X) require small electric motor efficiencies that are equivalent of an EC motor

1PG&E work paper PGE3PREF123,“ECM for Walk-In Evaporator Fan”, 6/20/2012

7.4 Refrigerated Display Case EC Motor Retrofit

Measure Summary Information

Measure description Replacement of an existing standard efficiency shaded-pole evaporator fan motor with an EC motor in a refrigerated display case.

End use Refrigeration ‒ all climate zones

Project eligibility This measure is valid only for early retirement of a shaded-pole motor that is less than 15 years old.

Savings estimate are not applicable for replacement of a permanent split capacitor (PSC) motor. Savings are approximately 60% less if a PSC motor is replaced..

Savings type UES

Unit energy savings Remaining Useful Life (RUL) : 705 kWh per motor1

Savings for the second baseline after the RUL time period is 0 kWh.

Incremental measure cost $1691

EUL 15 years2

If the age of the motor being replaced is unknown, the default RUL is 5

years. Otherwise, the RUL is equal to 15 years minus the age of the motor.

Baseline and Efficient Case Conditions

Applicable baseline types Dual baseline – early retirement

Baseline description Shaded-pole display case evaporator fan motor with no controls.

Efficient case description High efficiency EC motor with a minimum efficiency of 66%.

Savings Calculation

Annual energy savings formula

See TRM109 spreadsheet. Savings analysis is from IOU work paper.1

Savings

values are the average of all available climate zones. Savings differ slightly by climate zone and building vintage. However, the difference is negligible.

Assumptions for display case motor distribution:

a. 9% 9 W motors

b. 49% 19.5 W motors

c. 42% 37 W motors

Assumptions for direct energy savings:

a. Baseline shaded-pole motor efficiency of 26%

b. Installed EC motor efficiency of 66%

c. Baseline on evaporator fan motors operating 8,760 hours per year

Assumptions for indirect refrigeration savings:

a. Refrigeration equivalent full load hours (EFLH) were determined using DOE 2.2R models

Page 47: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 7 Refrigeration Measures – Nonresidential

7-6 Savings Estimation TRM

ers

b. Refrigeration system efficiency (EER) = 9.36

Peak demand reduction 0.073 kW1

Definitions N/A

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify the age of the motor being replaced and confirm the motor is a shaded pole and not part permanent-split capacitor.

Important Notes 2015 federal efficiency regulations (CFR-2014-Title 10, Volume 3, part 431, subpart X) require small electric motor efficiencies that are equivalent of an EC motor.

1 PG&E work paper, PGE3PREF124-R1, “Display Case ECM Motor Retrofit,” June 14, 2012

2 DEER_EUL_Summary_10-1-2008.xls

7.5 EC Motor with Fan Cycling Controls for Cold Storage Evaporator Fans

Measure Summary Information

Measure description Installation of a fan motor controller to cycle (on/off) an evaporator fan in a walk-in cooler. The measure includes replacing an existing shaded-pole motor with an EC motor.

End use Refrigeration-all climate zones

Project eligibility Minimum EC motor efficiency of 66% with a fan cycling controller

Savings type UES

Unit energy savings See Savings Table.

Incremental measure cost $468 per motor1

EUL 10 years, based on the motor controller.2 If the age of the motor is unknown, the

default remaining useful life (RUL) is 3 years. Otherwise, the RUL is equal to 10 years minus the age of the motor.

Baseline and Efficient Case Conditions

Applicable baseline types Dual baseline – early retirement

Baseline description Shaded-pole evaporator fan motor, 8,760 hour operation

Efficient case description High efficiency EC motor with controller integrated into the compressor controller, which reduces fan speed when refrigerant is not flowing to the evaporator coils.

Savings Calculation

Annual energy savings formula

See TRM108 spreadsheet. Savings analysis is from IOU work paper.1

Savings

values are the average of all available climate zones. Savings differ slightly by climate zone. However, the difference is negligible.

Assumptions for direct energy savings: a. Baseline shaded-pole motor efficiency of 26%

b. Installed EC motor efficiency of 66%

c. 8,760 hours – baseline operation

d. Installed EC motors reduced to 75% speed when compressors cycle off

e. Compressors assumed cycle off 4,380 hours

Assumptions for indirect refrigeration savings:

a. Refrigeration EFLH from custom DOE 2.2R model.

b. Refrigeration system efficiency (EER) = 6.29

Peak demand reduction 16 W motor & controller – 0.071 kW 1.

Page 48: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential Section 7

Savings Estimation TRM 7-7

ers

1/15 hp or 1/20 hp motor & controller – 0.157 kW 2.

1/5 hp motor & controller – 0.266 kW 3.

1/3 hp motor & controller – 0.402 kW 4.

1/2 hp motor & controller – 0.553 kW 5.

3/4 hp motor & controller – 0.711 kW 6.

Definitions N/A

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Verify that EC motor efficiency is 66% or greater

2. Verify the age of the motor being replaced and confirm it is a shaded pole and not part permanent-split capacitor.

3. Confirm the fan speed is reduced when refrigerant compressor cycles off.

Important Notes

EC motors are required by code3 for new walk-in coolers or new fan coil installations. The savings related to the

installation of an EC motor are not applicable for new installations.

2015 federal efficiency regulations (CFR-2014-Title 10, Volume 3, part 431, subpart X) require small electric motor efficiencies that are equivalent of an EC motor.

1Work Paper PGE3PREF126, “ECM for Walk-In Evaporator with Fan Controller,” June 20,2012

2DEER_EUL_Summary_10-1-2008.xls

32015 California Appliance Efficiency Regulations (Title 20)

7.5.1 Energy Savings Table

This table provides the energy savings for each motor size and the percent savings attributable

to the fan controller.

Measure Description

Demand Reduction

(kW)

Energy Savings –

Early Retirement

(kWh)

Energy Savings –

Natural Replacement

(kWh)

ECM for walk-in evaporator fan with controller – 16 W 0.071 620 212

ECM for walk-in evaporator fan with controller – 1/15 hp + 1/20 hp 0.157 1,379 333

ECM for walk-in evaporator fan with controller – 1/5 hp 0.266 2,329 920

ECM for walk-in evaporator fan with controller – 1/3 hp 0.402 3,518 1,524

ECM for walk-in evaporator fan with controller – 1/2 hp 0.553 4,841 2,283

ECM for walk-in evaporator fan with controller – 3/4 hp 0.711 6,226 3,444

7.6 Strip Curtain Infiltration Barrier for Refrigerated Space

Measure Summary Information

Measure description Installation of new strip curtains in doorways of walk-in coolers & freezers

End use Refrigeration

Project eligibility Installation of new strip curtains in existing doorways without an infiltration barrier or replacement of a failed strip curtain older than 4 years. Not applicable for newly constructed cold storage.

Savings type UES

Page 49: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 7 Refrigeration Measures – Nonresidential

7-8 Savings Estimation TRM

ers

Unit energy savings See energy savings table1. Savings provided by end-use type (restaurant and

grocery store). Units are kWh per sq ft of door opening

Measure cost $10.22 per sq ft of door opening1

EUL 4 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement ‒ preexisting conditions

Baseline description Existing doorway between refrigerated and non-refrigerated spaces without an 1.infiltration barrier.

Code baseline applies to newly constructed cold storage areas. Since current 2.code requires an infiltration barrier be installed, measure savings are not

applicable to new construction2.

Efficient case description New strip curtains

Savings Calculation

Annual energy savings IOU work paper1. Savings are based on grocery and restaurant installations;

however, savings may be used for strip curtain installations in refrigerated doorways in any end-use space.

Peak demand savings See energy savings table

Key Parameters

Strip curtain effectiveness

Install ratio

Doorway usage

= Average preexisting infiltration effectiveness: 40%. post-retrofit: 92%

= 80% installed in refrigerated doorways and 20% in freezer doorways

= Assumes 108 doorway openings per day

Quality Assurance: Design, Installation, Commissioning, and Operation

Ensure that strip curtains are properly installed.

Important Notes

N/A

1PG&E work paper, PGECOREF 103, “Strip Curtains, Revision 4,” May 25, 2012

22015 Title 20 Appliance Efficiency Regulations provide requirements for walk-in cold storage areas less than 3,000 sq ft,

2013/2016 Title 24 Building Energy Efficiency Standards provide mandatory requirements for cold storage equal to or greater than 3,000 sq ft.

7.6.1 Energy Savings Table – Restaurant

The following table provides energy savings and demand reduction for strip curtains per

square foot of door opening.

By Storage Type Weighted Savings

Walk-In Coolers Walk-In Freezers 80% Cooler, 20% Freezer

Climate Zone

Demand Reduction

Energy Savings

Demand Reduction

Energy Savings

Demand Reduction kW

Energy Savings kWh

2 0.009455 118 0.027327 336 0.013 162

3 0.008138 106 0.023354 302 0.011 145

4 0.007967 107 0.022823 304 0.011 146

5 0.007171 97 0.020319 273 0.010 132

8 0.008138 111 0.023354 315 0.011 152

9 0.009056 119 0.026149 341 0.012 163

10 0.010313 131 0.029774 374 0.014 180

Page 50: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential Section 7

Savings Estimation TRM 7-9

ers

11 0.011259 136 0.032315 386 0.015 186

12 0.010313 128 0.029774 366 0.014 176

14 0.012302 150 0.03491 426 0.017 205

15 0.013153 175 0.036853 495 0.018 239

16 0.008138 99 0.023354 282 0.011 136

7.6.2 Energy Savings Table – Grocery

The following table provides energy savings and demand reduction for strip curtains per

square foot of door opening.

By Storage Type Weighted Savings

Walk-in Coolers Walk-in Freezers 80% Cooler, 20% Freezer

Climate Zone

Demand Reduction

Energy Savings

Demand Reduction

Energy Savings

Demand Reduction kW

Energy Savings kWh

2 0.002899 91 0.018733 307 0.006 134

3 0.004114 82 0.015448 273 0.006 120

4 0.004014 82 0.015021 274 0.006 120

5 0.003552 74 0.013044 244 0.005 108

8 0.004114 85 0.015448 285 0.006 125

9 0.004659 92 0.017742 310 0.007 136

10 0.005421 102 0.020834 344 0.009 150

11 0.006004 106 0.023086 358 0.009 156

12 0.005421 100 0.020834 337 0.009 147

14 0.006657 118 0.025468 397 0.010 174

15 0.007197 138 0.027323 464 0.011 203

16 0.004114 76 0.015448 255 0.006 112

7.7 Refrigerated Display Case with Doors

Measure Summary Information

Measure description Replacement of vertical low-temperature (LT) and medium-temperature (MT) refrigerated display cases without doors with new display cases with doors.

End use Refrigeration

Project eligibility New units replace multi-deck display cases without doors. 1.

New display case consists of standard glass doors, EC evaporative fan motors, 2.and T8 lamps.

Savings type UES

Unit energy savings See Energy Savings Table

Measure cost MT: $575 per linear foot of case

LT: $493 per linear foot of case

EUL 12 years1

Baseline and Efficient Case Conditions

Page 51: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 7 Refrigeration Measures – Nonresidential

7-10 Savings Estimation TRM

ers

Applicable baseline types Natural replacement ‒ preexisting conditions

Baseline description Existing refrigerated display case with no doors

Efficient case description New refrigerated display case with doors, EC evaporative fan motors, and T8 lamps with electronic ballast

Savings Calculation

Annual energy savings IOU work paper2. Savings are based on grocery store building energy simulations.

Peak demand reduction MT: 0.004 – 0.094 kW

LT: 0.075 – 0.149 kW

Key Parameters

Refrigeration systems

Building type

= Multiplex-compressors

= Grocery store with space cooling and natural gas heating

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A

1DEER_EUL_Summary_10-1-2008.xls

2PG&E work paper, “New Display Cases with Doors,” Revision 4, May 11, 2012

7.7.1 Energy Savings Table

The following table provides energy savings and demand reduction for medium and low

temperature display cases with doors.

Climate Zone

Medium Temperature Low Temperature

Demand Reduction

(kW)

Energy Savings (kWh)

Therm Savings

Demand Reduction

(kW)

Energy Savings (kWh)

Therm Savings

2 0.049 143 26 0.075 993 42

3 0.024 143 30 0.075 978 50

4 0.089 135 24 0.080 942 42

5 0.020 136 29 0.121 965 49

8 0.012 103 18 0.089 928 39

9 0.094 110 18 0.079 939 38

10 0.073 118 18 0.085 922 35

11 0.046 170 22 0.090 1,031 37

12 0.065 140 23 0.083 968 39

14 0.047 210 20 0.123 1,040 34

15 0.004 76 12 0.149 1,123 24

16 0.019 169 27 0.096 936 43

Page 52: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential Section 7

Savings Estimation TRM 7-11

ers

7.8 Auto-Closers for Main Cooler or Freezer Doors

Measure Summary Information

Measure description Installation of a door auto-closer on the main door of a walk-in cooler or freezer.

End use Refrigeration

Project eligibility Only applicable as a retrofit for walk-ins built before 2006 without door auto-closers. Not applicable for a replacement for a failed auto-closer. Not applicable for reach-in doors.

Savings type UES

Unit energy savings Auto-closer for walk-in cooler ‒ 979 kWh average for all climate zones. See Energy Savings Table for values by climate zone

Auto-closer for walk-in freezer ‒ 2,421 kWh average

Measure cost $157 per auto-closer

EUL 8 years

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement ‒ preexisting conditions

For walk-ins built after 2006, the baseline is natural replacement ‒ code. California Appliance Efficiency Standards (Title 20) require auto-closers after 2006.

Baseline description Main walk-in door of walk-in cooler or freezer without an existing auto-closer.

Efficient case description Auto-closer installed on walk-in door.

Savings Calculation

Annual energy savings DEER 2005, IOU work paper1

Peak demand reduction 0 kW

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A

1PG&E work paper, PGECOREF110, “Auto-Closers for Main Doors,” Revision 3, May 2012

Page 53: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 7 Refrigeration Measures – Nonresidential

7-12 Savings Estimation TRM

ers

7.8.1 Energy Savings Table

This table provides the energy savings and peak demand reduction for each climate zone.

Climate Zone

Cooler Door Freezer Door

Demand Reduction

Energy Savings

Demand Reduction

Energy Savings

2 0.162 980 0.452 2,450

3 0.127 958 0.296 2,394

4 0.143 981 0.363 2,365

5 0.165 961 0.192 2,378

8 0.108 998 0.280 2,394

9 0.181 1,005 0.422 2,432

10 0.190 1,022 0.326 2,442

11 0.159 1,014 0.363 2,457

12 0.149 998 0.400 2,453

14 0.225 1,000 0.141 2,495

15 0.060 892 0.141 2,409

16 0.149 943 0.326 2,386

Average 0.152 979 0.309 2,421

7.9 Anti-Sweat Heater Controls

Measure Summary Information

Measure description Installation of anti-sweat heater (ASH) controller on a low- or medium-temperature display case with doors. The ASH controller senses the relative humidity of the air surrounding the display case and reduces or turns off the anti-sweat heaters of the glass door and/or door frame during periods of low humidity.

End use Refrigeration

Project eligibility Applicable to existing refrigerated (cooler and freezer) display cases with continuously operating anti-sweat heaters where the anti-sweat heater power is:

More than 7 watts per square foot of freezer door opening, or

More than 3 watts per square foot of cooler door opening

Savings type UES

Unit energy savings See Savings Table

Measure cost $48 per linear foot of display case1

EUL 12 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement ‒ preexisting conditions.

Baseline description Refrigerated display case with anti-sweat heaters always on with no controller

Efficient case description Anti-sweat heater controller that cycles off door frame heaters based on the relative humidity of the surrounding air or the amount of condensation in the inner glass. Control logic reduces power when relative humidity is 55% or lower and continues to decrease power as the relative humidity decreases.

Page 54: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Refrigeration Measures – Nonresidential Section 7

Savings Estimation TRM 7-13

ers

Savings Calculation

Annual energy savings IOU work paper 1

Peak demand reduction See Energy Savings Table

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A

1SCE work paper SCE13RN009, “Anti-Sweat Heat (ASH) Controls,” May 2012

7.9.1 Energy Savings Table

This table provides the energy savings and peak demand reduction for each climate zone.

Savings are normalized per linear foot of refrigerated display case. Savings are provided for

both low temperature and medium temperature display cases.

Climate Zone

Low Temperature Medium Temperature

Demand Reduction

(kW/lf)

Energy Savings (kWh/lf)

Demand Reduction

(kW/lf)

Energy Savings (kWh/lf)

2 0.047 673 0.046 374

3 0.017 546 0.049 371

4 0.001 556 0.044 374

5 0.073 552 0.048 372

8 0.034 551 0.043 376

9 0.002 584 0.052 379

10 0.034 631 0.048 376

11 0.050 767 0.049 376

12 0.058 651 0.048 376

14 0.092 936 0.052 376

15 0.014 827 0.044 375

16 0.049 694 0.046 365

Page 55: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures 8

Savings Estimation TRM 8-1

ers

8. ALL OTHER NONRESIDENTIAL MEASURES

8.1 Pump and Fan Variable Frequency Drive Control

Measure Summary Information

Measure description Retrofit of a pump or fan system by installing a variable frequency drive (VFD) for variable load or fixed constant load control.

End use HVAC, process

Project eligibility Constant-flow pump or fan serving a variable load. 1.

Oversized constant volume pump or fan serving a constant load. 2.

Variable flow pump or fan controlled inefficiently, such as a poorly functioning inlet 3.guide vane or a throttling devise (discharge damper, balancing valve).

Not applicable for cooling tower fan control. 4.

Not applicable for systems with high static head. For example: 5.

a. Open-system irrigation water pumps.

b. Water pump lift stations.

c. Poorly designed VAV supply air fan systems with incorrectly positioned static pressure control sensor.

d. Poorly designed water or air distribution systems with undersized branches or circuits. These types of systems are often operated with a high static pressure setting to overcome design deficiencies.

Savings type Semi-custom

Unit energy savings Project-specific savings can be calculated using either the TRM401, TRM405, TRM406, or TRM407 energy savings calculators.

Measure cost Project-specific costs are used to determine cost-effectiveness.

EUL 15 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Fans – savings calculator selection choices: 1.

a. Constant volume

b. Inlet guide vane, forward curved (FC) fans

c. Inlet guide vane, backward inclined (BI), & airfoil fans

d. Inlet damper box

e. Eddy current drives

f. Outlet damper, FC fans

g. Outlet damper, BI, & airfoil fans

Pumps – calculator selection choices: 2.

h. Mechanical flow control

i. Recirculation

j. Throttle valve

Efficient case description VFDs installed on either a fan or pump system 1.

Variable flow system with pump or fan speed control 2.

VFD replacing a throttling valve to provide constant flow with reduced system pressure 3.

Page 56: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-2 Savings Estimation TRM

ers

Savings Calculation

Annual energy savings Savings are project-specific and can be estimated using the TRM401 pump and 1.fan VFD calculator, an Excel 2010 spreadsheet model for estimating energy savings. TRM405 is a simplified fan rebate calculator. TRM 406 is a parking garage fan VSD rebate calculator. TRM407 is a pump VSD rebate calculator.

Fan and pump performance curves used to estimate savings are generic curves 2.

developed by BPA2

and are based on manufacturer performance data.

The VFD calculator allows for either standard load profiles or custom load 3.profiles developed by the user based on actual operating conditions.

Peak demand reduction In general, there is no peak demand reduction for this measure. It is possible, depending upon operating conditions, that there is a 2%–5% demand penalty due to the efficiency losses associated with the addition of a VFD controller operating at 100% flow.

Key Parameters

Performance curves and load profiles

For improved accuracy, generic performance curves can be replaced with performance curves developed using actual manufacturer data. Load profile accuracy can be improved by trending post-installation fan performance.

Quality Assurance: Design, Installation, Commissioning, and Operation

Determine design and control mechanism for preexisting fan or pump system. 1.

Determine if load being served is constant or variable. 2.

Determine if the application of VFD control is appropriate (e.g., no high static head or operational performance 3.issues).

Ensure that the VFD is installed correctly and that pump or fan speed is controlled appropriately. 4.

Important Notes

Installation of VFDs is considered industry standard practice for a majority of applications and is required by 1.code for a variety of HVAC applications. Savings are applicable only if a VFD would not have been installed otherwise.

Using measured trend data to estimate and validate energy saving is the most accurate method for estimating 2.energy savings for fan and pump VFD retrofits. When measured data is unavailable, the VFD calculator will provide a reasonable estimate of potential energy savings given the project meets the eligibility criteria previously stated.

The calculator includes a default load profile for a garage fan being controlled by a CO2 sensor, based on 3.measured field data.

1DEER_EUL_Summary_10-1-2008.xls (VSD Supply Fan Motors, Variable Flow Water Loop – VSD Pump, Variable Air Volume Box,

VSD Fan) 2Bonneville Power Administration BPA ASD Calculator for Fan & Pump Applications – Summary of information provided in "Flow

Control,” a Westinghouse publication, Bulletin B-851, F/86/Rev–CMS 8121.

Page 57: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-3

ers

8.1.1 Performance Curve Charts

These charts illustrate the power curves used by the VFD calculator to estimate energy savings.

Page 58: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-4 Savings Estimation TRM

ers

8.2 Vending Machine Controller

Measure Summary Information

Measure description Occupancy sensor controller installed on refrigerated vending machines for nonperishable bottled and canned beverages.

End use Refrigeration, lighting

Project eligibility For controlling refrigerated vending machines 1.

The controller includes a passive infrared occupancy sensor that turns off the 2.lights and compressor when the area is unoccupied for 15 minutes or longer.

The control logic should periodically power up the machine at 2-hour intervals. 3.

Savings type UES

Unit energy savings 1,612 kWh/yr1

Measure cost $215 per unit

EUL 5 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Vending machine with no controls

Efficient case description Vending machine with control system installed which completely powers the unit down when the area is unoccupied for 15 minutes.

Savings Calculation

Annual energy savings formula

Energy savings1

are achieved by reducing the operating hours of the vending

machine by shutting off the compressor and lighting during hours when the surrounding area of the unit is not occupied. DEER lists a single savings value for all commercial building types and vintages.

Peak demand reduction No peak demand reduction is associated with this measure.

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units have occupancy sensors correctly installed and calibrated.

Important Notes

N/A

1 PG&E work paper, PGECOREF111, “Vending Machine Controller,” Revision 3, 6/8/2012

2 DEER_EUL_Summary_10-1-2008.xls

Page 59: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-5

ers

8.3 Vending Machine Controller ‒ Non-Refrigerated

Measure Summary Information

Measure description Installation of an occupancy sensor controller on a nonperishable snack dispensing vending machine

End use Lighting, appliance

Project eligibility Retrofit ‒ vending machine has a lighted front and/or internal lighting

Savings type UES

Unit energy savings 410 kWh1

Incremental measure cost $1441

EUL 5 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions. There are no applicable federal or state code requirements.

Baseline description Existing vending machine with no lighting occupancy sensor control

Efficient case description Installation of a passive infrared occupancy sensor that turns off the vending machine lights when the area is unoccupied

Savings Calculation

Annual energy savings formula

Work paper adjusts DEER 2005 value to account for HVAC interactive effects

Peak demand reduction No demand savings are associated with this measure.

Definitions N/A

Key Parameters

Hours of operation 8,760 hours before installation of controller

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Verify that existing lighting is not controlled.

2. Verify that occupancy sensor is located properly,

3. Verify that sensor control is tested and commissioned to function as intended.

Important Notes

N/A

1PG&E work paper, PGE3PLTG168 Vending Machine Controller – Uncooled R0, June 2012

Page 60: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-6 Savings Estimation TRM

ers

8.4 Insulated Holding Cabinets

Measure Summary Information

Measure description High efficiency ENERGY STAR-compliant half-size and full-size insulated hot food cabinets ranging in size from 0.3kw to 0.8kW

End use Appliance - food preparation

Project eligibility Electric hot-food holding cabinets. 1.

Cabinet is fully insulated with solid doors. 2.

Maximum of 20 W per cubic foot per ASTM Standard F2140 3.

Equipment is listed on Food Service Technology Center's Qualifying Appliance List. 4.

Savings type UES

Unit energy savings Half-size – 1,807 kWh/yr1

Full-size – 3,942 kWh/yr

Measure cost Incremental cost

Half-size – $2,3361

Full-size – $381

EUL 12 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description California Appliance Efficiency Standards (Title 20), which require all new commercial hot- food holding cabinets to have a maximum normalized idle energy rate of 40 W/ft³ based on ASTM F2140.

Efficient case description The measure case data was drawn from the CEC Appliance database3 that met the

specified idle energy rate of 20 W/ft³ or less.

Savings Calculation

Annual energy savings formula

Annual hours of operation = 15 hours/day × 365 days/yr

Typical setpoint temperature = 150ºF

Half-size unit

Size = 10 cu ft

Baseline efficiency = 40 W/ft³

Installed efficiency = 5.7 W/ft³

Full-size unit Size = 25 cu ft

Baseline efficiency = 40 W/ft³

Installed efficiency = 11.3 W/ft³

Annual savings = (Annual hours) × [(Size) × (Baseline eff) – (Installed eff)]/1000

Peak demand reduction Savings are assumed to be constant throughout the 15 hours/day of operation. The 15 hours of operation are all assumed to occur during peak periods. As such, the annual savings figure is divided by 5475 and a coincidence factor of 0.9 is applied as per the DEER methodology.

Half-size – 0.30 kW1

Full-size – 0.65 kW1

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List.

Important Notes

N/A 1

PG&E work paper, PGECOFST105, “Insulated Holding Cabinet – Electric,” Revision 3, 6/8/2012

2 2011 DEER database shows an EUL of 12 years for all cooking appliance measures 3 PG&E Food Service Technology Center (FSTC) – Qualified Insulated Holding Cabinets

Page 61: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-7

ers

8.5 Commercial Combination Oven

Measure Summary Information

Measure description Energy-efficient commercial combination oven capable of cooking food in either convection or steam mode

End use Appliance – food preparation

Project eligibility Equipment has a tested steam mode cooking energy efficiency of ≥50% and 1.convection mode cooking energy efficiency of ≥70% utilizing American Society for Testing and Materials (ASTM) Standard F2861.

Equipment is listed on Food Service Technology Center's Qualifying Appliance List. 2.

Savings type UES

Unit energy savings <15 pan capacity – 11,497 kWh/yr1 1.

15 – 28 pan capacity – 15,074 kWh/yr 2.

>28 pan capacity – 22,009 kWh/yr 3.

Measure cost <15 pan capacity – $1,5681 1.

15 – 28 pan capacity – $1,584 2.

>28 pan capacity – $7,048 3.

EUL 12 years 2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description There are no applicable Title 20 or Title 24 minimum efficiency standards for combination ovens. Baseline for this measure was established by the Food Service Technology Center. Convection cooking energy efficiency – 65% Steam cooking energy efficiency – 40%

Efficient case description Installed energy efficiency minimum efficiency requirements for this measure were established by the Food Service Technology Center. Convection cooking energy efficiency – 70%

Steam cooking energy efficiency – 50%

Savings Calculation

Annual energy savings formula

See TRM106 spreadsheet for assumptions and calculations.

Peak demand reduction Savings1

are assumed to be constant throughout the 12 hours/day of operation. The

12 hours of operation are assumed to all occur during peak periods. As such, the annual savings figure is divided by 4,380 and a coincidence factor of 0.9 is applied as per the DEER methodology. The original analysis (work paper) did not take into account the 0.9 coincidence factor.

<15 pan capacity – 2.36 kW

15 – 28 pan capacity – 3.10 kW

>28 pan capacity – 4.53 kW

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List.

Important Notes

N/A 1

PG&E work paper, PGECOFST100, “Commercial Combination Oven,” Revision 4, 5/31/2012 2 2011 DEER database shows an EUL of 12 years for all cooking appliance measures

3 PG&E Food Service Technology Center (FSTC)

Page 62: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-8 Savings Estimation TRM

ers

8.6 Commercial Electric Steam Cooker

Measure Summary Information

Measure description Energy efficient electric steamer

End use Appliance ‒ food preparation

Project eligibility Electric self-contained unit. 1.

The commercial steam cooker must meet ENERGY STAR specifications for 2.energy efficiency or must have a tested heavy-load potato cooking energy efficiency of 50% utilizing ASTM Standard F1484.

Equipment must be listed on Food Service Technology Center's Qualifying 3.Appliance List.

Savings type UES

Unit energy savings All units – 5,431 kWh/yr

Measure cost All units – $2,1321

EUL 12 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description There are no applicable Title 20 or Title 24 minimum efficiency standards for commercial steamers. Baseline for this measure was established by the Food Service Technology Center. The measure case data was drawn from the list of commercial steamers that have been tested by IOU testing laboratories as of April 20, 2012.

Steam cooking energy efficiency is 38%.

Efficient case description Installed steamers must meet ENERGY STAR specifications or must have a tested heavy-load potato cooking energy efficiency of 50% utilizing ASTM Standard F1484.

Steam cooking energy efficiency is 68%.

Savings Calculation

Annual energy savings formula

See the TRM106 spreadsheet for assumptions and calculations.

Peak demand reduction Savings1

are assumed to be constant throughout the 12 hours/day of operation. The

12 hours of operation are all assumed to occur during peak periods. As such, the annual savings figure is divided by 4380 and a coincidence factor of 0.9 is applied as per the DEER methodology. The original analysis ( work paper) did not take into account the 0.9 coincidence factor.

All units – 1.12 kW

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List.

Important Notes

Baseline energy use used in this savings estimate is lower than what is indicated in the reference work paper (work paper overestimates annual usage).

1 PG&E work paper,PGECOFST100, “Commercial Combination Oven,” Revision 4, 5/31/2012

2 2011 DEER database shows an EUL of 12 years for all cooking appliance measures

3PG&E Food Service Technology Center (FSTC)

Page 63: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-9

ers

8.7 Commercial Electric Convection Oven

Measure Summary Information

Measure description Energy efficient electric convection oven

End use Appliance ‒ food preparation

Project eligibility Electric self-contained unit. 1.

Energy efficiency ≥ 70% per ASTM Standard F1496. 2.

Equipment must be listed on Food Service Technology Center's Qualifying 3.Appliance List.

Savings type UES

Unit energy savings 1. Half-size – 2,518 kWh/yr 1

2. Full-size – 2,774 kWh/yr

3. Large full-size – 3613 kWh/yr

Measure cost 1. Half-size – $793 1

2. Full-size – $1,007

3. Large full-size – $649

EUL 12 years 2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description 1. There are no applicable California Title 20 or Title 24 minimum efficiency standards for combination ovens. Baseline for this measure was established by the Food Service Technology Center. The measure case data was drawn from the list of commercial steamers that have been tested by IOU testing laboratories as of April 20, 2012.

2. Performance characteristics for the baseline equipment are listed below in the savings calculation section.

Efficient case description Installed steamers must meet ENERGY STAR specifications or must meet the following minimum efficiency requirements:

1. Half-size – ≥70% cooking energy efficiency – ≤1.0 kW idle rate

2. Full-size – ≥70% cooking energy efficiency – ≤1.6 kW idle rate

3. Large full-size – ≥73% cooking energy efficiency – ≤1.9 kW idle rate

Savings Calculation

Annual energy savings formula

See TRM106 for assumptions and calculations.

Peak demand reduction Savings1

are assumed to be constant throughout the 12 hours/day of operation. The

12 hours of operation are assumed all to occur during peak periods. As such, the annual savings figure is divided by 4,380 and a coincidence factor of 0.9 is applied as per the DEER methodology.

1. Half-size – 0.52 kW1

2. Full-size – 0.57 kW

3. Large full-size – 0.75 kW

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List.

Important Notes

N/A 1

PG&E work paper, PGECOFST101, “Commercial Convection Oven,” Revision 4, 6/5/2012 2 2011 DEER database shows an EUL of 12 years for all cooking appliance measures 3PG&E Food Service Technology Center (FSTC)

Page 64: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-10 Savings Estimation TRM

ers

8.8 Commercial Electric Fryer

Measure Summary Information

Measure description Energy efficient electric fryer

End use Appliance ‒ food preparation

Project eligibility Fryer is an electric self-contained unit. 1.

Energy efficiency ≥ 80% per ASTM Standard F1361 2.

Equipment is be listed on Food Service Technology Center's Qualifying 3.Appliance List

Savings type UES

Unit energy savings All units – 3,061 kWh/yr

Measure cost All units – $7691

EUL 12 years 2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description There are no applicable California Title 20 or Title 24 minimum efficiency standards for fryers. Baseline for this measure was established by the Food Service Technology Center. The measure case data was drawn from the list of commercial steamers that have been tested by IOU testing laboratories as of April 20, 2012.

All units

1. Idle energy rate – 1,200 W

2. Cooking energy efficiency – 75%

Efficient case description Installed fryers must meet the following minimum efficiency requirements:

All units

1. Idle energy rate – 860 W/sq ft/hr

2. Cooking energy efficiency – 85%

Savings Calculation

Annual energy savings formula

See TRM106 spreadsheet for assumptions and calculations.

Installed energy use used in these savings estimates is different than that used in source work paper.

Peak demand reduction Savings1

are assumed to be constant throughout the 12 hours/day of operation. The

12 hours of operation are assumed all to occur during peak periods. As such, the annual savings figure is divided by 4380 and a coincidence factor of 0.9 is applied as per the DEER methodology. Original analysis (work paper) did not take into account the 0.9 coincidence factor.

All units – 0.54 kW

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List.

Important Notes

N/A

1 PG&E work paper,PGECOFST103, “Commercial Fryer – Electric and Gas,” Revision 4, 6/13/2012

2 2011 DEER database shows an EUL of 12 years for all cooking appliance measures.

3PG&E Food Service Technology Center (FSTC)

Page 65: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-11

ers

8.9 Commercial Electric Griddle

Measure Summary Information

Measure description Energy efficient electric griddle

End use Appliance ‒ food preparation

Project eligibility 1. Electric self-contained unit

2. Meet ENERGY STAR specifications or energy efficiency ≥ 70% per ASTM Standard F1275

3. Equipment is listed on Food Service Technology Center's Qualifying Appliance List

Savings type UES

Unit energy savings All units – 2,663 kWh/yr

Measure cost All units – $7741

EUL 12 years 2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description There are no applicable California Title 20 or Title 24 minimum efficiency standards for griddles. Baseline for this measure was established by the Food Service Technology Center. The measure case data was drawn from the list of commercial steamers that have been tested by IOU testing laboratories as of April 20, 2012.

All units

Cooking energy efficiency – 60% (ASTM F1275 test)

Efficient case description Installed griddles meets ENERGY STAR specifications or must meet the following minimum efficiency requirements

All units

Cooking energy efficiency – 75% (ASTM F1275 test)

Savings Calculation

Annual energy savings formula

See TRM106 spreadsheet for assumptions and calculations.

Peak demand reduction Savings1 are assumed to be constant throughout the 12 hours/day of operation. The 12 hours

of operation are assumed to all occur during peak periods. As such the annual savings figure is divided by 4,380 and a coincidence factor of 0.9 is applied as per the DEER methodology. The original analysis (work paper) did not take into account the 0.9 coincidence factor.

All units – 0.49 kW

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that units are listed on the Food Service Technology Center's Qualifying Appliance List

Important Notes

N/A

1 PG&E work paper, PGECOFST103, “Commercial Griddle,” Revision 4, 5/2/2012

2 2011 DEER database shows an EUL of 12 years for all cooking appliance measures.

3 PG&E Food Service Technology Center (FSTC)

Page 66: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-12 Savings Estimation TRM

ers

8.10 Commercial Dishwasher

Measure Summary Information

Measure description ENERGY STAR-qualified commercial dishwasher

End use Appliance ‒ food preparation

Project eligibility Installation of an ENERGY STAR (specification version 2.0) qualified commercial dishwasher of the following types: under counter, door-type, single-tank conveyor and multi-tank conveyor

Savings type UES

Unit energy savings See Energy Savings Table. Savings varies by type of dishwasher, water temperature and energy source of hot water.

Incremental measure cost See Cost Table. Incremental cost varies by the type of dishwasher

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement ‒ code

Baseline description Standard efficiency unit

Efficient case description ENERGY STAR 2.0-qualified unit

Savings Calculation

Annual energy savings formula

1. The energy savings were determined using the ENERGY STAR commercial

kitchen equipment calculator1.

2. The calculator defaults to 365 days/year operation for all dishwasher types and assumes an average daily cycle value for each dishwasher type.

3. For low-temperature dishwashers, a 40oF change in temperature is assumed.

The change in temperature for a high-temperature dishwasher is 70oF.

4. The calculator determines the annual water consumption by multiplying the water used per cycle by the assumed number of cycles per year and multiplying that product by the amount of energy needed to heat that amount of water to the required temperature.

Peak demand reduction N/A ‒ peak savings demand reduction estimate is not available

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the dishwasher meets the ENERGY STAR specifications.

Important Notes

N/A

1ENERGY STAR commercial kitchen equipment calculator (Nov-2013). Available at: www.energystar.gov.

8.10.1 Energy Savings Table

The table below provides the ranges of savings values for the four types of dishwashers (under

counter, door-type, single-tank conveyor, and multi-tank conveyor) used in buildings with

either gas or electric water heating. The dishwashers with booster heating are also separated by

either gas or electric heating.

Page 67: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-13

ers

Dishwasher & Fuel Type Annual

kWh Annual Therms

Water (Gallons)

Low temp. undercounter, gas heat N/A 106 14,783

Low temp. undercounter, elec. heat 2,540 N/A 14,783

High temp. undercounter, gas heat, gas booster 1,471 71 6,296

High temp. undercounter, gas heat, electric booster 2,089 45 6,296

High temp. undercounter, electric heat, gas booster 2,553 26 6,296

High temp. undercounter, electric heat, electric booster 3,171 N/A 6,296

Low temp. door-type, gas heat N/A 675 94,024

Low temp. door-type, electric heat 16,153 N/A 94,024

High temp. door-type, gas heat, gas booster 827 461 40,880

High temp. door-type, gas heat, electric booster 4,840 294 40,880

High temp. door-type, electric heat, gas booster 7,850 168 40,880

High temp. door-type, electric heat, electric booster 11,863 N/A 40,880

Low temp. single-tank conveyor, gas heat 584 545 75,920

Low temp. single-tank conveyor, electric heat 13,626 N/A 75,920

High temp. single-tank conveyor, gas heat, gas booster 2,511 280 24,820

High temp. single-tank conveyor, gas heat, electric booster 4,948 178 24,820

High temp. single-tank conveyor, electric heat, gas booster 6,775 102 24,820

High temp. single-tank conveyor, electric heat, electric booster 9,212 N/A 24,820

Low temp. multi-tank conveyor, gas heat N/A 786 109,500

Low temp. multi-tank conveyor, electric heat 18,811 N/A 109,500

High temp. multi-tank conveyor, gas heat, gas booster 1,986 1,063 94,170

High temp. multi-tank conveyor, gas heat, electric booster 11,230 676 94,170

High temp. multi-tank conveyor, electric heat, gas booster 18,163 386 94,170

High temp. multi-tank conveyor, electric heat, electric booster 27,408 N/A 94,170

Page 68: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-14 Savings Estimation TRM

ers

8.10.2 Measure Cost Table

The cost data below is from the ENERGY STAR calculator.

Measure Name Cost

Low temp. undercounter, gas heat $50

Low temp. undercounter, electric heat $50

High temp. undercounter, gas heat, gas booster $120

High temp. undercounter, gas heat, electric booster $120

High temp. undercounter, electric heat, gas booster $120

High temp. undercounter, electric heat, electric booster $120

Low temp. door-type, gas heat $0

Low temp. door-type, electric heat $0

High temp. door-type, gas heat, gas booster $770

High temp. door-type, gas heat, electric booster $770

High temp. door-type, electric heat, gas booster $770

High temp. door-type, electric heat, electric booster $770

Low temp. single-tank conveyor, gas heat $0

Low temp. single-tank conveyor, electric heat $0

High temp. single-tank conveyor, gas heat, gas booster $2,050

High temp. single-tank conveyor, gas heat, electric booster $2,050

High temp. single-tank conveyor, electric heat, gas booster $2,050

High temp. single-tank conveyor, electric heat, electric booster

$2,050

Low temp. multi-tank conveyor, gas heat $970

Low temp. multi-tank conveyor, electric heat $970

High temp. multi-tank conveyor, gas heat, gas booster $970

High temp. multi-tank conveyor, gas heat, electric booster $970

High temp. multi-tank conveyor, electric heat, gas booster $970

High temp. multi-tank conveyor, electric heat, electric booster $970

8.11 High Efficiency Clothes Washers in Multifamily Properties

Measure Summary Information

Measure description New high efficiency front-loading or top-loading clothes washer installed in a multifamily property

End use Appliance ‒ residential

Project eligibility Installation of a CEE Tier 3 clothes washer in a multifamily residence. Clothes washer can be installed in the residential unit (in-unit) or be a coin operated washer installed in a common area.

Washer meets or exceeds CEE Tier 3 performance specifications (dated Jan -2011):

1. Modified energy factor (MEF) = 2.40 or greater

2. Water factor = 4.0 or less

Savings type UES

Unit energy savings 1. In-unit clothes washer – 144 kWh/yr, 0.082 kW, 9.6 therms/yr

2. Coin operated clothes washer – 645 kWh/yr, 0.076 kW, 51.8 therms/yr

Incremental measure cost $2841

EUL 11 years1

Page 69: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-15

ers

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement ‒ code

Baseline description Title 20 compliant clothes washer, MEF = 1.26.

Efficient case description CEE Tier 3-qualified clothes washer

Savings Calculation

Annual energy savings formula

IOU work paper1

Energy savings are achieved by a reduction in heated water use and a reduction in dryer energy use (efficient water spin cycles remove more water from clothes).

Savings values are based on various assumptions regarding clothes washer market shares, weighted average efficiencies of standard and efficient washers, and RASS-based populations of gas and electric dryers and hot water heaters.

Peak demand reduction The residential energy/peak factor of 0.417 from DEER 2005 was used to calculate the peak demand.

Definitions N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that clothes washers meet CEE Tier 3 specifications - see CEE list of qualifying products.

Important Notes

N/A

1PG&E work paper PGECOAPP120 R3 Clothes Washers MF, June 2012

8.12 ENERGY STAR Uninterrupted Power Supply

Measure Summary Information

Measure description Installation of an ENERGY STAR-qualified uninterrupted power supply (UPS)

End use Process ‒ electronic equipment

Project eligibility ENERGY STAR products in the following category are eligible:

Commercial UPS intended to protect small business and branch office 1.information and communication technology equipment such as servers, network switches and routers, and small storage arrays

Data center UPS intended to protect large installations of information and 2.communication technology equipment such as enterprise servers, networking equipment, and large storage arrays

Telecommunications DC-output UPS/Rectifier intended to protect 3.telecommunication network systems located within a central office or at a remote wireless/cellular site

The following products are not eligible:

Consumer UPS intended to protect desktop computers and related peripherals, 4.and/or home entertainment devices

Products that are internal to a computer or another end-use load 5.

Industrial UPS specifically designed to protect critical control, manufacturing, or 6.production processes

Savings type UES

Unit energy savings 204 kWh per rated kVA

Incremental measure cost $59 per rated kVA1

EUL 10 years2

Page 70: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-16 Savings Estimation TRM

ers

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description Non-ENERGY STAR-qualified UPS

Efficient case description ENERGY STAR-qualified UPS

Savings Calculation

Energy savings Based on average efficiency gains of an ENERGY STAR UPS (3%–5%). Savings are calculated for the three DOE test sizes based on typical UPS loading and efficiency gains, then averaged together to arrive at a single savings estimate. For calculation details, see TRM115 ENERGY STAR UPS spreadsheet.

Peak demand reduction No peak demand reduction is estimated for this measure.

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

UPS Power and Performance Data Sheet (PPDS) should be checked to verify that it indicates that the UPS equipment meets ENERGY STAR requirements.

Important Notes

Little to no cost data on ENERGY STAR units is currently available; cost data should be collected to help verify incremental measure costs. 1Incremental measure cost based on average UPS costs for a range of sizes, assuming a 30% premium for an ENERGY

STAR UPS. 2Useful life for UPS can exceed 10 years (per manufacturer literature) and possibly be as high as 20 years. However, some UPS

internal components may fail earlier. Ten years is used as a conservative estimate for EUL.

8.13 Plug-Load Occupancy Sensor

Measure Summary Information

Measure description Replacement of standard electric power strips with occupancy sensor-controlled strips in commercial office space

End use Plug load ‒ consumer electronics

Project eligibility Power strip must control electricity-using equipment in offices or cubicles, 1.including shared copiers and/or printers.

Power strip must be controlled by either passive infrared and/or ultrasonic 2.detectors.

Savings type UES

Unit energy savings 64 kWh per smart strip installed

Measure cost $37.29 per smart strip1

EUL 8 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Preexisting standard power strips without any control mechanism and which are controlled with a single manual switch.

Efficient case description Occupancy sensor-controlled power strips that use an ultrasonic or infrared sensor and automatically turn off ancillary plug loads connected to the power strip when an area is unoccupied. Plug loads are devices that plug into a building’s electrical system; they include task lights, appliances, entertainment equipment, vending machines, and office equipment: fax machines, computers, printers, and copiers.

Page 71: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-17

ers

Savings Calculation

Annual energy savings Calculations are based on the IOU work paper1.

1. Power strip is assumed to control both a tack light as well as a computer monitor.

2. Total controlled wattage is calculated to be 23.9 W and includes a weighted average of computer monitors (95% LCD 5% CRT) and a weighting on monitors that are capable of going into sleep mode (75%) as well as a 10 W task light.

3. Occupancy sensor is assumed to reduce annual operating hours of the monitor and task light by 2,450 hours per year.

Peak demand reduction Demand savings for this measure are calculated by multiplying the total occupancy sensor-controlled wattage by both the demand period HVAC interactive effects and a demand coincidence factor as defined in DEER 2011

Total controlled wattage – 23.9 W

Demand interactive effects – 1.2853

Coincidence factor – 0.653

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Ensure that the occupancy sensor is correctly calibrated. 1.

Ensure that all appropriate ancillary electronic devices are connected to outlets controlled by the occupancy 2.sensor .

Important Notes

N/A

1PG&E work Paper PGECOALL101, Revision 3, 6/22/2012

2DEER_EUL_Summary_10-1-2008.xls. Assumed equivalent to occupancy sensor control.

3Peak coincident demand factors, and HVAC interactive effects from DEER 2013

8.14 Smart Power Strip – Commercial Use

Measure Summary Information

Measure description Installation of electric power strips that turn off office equipment based on the power strip control outlet’s sensor reading

End use Plug load ‒ consumer electronics

Project eligibility Applicable to smart power strips installed in nonresidential buildings

Savings type UES

Unit energy savings 100 kWh per smart strip1

Measure cost $37 per smart strip2

EUL 8 years3

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Preexisting standard power strips without any control mechanism and which are controlled with a single manual switch

Efficient case description Smart power strip with the capability to sense the drop in current that occurs when the control device enters a low-power mode. A current-sensing transformer attached to an outlet on the plug strip monitors the current draw of the designated device. When the current draw of this device drops below a certain threshold, power is disconnected from the controlled outlets on the plug strip.

Page 72: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 8 All Other Nonresidential Measures

8-18 Savings Estimation TRM

ers

Savings Calculation

Annual energy savings Savings are based on the results of RTF study and analysis.

Peak demand reduction No peak demand reduction

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Ensure that the master electronic device is connected to the appropriate master outlet on the power strip.

Important Notes

N/A 1

RTF study and analysis, SmartPlugPowerStrips_v2_0.xlsm 2Work Paper SCE13CS002, Revised May 8, 2012

3DEER_EUL_Summary_10-1-2008.xls, assumed equivalent to occupancy sensor control.

8.15 Kitchen Exhaust Hood Demand Ventilation Control System

Measure Summary Information

Measure description Installation of VFD on kitchen exhaust fans for type I (smoke- and grease-producing cooking) exhaust hoods in conjunction with a control system that adjusts fan speed based on cooking demand. Make-up air fan speed, if part of the kitchen ventilation system, is also controlled by the new control system.

End use HVAC ‒ kitchen ventilation

Project eligibility Applicable for both new systems and system retrofits. Not applicable for Type II exhaust hoods (non-grease rated).

Savings type UES

Unit energy savings 4,197 kWh per exhaust fan hp1

105 therms per exhaust fan hp ‒ no savings if make-up air is not heated. Therm savings are the average savings for all climate zones.

Measure cost $1,991 per exhaust fan hp

EUL 15 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – current practice

Baseline description Kitchen type I exhaust hood with manual or automatic on/off control and constant volume exhaust fans. Make-up air may be through make-up air fans or by transfer air from conditioned spaces. Make-up air may be unconditioned, heated, or heated and cooled.

Efficient case description 1. VFD control of exhaust hood fans and, as applicable, make-up air fans.

2. New exhaust hood control system that controls fan speed based on control inputs (e.g., optic and/or temperature sensors that determine the presence and volume of heat or smoke)

Savings Calculation

Annual energy savings IOU work paper1

savings are based on the following data and assumptions:

1. Savings are based on average fan speed and power reduction achieved in the PG&E, FSTC, and SCE field-monitored case studies.

2. Savings are normalized to rated exhaust fan horsepower

3. Coincidental HVAC cooling savings are not included in savings estimate

4. Natural gas savings are based on heated make-up air sized for 80% of total exhaust airflow and 65°F setpoint. Overall fan speed reduction is assumed to be 26%.

Peak demand reduction 0.542 kW per exhaust fan hp

Page 73: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other Nonresidential Measures Section 8

Savings Estimation TRM 8-19

ers

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Ventilation system controls must be properly installed and commissioned to ensure optimal performance and prevent control system override by end user.

Important Notes

For simplicity, the savings have been normalized to the rated horsepower of the exhaust hood fans. However, exhaust fan hp is not a good indicator of overall system cost and this may not accurately reflect the savings potential for all system types and sizes. For more accurate project-specific savings estimates, custom energy savings estimates are recommended. 1PG&E work paper, Commercial Kitchen Demand Ventilation Controls, June 18, 2012

8.16 Reflective Window Film

Measure Summary Information

Measure description Retrofit of existing single-pane clear glass windows with reflective window film

End use HVAC

Project eligibility Applicable to existing air-conditioned or heated nonresidential buildings. North-facing windows are excluded.

Savings type UES

Unit energy savings 0.18 – 10.32 kWh per sq ft of window glass covered. See TRM118 spreadsheet. Savings vary by building type and climate zone.

Incremental measure cost $3–$4 per sq ft of window glass covered – See TRM118 spreadsheet

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Single-pane clear-glass windows with an assumed SHGC of 0.82

Efficient case description Single-pane tinted glass windows with an assumed SHGC of 0.39

Savings Calculation

Annual energy savings formula

Savings data is from IOU work paper2.

Peak demand reduction See Savings Table

Definitions

SHGC

= Solar heat gain coefficient

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Verify performance rating of window film.

2. Verify that space where the window is located is conditioned space.

Important Notes

N/A

1DEER_EUL_Summary_10-1-2008.xls

2PG&E WORK PAPER PGECOBLD108, “REFLECTIVE WINDOW FILM”

Page 74: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Residential 9

Savings Estimation TRM 9-1

ers

9. HVAC MEASURES – RESIDENTIAL

9.1 Residential Air Conditioners

Measure Summary Information

Measure description Installation of a new high efficiency split-system air conditioner, split-system air source heat pump, or ductless mini-split system

End use HVAC

Project eligibility 1. Unit meets the applicable efficiency level.

2. For mini-split systems, the measure savings are limited to applications where it is a viable option to install a standard split system (condensing unit and ducted fan coil unit).

Savings type UES

Unit energy savings See TRM200 spreadsheet. There are 19 measures for each climate zone, with each measure consisting of two savings estimates (code and early retirement baselines). In total, there are 456 measure savings values provided.

Incremental measure cost 1. 15 SEER unit: $1531

2. 16 SEER unit: $169

3. 17 SEER and larger: $211

4. Evaporative-cooled split system air conditioner: $7502

5. 15-16 SEER ductless mini-split: $2523

6. 17-19 SEER ductless mini-split: $452

7. 20-21 SEER ductless mini-split: $748

EUL 15 years4

Baseline and Efficient Case Conditions

Applicable baseline types 1. Natural replacement – code

2. Dual baseline – early retirement

Baseline description 1. See Code Baseline Efficiency Table for code requirements used in natural replacement baseline.

2. For dual baseline/ early retirement measures, the efficiency level is an average of typical unit efficiency levels for various building vintages (DEER methodology).

Efficient case description Unit meets or exceeds the applicable efficiency level:

1. Heat pump, 15 SEER, 8.4 HSPF

2. Heat pump, 16 SEER, 8.4 HSPF

3. Split-system air conditioner, 15 SEER, 12.5 EER

4. Split-system air conditioner, 16 SEER, 13 EER

5. Split-system air conditioner, 17 SEER, 13 EER

6. Split-system air conditioner, 18 SEER, 13 EER

7. Split-system air conditioner, 19 SEER, 14 EER

8. Split-system air conditioner, 20 SEER, 14 EER

9. Split-system air conditioner, 21 SEER, 15 EER

Page 75: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 9 HVAC Measures – Residential

9-2 Savings Estimation TRM

ers

10. Evap-cooled split-system air conditioner, 15 EER

11. Ductless mini-split heat pump, 15 SEER

12. Ductless mini-split heat pump, 16 SEER

13. Ductless mini-split air conditioner, 15 SEER

14. Ductless mini-split air conditioner, 16 SEER

15. Ductless mini-split air conditioner, 17 SEER

16. Ductless mini-split air conditioner, 18 SEER

17. Ductless mini-split air conditioner, 19 SEER

18. Ductless mini-split air conditioner, 20 SEER

19. Ductless mini-split air conditioner, 21 SEER

Savings Calculation

Annual energy savings formula

1. See TRM200 spreadsheet. 2. Savings derived from DEER 2014 data 3. Savings for 16 SEER unit is estimated as the average savings value for a 15

SEER and 17 SEER unit. 4. Savings for 20 SEER unit is estimated as the average savings value for a 19

SEER and 21 SEER unit. 5. Ductless mini-split savings based on IOU work paper adjustment factors (1.14 for

energy, 1.25 for demand) for adding supply air fan savings associated with a ductless system.

Peak demand reduction See TRM200 spreadsheet

Definitions

Vintage =

EER =

SEER =

HSPF =

Building age as indicated in DEER savings database

Energy efficiency ratio = 12 × kW/ton cooling

Seasonal energy efficiency ratio – Weighted average of part load efficiencies of an HVAC unit for a specified set of loads and outdoor air temperatures

Heating seasonal performance factor ‒ air source heat pumps

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Determine if new unit will be replacing a functional unit or a failed unit. 2. If new unit is replacing existing functional unit and RUL savings will be applied, record age, make, model, size,

and type of unit to be replaced. 3. Verify that new unit meets the minimum efficiency requirements.

4. Verify that new unit is properly installed and commissioned.

Important Notes

N/A 1Base cost data from Internet research

2DOE/EERE Report, Measure Guideline: Evaporative Condensers, March 2012

3IOU work paper, SCE13HC033

4DEER_EUL_Summary_10-1-2008.xls

Page 76: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Residential Section 9

Savings Estimation TRM 9-3

ers

9.1.1 Code Baseline Efficiency Table

This table lists both the current and 2015 state and federal code requirements for residential air

conditioners (ACs) and heat pumps (HPs). The TRM200 spreadsheet provides natural

replacement savings estimates based on each code baseline.

Effective January 1,2015

1

Unit Type SEER EER HSPF

Split system HP 14 11.07 8.2

Single package HP 14 11.07 8

Split system AC, < 45 kBtu/h 14 12.2 N/A

Split system AC, > 45 kBtu/h 14 11.7 N/A

Single package AC 14 11.09 N/A

1Code of Federal Regulations (10 CFR Part 432)

9.2 ENERGY STAR Room Air Conditioner

Measure Summary Information

Measure description New ENERGY STAR-qualified room air conditioner

End use HVAC

Project eligibility Unit meets ENERGY STAR qualifications

Savings type UES

Unit energy savings See Energy Savings Table. Savings vary based on unit capacity and climate zone

Measure cost $501

per AC unit

EUL 9 years1

Baseline and Efficient Case Conditions

Applicable baseline types

Natural replacement – code

Baseline description Through-the-window (with louvers) standard efficiency unit with minimum efficiency rating

as established by federal standards2

in effect, June 1, 2014

Efficient case description

ENERGY STAR-qualified unit

Savings Calculation

Annual energy savings formula

ENERGY STAR calculator used to estimate savings

( )( )

Peak demand reduction (

)

Definitions

Btu/havg=

EERstan=

kWstan=

EEReff=

kWeff=

EFLH=

Average cooling capacity of a room AC unit

Energy efficiency ratio for a standard unit with side louvers in kW/ton

Demand for a standard efficiency AC unit

Energy efficiency ratio for an ENERGY STAR unit with side louvers in kW/ton

Demand for an ENERGY STAR unit

Effective full load hours, varies by climate zone, 224–2,092 hours

Page 77: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 9 HVAC Measures – Residential

9-4 Savings Estimation TRM

ers

Key Parameters

EER and EFLH ENERGY STAR criteria are used for baseline, efficient case, and EFLH.

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the new room air conditioner is ENERGY STAR qualified.

Important Notes

1. Savings for all California climate zones are not available through the ENERGY STAR calculator. The missing climate zones were assigned as follows: climate zones 4 and 5 assigned to climate zone 3, climate zones 11 and 14 assigned to 12, and climate zone 16 assigned to 15.

2. Savings are estimated based on through the window installations (units with side louvers). Through-the-wall units (without louvers) have lower efficiency ratings, but the differential between code and ENERGY STAR ratings is similar to the window units. As such, the savings estimates provided can be used for both window and through-the-wall units.

1ENERGY STAR calculator, www.energystar.gov.

2Code of Federal Regulations (CFR) Ch. II, Section 430.32

9.2.1 Energy Savings Table

This table provides energy savings for each capacity range for each climate zone.

Unit Capacity Range (Btu/h) Climate Zone Energy Savings (kWh)

6,000 – 7,999 3,4,5 3

8,000 – 13,999 3,4,5 8

14,000 – 19,999 3,4,5 16

20,000 – 27,999 3,4,5 23

6,000 – 7,999 8 13

8,000 – 13,999 8 42

14,000 – 19,999 8 83

20,000 – 27,999 8 122

6,000 – 7,999 9 17

8,000 – 13,999 9 55

14,000 – 19,999 9 109

20,000 – 27,999 9 159

6,000 – 7,999 10 15

8,000 – 13,999 10 48

14,000 – 19,999 10 96

20,000 – 27,999 10 140

6,000 – 7,999 11,12,14 13

8,000 – 13,999 11,12,14 41

14,000 – 19,999 11,12,14 82

20,000 – 27,999 11,12,14 121

6,000 – 7,999 15,16 24

8,000 – 13,999 15,16 75

14,000 – 19,999 15,16 148

20,000 – 27,999 15,16 218

Page 78: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Residential Section 9

Savings Estimation TRM 9-5

ers

9.3 Whole-House Ventilation Fan

Measure Summary Information

Measure description Installation of a whole-house ventilation fan. Whole-house fans exhaust air out of a home’s living area into the home’s attic space. Air enters through open windows or doors and is exhausted through the attic’s gable or soffit vents.

End use HVAC

Project eligibility Home is air-conditioned and has attic ventilation openings sufficient for exhausting fan’s rated airflow.

Savings type UES

Unit energy savings See Savings and Cost Table.

Measure cost See Savings and Cost Table.

EUL 20 years1

Baseline and Efficient Case Conditions

Applicable baseline types

Natural replacement – preexisting conditions

Baseline description 1. Air-conditioned home

2. No central whole-house fan

3. No other automated source of fresh air (i.e., economizer)

Efficient case description

Whole-house fan permanently installed in the upper-floor ceiling.

Savings Calculation

Annual energy savings formula

CEC CASE study2

savings estimates were determined through building simulation models

based on a prototypical 2,700 square foot house.

Peak demand reduction See Savings and Cost Table.

Key Parameters

User operation 1. Whole-house fan operation and energy use is highly dependent upon the user. 2. Manual or twist-timer is the typical type of control. 3. Outside-air intake is through manually opened windows and doors.

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the fan is installed, operational, and has insulated backdraft dampers.

Important Notes

Whole-house fans are a prescriptive requirement, beginning with the 2013 update to the Title 24 building energy efficiency standards. This measure is for retrofits that do not invoke code requirements. 1DEER Summary of EUL-RUL Analysis, 2008

2CEC CASE study: “Night Ventilation Cooling Compliance Option” September 2011

9.3.1 Savings and Cost Table

This table provides the energy savings and installation cost for each climate zone. Costs vary

due to assumptions regarding regional labor rates. Note that the negative savings for climate

zones 3 and 5 represent the use of the whole-house fan for ventilation purposes in mild climates

where little space cooling is replaced.

Savings are listed per fan, with a fan airflow of 2,000 cfm. Savings correlate to fan airflow;

therefore, the savings can be normalized per cfm and extrapolated to estimate savings for

different fan sizes.

Page 79: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 9 HVAC Measures – Residential

9-6 Savings Estimation TRM

ers

Climate Zone

Energy Savings

(kWh)1 Cost

2

2 55 $721

3 -142 $861

4 161 $821

5 -63 $652

8 388 $691

9 451 $728

10 522 $672

11 496 $711

12 567 $706

14 353 $647

15 174 $685

16 171 $712

1Per fan (2,000 cfm)

2 CEC CASE study

Page 80: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Residential Section 9

Savings Estimation TRM 9-7

ers

9.4 Duct Sealing

Measure Summary Information

Measure description Test and sealing of existing AC duct systems that reduce the overall leakage rate of conditioned air into unconditioned spaces.

End use HVAC

Project eligibility Sealing of duct systems when not required by code. 2013 Title 24 code requirements are in effect when any of the following are true:

1. The HVAC system is new (T24,§150.2(b)1C) 2. Any of the major system components (evaporator coil, condensing unit, furnace) are

replaced (T24,§150.2(b)1E) 3. Duct system is added or extended, where more than 40 feet of duct is in

unconditioned space (T24,§150.2(b)1D)

4. Duct system is modified, where more than 75% of the duct is new (T24,§150.2(b)1D)

Savings type Semi-custom

Unit energy savings The savings per duct system are determined using the TRM403 residential duct sealing savings calculator. Entering the building type (single-family or multifamily) and duct leakage reduction in percent will provide energy savings and peak demand reduction estimates for each climate zone.

Measure cost Varies depending upon the work required to seal the system. Typical cost range is $285–

$580 per duct system1

EUL 10 years1

Applicable baseline types

Natural replacement – preexisting conditions

Baseline description Existing duct system with excessive leakage of conditioned air into unconditioned space

Efficient case description

Sealed and repaired duct system

Savings Calculation

Annual energy savings formula

See TRM403 savings calculator.

1. Savings data for two reduction rates obtained from DEER 2014. Savings estimates between 12% and 25% are interpolated. Savings estimates outside of this range are extrapolated and may be less precise estimates.

2. Savings are for homes with electric cooling and gas heating. Heat pump savings data is not available.

Peak demand reduction See TRM403 savings calculator

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Obtain both pre- and post-sealing test results to verify the duct system overall reduction in air leakage to unconditioned space.

Important Notes

N/A

1 DEER Summary of EUL-RUL Analysis, 2008

Page 81: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 9 HVAC Measures – Residential

9-8 Savings Estimation TRM

ers

9.4.1 Energy Savings Table – at 20% Duct Leakage Reduction

This table provides the calculator annual energy savings results for a duct leakage reduction of

20% at a single-family home. Other leakage rates can be estimated using the calculator.

Climate Zone kWh KW Therms

CZ02 62 0.159 27.3

CZ03 32 0.051 24.2

CZ04 73 0.173 19.9

CZ05 29 0.067 27.0

CZ08 123 0.247 12.6

CZ09 172 0.274 15.3

CZ10 164 0.449 18.4

CZ11 198 0.283 24.8

CZ12 124 0.307 23.6

CZ14 375 0.588 27.6

CZ15 488 0.463 9.9

CZ16 118 0.278 56.9

9.5 HVAC Tune-Up Measures

Measure Summary Information

Measure description An HVAC tune-up consists of maintenance and repair work performed on an existing HVAC unit that improves the unit’s operational efficiency. The work is performed as part of a utility-sponsored quality maintenance program, and existing market conditions indicate the improvements would not have happened without the direct influence of the program.

Three potential HVAC tune-up measures are included: refrigeration charge, airflow adjustment, and cleaning condenser and evaporator fan coils. Although they are not provided, there are other tune-up measures that may also lead to additional energy savings. The other measures include but are not limited to: economizer repair, motor retrofit, duct leakage reduction, and system diagnostics.

End use HVAC – residential

Project eligibility The measures should be part of a quality maintenance program sponsored by the utility and not maintenance work regularly scheduled and performed by the customer.

Savings type UES

Unit energy savings See Energy Savings Tables1

Measure cost Refrigeration charge measure: $47 per ton of unit capacity

Airflow adjustment measure: $220 per ton of unit capacity

Coil cleaning measure: $70 per ton of unit capacity1

EUL 5 years1

Applicable baseline types

Natural replacement – preexisting conditions

Baseline description Existing HVAC unit not operating at optimal performance due to lack of regular maintenance

Efficient case description

Existing HVAC unit with improved overall system efficiency by: bringing the refrigerant charge back to OEM specifications, dirty evaporator and condenser coils sufficiently cleaned to increase airflow, and system adjustments (such as rebalancing or increased return air openings) that return the supply airflow back to within OEM specifications.

Page 82: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

HVAC Measures – Residential Section 9

Savings Estimation TRM 9-9

ers

Savings Calculation

Annual energy savings formula

Savings data obtained from a CPUC disposition of an IOU workpaper. The savings estimates are applicable to both packaged and split-system HVAC and heat pump units. See

TRM224, TRM225, and TRM226 spreadsheets1.

Peak demand reduction From IOU workpaper

Key Parameters

Test-in, test-out results Pre- and post-repair test results that confirm system improvements have been achieved.

Quality Assurance: Design, Installation, Commissioning, and Operation

Program administrators should consider ways to ensure that the maintenance repairs were directly influenced by the program and would not have occurred anyway.

Important Notes

Recent program evaluations indicate that HVAC tune-up measure savings are highly variable and expected savings at the program level may not be achieved. Updated savings estimates that cover all typical tune-up measure types should be available in the near future. When available and applicable, the savings from these evaluations should be used for reporting program savings. Project-specific, custom savings estimates based on test results may provide a higher degree of accuracy and should be used whenever possible. 12013–2014 RES HVAC QM workpaper disposition dated 5/2/2013 regarding IOU workpaper PGEOHVC139 Residential HVAC

Quality Maintenance, Revision #0.

9.5.1 Energy Savings Table – Refrigerant Charge

Climate Zone

kWh per Tons of

Unit Capacity

Peak KW Reduction per

Ton of Unit Capacity

CZ02 27 0.092

CZ03 12 0.034

CZ04 38 0.098

CZ05 8 0.045

CZ08 70 0.144

CZ09 83 0.109

CZ10 79 0.151

CZ11 97 0.135

CZ12 60 0.154

CZ13 118 0.142

CZ14 147 0.177

CZ15 167 0.145

CZ16 47 0.140

Page 83: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 9 HVAC Measures – Residential

9-10 Savings Estimation TRM

ers

9.5.2 Energy Savings Table – Coil Cleaning

Climate Zone

Evaporator Coil – Savings per Ton of

Capacity

Condenser Coil – Savings per

Ton of Capacity

Total Savings per Ton of Capacity

kWh kW kWh kW kWh kW

CZ02 3 0.012 2 0.006 5 0.017

CZ03 2 0.004 1 0.002 2 0.006

CZ04 5 0.012 2 0.006 7 0.018

CZ05 1 0.006 1 0.003 2 0.009

CZ08 9 0.018 4 0.009 13 0.027

CZ09 10 0.014 5 0.007 16 0.020

CZ10 10 0.019 5 0.009 15 0.028

CZ11 12 0.017 6 0.008 18 0.025

CZ12 8 0.019 4 0.010 11 0.029

CZ13 15 0.018 7 0.009 22 0.027

CZ14 19 0.022 9 0.011 28 0.033

CZ15 21 0.018 11 0.009 32 0.027

CZ16 6 0.018 3 0.009 9 0.026

9.5.3 Energy Savings Table – Airflow Adjustment

Climate Zone

kWh per Ton of Unit

Capacity

Peak KW Reduction per

Ton of Unit Capacity

CZ02 1.75 0.006

CZ03 0.75 0.002

CZ04 2.43 0.006

CZ05 0.52 0.003

CZ08 4.33 0.009

CZ09 5.20 0.007

CZ10 5.07 0.009

CZ11 6.15 0.008

CZ12 3.80 0.010

CZ13 7.47 0.009

CZ14 9.40 0.011

CZ15 10.72 0.009

CZ16 2.98 0.009

Page 84: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Residential 10

Savings Estimation TRM 10-1

ers

10. LIGHTING MEASURES – RESIDENTIAL

10.1 LED Lights

Measure Summary Information

Measure description Installation of a new high efficiency LED lamps & fixtures in single-family, multifamily, & mobile homes.

End use Lighting

Project eligibility Fixture replacements, lamp replacements, and fixture retrofits.

Savings type UES

Unit energy savings See TRM204 spreadsheet. With thirty measures for each climate zone, a total of 360 measure savings estimates are provided.

Measure cost See TRM204 spreadsheet

EUL 15 years, rated fixture/lamp life divided by annual operating hours for each building type

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions and code

Baseline description Baseline wattages indicated in measure name

Efficient case description ENERGY STAR1-qualified LED lamps and fixtures for both interior and exterior

applications. The measure list includes:

1. LED 7 – 9 W replacing 35 W halogen downlight

2. LED 10 – 13 W replacing 50 W halogen downlight

3. LED 14 – 18 W replacing 75 W halogen downlight

4. LED 19 – 21 W replacing 90 W halogen downlight

5. LED 6 – 9 W replacing 29 W halogen (40 W equivalent)

6. LED 10 – 13 W replacing 43 W halogen (60 W equivalent)

7. LED 15 – 21 W replacing 53 W halogen (75 W equivalent)

8. LED 22 W replacing 72 W halogen (100 W equivalent)

9. LED 6 – 9 W replacing 9 – 13 W CFL

10. LED 10 – 13 W replacing 13 – 15 W CFL

11. LED 22 W replacing 23 W – 30 W CFL

12. LED 4 W replacing 20 W MR16

13. LED 6 W replacing 20 W replacing 35 W MR16

14. LED 7 W replacing 50 W MR16

Savings Calculation

Annual energy savings formula

( )( )

Peak demand reduction ( )( )

Definitions

=

hrs =

IE =

IEd =

CDF=

Average kW reduction of typical retrofits

Default operating hours by building type2

HVAC interactive effects, energy3

HVAC interactive effects, demand3

Coincident demand factor3

Page 85: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 10 Lighting Measures – Residential

10-2 Savings Estimation TRM

ers

Key Parameters

Operating hours 541 annual hours for interior lights, 1,249 annual hours for exterior lights3

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify new fixture or lamp is listed on ENERGY STAR-qualified products list.

Important Notes

Measures are not applicable when 2013/2016 Title 24 high-efficacy lighting requirements apply (primarily new construction and major renovation)

1ENERGY STAR list of qualified LED fixtures and qualified screw-in LED lamps

2DEER 2011 Update, Appendix A-1, May 2012

3DEER 2013

10.2 LED Holiday Lights

Measure Summary Information

Measure description Holiday light exchange – replacement of incandescent decorative lights with LED lights.

End use Exterior lighting

Project eligibility Replacement of functional decorative lights

Savings type UES

Unit energy savings See Energy Savings Table

Measure cost See Cost Table1

EUL 5 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – existing conditions

Baseline description Weighted average of a single string of incandescent holiday lights. Exchange rates assume 95% mini lamps, 5% C7 lamps, and 5% C9 lamps.

Efficient case description A single string of LED holiday lights, 17 ft to 25 ft in length. Holiday light strings consist of either 5MM, C5, C6, C7, C9, G12, or mini lights.

Savings Calculation

Annual energy savings formula

See TRM205 LED holiday lights spreadsheet for savings calculation.

Peak demand reduction 0 kW

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that existing incandescent strings are functional.

Important Notes

N/A

1HolidayLEDs.com

2Although rated lamp life indicates a longer useful life, the lights are not permanently installed, and due to potential damage from

repeated removal and installation, the useful life is estimated to be 5 years.

Page 86: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Lighting Measures – Residential Section 10

Savings Estimation TRM 10-3

ers

10.2.1 Energy Savings Table

LED Holiday Light Type Energy Savings

(kWh)

LED holiday light exchange, 5MM, 17'–25' string 4.2

LED holiday light exchange, C5, 17'–25' string 4.2

LED holiday light exchange, C6, 17'–25' string 7.0

LED holiday light exchange, C7, 17'–25' string 5.1

LED holiday light exchange, C9, 17'–25' string 5.1

LED holiday light exchange, G12, 17'–25' string 7.0

LED holiday light exchange, mini lights, 17'–25' string 4.2

10.2.2 Cost Table

LED Holiday Light Type

Cost per String

1

5MM $22

C5 $24

C6 $22

C7 $18

C9 $19

G12 $22

Mini lights $22

1HolidayLEDs.com

10.3 ENERGY STAR Ceiling Fan

Measure Summary Information

Measure description ENERGY STAR-qualified ceiling fan

End use HVAC

Project eligibility ENERGY STAR qualified

Savings type UES

Unit energy savings 151 kWh per year

Incremental measure cost

$461

per ceiling fan

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types

Natural replacement – code

Baseline description Standard efficiency unit

Efficient case description

ENERGY STAR-qualified unit

Page 87: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 10 Lighting Measures – Residential

10-4 Savings Estimation TRM

ers

Savings Calculation

Annual energy savings formula

The energy savings were determined using the ENERGY STAR savings calculator. 1.

Calculator assumes demand wattages for low, medium, and high fan speeds for 2.standard and efficient units. It also gives lighting wattages for standard and efficient units.

ENERGY STAR assumes average daily operating hours for the fan and lighting in 3.different regions of the country and gives a percentage of time at each speed setting. The Pacific region was used to determine operating hours.

Peak demand reduction The demand savings were calculated by multiplying the demand savings at each fan speed by a weighting factor that corresponds to the percentage of the total operating hours the fan spends at that speed. These three numbers were summed and then added to the demand savings of the lighting to determine the total demand savings of 0.123 kW.

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that fan is ENERGY STAR qualified.

Important Notes

Lighting accounts for 98% of the total measure savings.

1ENERGY STAR Savings Calculator, www.energystar.gov .

Page 88: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Appliances – Residential 11

Savings Estimation TRM 11-1

ers

11. APPLIANCES – RESIDENTIAL

11.1 ENERGY STAR Refrigerator

Measure Summary Information

Measure description Purchase of an energy efficient refrigerator

End use Refrigeration

Project eligibility ENERGY STAR qualified refrigerators that meet or exceed the CEE Tier I (ENERGY STAR), Tier II, or Tier III efficiency requirements.

Savings type UES

Unit energy savings See Energy Savings Table – varies based efficiency level, freezer location, and presence of an ice maker.

Measure cost $401

EUL 14 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Refrigerators meeting the 2014 Federal efficiency standards3

Efficient case description 1. ENERGY STAR (10% more efficient than code) 2. CEE Tier II (15% more efficient than code) 3. CEE Tier III (20% more efficient than code)

Savings Calculation

Annual energy savings formula

See TRM208 spreadsheet

1. Refrigerator energy savings are calculated as the difference between the annual energy use of refrigerators operating at the federal standard and the annual energy use of refrigerators meeting the CEE Tier level standards.

2. Average refrigerator sizes in cubic square feet are determined from the CEE list

of qualified refrigerators4

Peak demand reduction Not available

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Determine refrigerator size and type.

2. Verify the refrigerator meets the applicable ENERGY STAR or CEE efficiency levels

Important Notes

N/A 1ENERGY STAR Savings Calculator, www.energystar.gov

2DEER 2011

3Code of Federal Regulations, 10 CFR 430.32(a)

4CEE – Refrigerator Qualifying Product List, 2/16/2016

Page 89: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 11 Appliances – Residential

11-2 Savings Estimation TRM

ers

11.1.1 Energy Savings Table

This table provides the energy savings by refrigerator type, size, and efficiency level.

Refrigerator Type

Energy Savings (kWh)

ENERGY STAR (CEE Tier I) CEE Tier II CEE Tier III

Refrigerator: Top-mounted freezer – no ice 40 60 81

Refrigerator: Top-mounted freezer – with ice 50 75 100

Refrigerator: Side-mounted freezer – with ice 65 98 130

Refrigerator: Side-mounted freezer – with through door ice 50 75 100

Refrigerator: Bottom-mounted freezer – no ice 63 95 128

Refrigerator: Bottom-mounted freezer – with ice 78 118 157

Refrigerator: Bottom-mounted freezer – with through door ice 89 135 180

Compact all-refrigerators<7.75 cubic ft – automatic defrost. 33 49 65

11.2 Refrigerator and Freezer Recycling

Measure Summary Information

Measure description Permanent removal and recycling of refrigerators and freezers

End use Refrigeration

Project eligibility Units must be permanently disabled. 1.

Units may be located in either conditioned or unconditioned space. 2.

Applies to all refrigerator/freezer combination types (e.g., side by side, top-mount). 3.

Applies to refrigerator and freezer sizes from 10 cu ft up to 31 cu ft. 4.

Applies to a unit replaced by a new unit. 5.

Applies to a unit not replaced by a new unit (e.g., removal of a secondary refrig.). 6.

Savings type UES

Unit energy savings 1. 616 kWh per refrigerator recycled 1

2. 643 kWh per freezer recycled

The above savings estimates are applicable through December 31, 2016. See Important Notes section for potential changes to savings estimates.

Measure cost $100 per unit recycled 2

EUL Refrigerators – 5 years; freezers – 4 years 3

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Customer continues to use unit or does not recycle unit.

Efficient case description Unit dismantled and recycled.

Savings Calculation

Annual energy savings formula

Energy savings are taken directly from the DEER database. Unit savings are weighted values based on a combination of different unit sizes and types, whether the unit was removed from conditioned or unconditioned space, and whether the unit was replaced/recycled or removed/recycled.

Peak demand reduction Refrigerator – 0.124 kW; freezer – 0.129 kW

Page 90: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Appliances – Residential Section 11

Savings Estimation TRM 11-3

ers

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Record age, make, model, size, and type of unit recycled.

2. Verify that units are operational at time of disposal.

3. Verify that units are properly recycled and no longer functional.

Important Notes

Unit energy savings for a new ENERGY STAR refrigerator/freezer are not included in the measure savings.

3/15/2016: Recent updates to DEER for 2016 indicate that the savings potential for recycling programs has been reduced by close to half of previous savings estimates. It is not fully documented as to why the savings have been reduced, but it is most likely associated with relatively newer, more efficient units being recycled. Program administrators should use the updated DEER savings estimates (included with TRM spreadsheet documentation) for reporting savings after 1/1/2017.

1DEER 2011 unit energy savings for refrigerators and freezers

2Customer measure costs range from zero (free pickup) up to $150. Since free pickup does not guarantee the units are recycled

and taken out of the secondary market, only the cost for recycling was considered. Based on secondary research and recycling vendor costs associated with utility programs, the cost range was determined to be $50–$150. The average ($100) is used for measure cost. 3DEER_EUL_Summary_10-1-2008.xls

11.3 Heat Pump Water Heater

Measure Summary Information

Measure description Replacement of standard electric domestic hot water (DHW) heater with an ENERGY STAR heat pump water heater

End use DHW

Project eligibility 1. Qualifying units are listed on ENERGY STAR Qualifying Product List for heat pump water heaters.

2. Units have an energy factor (EF) equal to or greater than 2.3.

3. Current available unit sizes: 40–80 gallons.

Savings type UES

Unit energy savings 308–1,628 kWh per water heater. See Energy Savings Table.

Measure cost $905– $1,279 per water heater1

EUL 10 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Electric resistance hot water heater, EF = 0.91

Efficient case description ENERGY STAR-qualified heat pump water heater, EF = 2.3

Savings Calculation

Annual energy savings

Savings were derived from the National Renewable Energy Laboratory (NREL) study

and analysis on hot water heat pumps (HWHPs).3 Energy modeling software

(TRNSYS) was used to estimate savings for a prototypical home. For HWHP installed in the conditioned space of the home, the additional heating load for home’s HVAC system is included in the savings results. NREL’s analysis concluded that a HWHP’s overall operating performance is less efficient than indicated by standard test procedures used to develop unit energy factor (EF) ratings.

Peak demand reduction NA – based on typical energy use profiles, a DHW heater does not contribute to peak demand

Key Parameters

Average daily use

EF

Gallons per day

Energy factor – efficiency rating

Page 91: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 11 Appliances – Residential

11-4 Savings Estimation TRM

ers

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Verify that the unit is ENERGY STAR qualified.

2. If HPWP has an exhaust duct, verify that the duct is adequately sized.

Important Notes

1. HPWHs use the surrounding air as a heat source. If the HWHP is installed within the home, it imposes a heating load on the home’s air conditioning system.

2. Unit efficiency decreases as the ambient temperature falls below 68°F. If ambient space temperature falls below 45°F, the unit’s electrical resistance heaters are enabled, significantly lowering the heater’s energy performance.

1 RTF hot water heat pump analysis, Internet research (Dec-2013)

2 Equal to average tank warranty of an ENERGY STAR unit

3 NREL Technical Report # NREL/TP-5500-58594, July 2013

11.3.1 Energy Savings Tables

The tables present the energy savings for a two typical HWHP sizes. Savings are dependent

upon the location of the HPWP and its interactive effects with the home’s AC system. California

climate zones are mapped to the more general climate zone types used in the NREL analysis.

The analysis site-to-source energy conversation factor (3.365) was used to convert source results

into estimated savings per installed heater.

Climate Zone Measure Name

Energy Savings (kWh)

Energy Savings (Therms)

2,3,4,5 ENERGY STAR HPWH, 50 gal., space heating – heat pump 1,266 0

2,3,4,5 ENERGY STAR HPWH, 50 gal., space heating – gas 1,725 -72.2

2,3,4,5 ENERGY STAR HPWH, 50 gal., space heating – elec 343 0

2,3,4,5 ENERGY STAR HPWH, 50 gal., located in garage/basement 1,504 0

2,3,4,5 ENERGY STAR HPWH, 80 gal., space heating – heat pump 1,504 0

2,3,4,5 ENERGY STAR HPWH, 80 gal., space heating – gas 1,964 -90.6

2,3,4,5 ENERGY STAR HPWH, 80 gal., space heating – elec 308 0

2,3,4,5 ENERGY STAR HPWH, 80 gal., located in garage/basement 1,628 0

8,9,10,11,12,14,15 ENERGY STAR HPWH, 50 gal., space heating – heat pump 1,339 0

8,9,10,11,12,14,15 ENERGY STAR HPWH, 50 gal., space heating – gas 1,582 - 39.5

8,9,10,11,12,14,15 ENERGY STAR HPWH, 50 gal., space heating – elec 800 0

8,9,10,11,12,14,15 ENERGY STAR HPWH, 50 gal., located in garage/basement 1,175 0

8,9,10,11,12,14,15 ENERGY STAR HPWH, 80 gal., space heating – heat pump 1,464 0

8,9,10,11,12,14,15 ENERGY STAR HPWH, 80 gal., space heating – gas 1,707 -48.8

8,9,10,11,12,14,15 ENERGY STAR HPWH, 80 gal., space heating – elec 785 0

8,9,10,11,12,14,15 ENERGY STAR HPWH, 80 gal., located in garage/basement 1,330 0

16 ENERGY STAR HPWH, 50 gal., space heating – heat pump 1,279 0

16 ENERGY STAR HPWH, 50 gal., space heating – gas 1,816 -60.3

16 ENERGY STAR HPWH, 50 gal., space heating – elec 668 0

16 ENERGY STAR HPWH, 50 gal., located in garage/basement 839 0

Page 92: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Appliances – Residential Section 11

Savings Estimation TRM 11-5

ers

Climate Zone Measure Name

Energy Savings (kWh)

Energy Savings (Therms)

16 ENERGY STAR HPWH, 80 gal., space heating – heat pump 1,603 0

16 ENERGY STAR HPWH, 80 gal., space heating – gas 2,139 -80.8

16 ENERGY STAR HPWH, 80 gal., space heating – elec 758 0

16 ENERGY STAR HPWH, 80 gal., located in garage/basement 1,278 0

11.4 ENERGY STAR Dishwasher, Compact and Standard Size

Measure Summary Information

Measure description ENERGY STAR-qualified dishwasher, both standard and compact size

End use Appliance

Project eligibility Installation of an ENERGY STAR-qualified dishwasher. A standard size dishwasher holds eight or more place settings; compact size holds fewer than eight.

Meets CEE Tier 11/ENERGY STAR efficiency standards:

Standard size unit minimum energy use of 270 kWh per year

Compact size unit minimum energy use of 203 kWh per year

Savings type UES

Unit energy savings Water source: natural gas water heater:

Standard size unit: 16 kWh/yr, 0.95 therms/yr, 161 gallons/yr

Compact size unit: 8 kWh/yr, 0.5 therms/yr, 0 gallons/yr

Water source: electric water heater:

Standard size unit: 37 kWh/yr, 161 gallons/yr

Compact size unit: 19 kWh/yr, 0 gallons/yr

Incremental measure cost $1022

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Standard efficiency unit

Efficient case description ENERGY STAR-qualified unit

Savings Calculation

Annual energy savings formula

1. The energy savings were determined using the ENERGY STAR appliance calculator

2.

2. Calculation assumes the annual energy use of a standard efficiency and an efficient standard size dishwasher. The standard efficiency dishwasher is assumed to use 307 kWh per year, which is the maximum allowed by federal code. The efficient dishwasher is assumed to use 270 kWh per year, which is the maximum allowed by ENERGY STAR.

3. Calculation assumes the annual energy use of a standard efficiency compact dishwasher is 222 kWh per year, which is the maximum allowed by federal code. The efficient compact unit is assumed to use 203 kWh per year, which is the maximum allowed by ENERGY STAR.

4. Calculation assumes 215 loads per year for both the standard size and compact dishwashers.

Peak demand reduction 0 kW – assumes dishwasher is not running during peak demand time period

Key Parameters

N/A

Page 93: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 11 Appliances – Residential

11-6 Savings Estimation TRM

ers

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the dishwasher is ENERGY STAR qualified and meets CEE Tier 1 efficiency specifications.

Important Notes

Therm savings are due to reduced water consumption 1CEE High-Efficiency Dishwasher Specification: Effective January 29, 2016:

2ENERGY STAR appliance calculator. Current 2016 version can be found in TRM spreadsheet. Also available at:

www.energystar.gov.

11.5 High Efficiency Residential Clothes Washer

Measure Summary Information

Measure description Installation of a high efficiency clothes washer in a residential application

End use Appliance

Project eligibility ENERGY STAR clothes washer meeting applicable CEE efficiency levels

Savings type UES

Unit energy savings See Energy Savings Table

Incremental measure cost Incremental cost 1

1. ENERGY STAR, CEE Tier 1: $165

2. CEE Tier 2, $195

3. CEE Tier 3, $277

EUL 14 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description State and federal standards3:

Top Load:

MEF = 1.29

WF = 8.4

Front Load:

MEF = 1.84

WF – 4.7

Efficient case description Clothes washer meeting applicable efficiency level4:

ENERGY STAR (top-load): MEF 2.06; WF 4.3

ENERGY STAR (front-load): MEF 2.38; WE 3.7

CEE Tier 1: MEF 2.38; WF 3.7 (ENERGY STAR front-load)

CEE Tier 2: MEF 2.74; WF 3.2

CEE Tier 3: MEF 2.92; WF 3.2

Savings Calculation

Annual energy savings formula

ENERGY STAR calculator used to estimate savings5.

Peak demand reduction N/A

Definitions

MEF=

WF=

Modified energy factor – takes into account the amount of dryer energy used to remove the remaining moisture content in washed items, in addition to the machine energy and water heating energy of the washer.

Water factor ‒ The number of gallons per cycle per cubic foot that the clothes washer uses. The lower the water factor, the more efficient the washer.

Key Parameters

Washer load 261 washer cycles per year

Page 94: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Appliances – Residential Section 11

Savings Estimation TRM 11-7

ers

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that clothes washer meets applicable efficiency requirements.

Important Notes

N/A 1PG&E work paper, PGECOAPP114 Clothes Washers Residential Revision 3 – August 24, 2012

2 EERE 2012-04 Direct Final Rule Technical Support Document, Chapter 8

3California 2015 Appliance Efficiency Regulations and DOE Standard effective March 7, 2015:

4CEE Specs – Effective March 7, 2015

5Savings Calculator for ENERGY STAR Qualified Appliances – revised March 7, 2015

11.5.1 Energy Savings Table

This table provides the energy savings based on the energy source types for the hot water

supply and clothes dryer. Clothes dryer savings (less dry time) are included.

Washer Type

Energy Source Savings by Efficiency Level

Hot Water Dryer

CEE Tier I (kWh)

CEE Tier I (Therms)

CEE Tier II (kWh)

CEE Tier II (Therms)

CEE Tier III (kWh)

CEE Tier III (Therms)

Top loading

Electric Electric 351 0 N/A N/A N/A N/A

Electric Gas 101 9.6 N/A N/A N/A N/A

Gas Electric 270 3.7 N/A N/A N/A N/A

Gas Gas 20 13.2 N/A N/A N/A N/A

Front loading

Electric Electric 133 0 193 0 218 0

Electric Gas 28 4 28 6.3 28 7.3

Gas Electric 111 1 171 1 196 1

Gas Gas 6 5 6 7.3 6 8.3

Note: CEE Tier II and Tier III specifications are only available for front-loading clothes washer.

11.6 ENERGY STAR Television

Measure Summary Information

Measure description ENERGY STAR-qualified television

End use Appliance

Project eligibility Purchase of an ENERGY STAR-qualified television.

Savings type UES

Unit energy savings See Energy Savings Table for savings by product size

Savings are provided for televisions that meet ENERGY STAR qualifications

Incremental measure cost $10 - $601 See Cost Table

EUL 7 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Standard efficient television, with the efficiency determined as the average of all televisions in a size class that do not meet ENERGY STAR standards

Efficient case description ENERGY STAR-qualified television that either meet or exceed ENERGY STAR energy use requirements

Page 95: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 11 Appliances – Residential

11-8 Savings Estimation TRM

ers

Savings Calculation

Annual energy savings formula

See TRM221 spreadsheet. Savings are estimated using data obtained from ENERGY STAR (television qualification criteria - version 7) and IOU workpaper.

Peak demand reduction 0.000 – 0.002 kW

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the television is an ENERGY STAR Version 7 certified product.

Important Notes

N/A 1IOU workpaper, PGECOAPP104, May 2012

2 ENERGY STAR televisions – version 7, effective October 30, 2015

11.6.1 Energy Savings and Cost Table

Screen Size Annual Energy Savings (kWh)

Peak Demand Savings (kW)

Incremental Cost

10" – 25.4" 20.4 0.000 $10

25.5" – 35" 66.1 0.001 $20

36" – 39" 78.9 0.001 $30

40" – 42" 91.9 0.002 $40

43" – 49" 107.8 0.002 $50

50" and larger 146.4 0.002 $60

11.7 Heat Pump Clothes Dryers

Measure Summary Information

Measure description Heat pump clothes dryers work by having a heat pump that extracts heat from the ambient air and releases that heat at a higher temperature inside the dryer drum. The dryers are ventless and can be installed in areas with no access for exhaust ventilation.

End use Appliance

Project eligibility Heat pump clothes dryer that has a certified combined energy factor of at least 6.83 at normal settings

Savings type UES

Unit energy savings 446 kWh

Incremental measure cost $2631

- See TRM220 spreadsheet

EUL 11 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Conventional clothes dryer meeting federal efficiency standards

Efficient case description Heat pump clothes dryer with a combined energy factor of at least 6.83 at normal settings.

Savings Calculation

Annual energy savings formula

See TRM220 spreadsheet. Savings are calculated as the average of the test results from the Super Efficient Dryer Initiative (SEDI).

Page 96: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Appliances – Residential Section 11

Savings Estimation TRM 11-9

ers

Peak demand reduction N/A

Key Parameters

Drying time Compared to a conventional dryer, the drying time for heat pump clothes dryer is significantly longer.

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the heat pump clothes dryer meets or exceeds the efficiency requirements.

Important Notes

Heat pump clothes dryers are considered an emerging technology. 1Super Efficient Dryer Initiative (2013)

2 DEER, DEER2014-EUL-table-update_2014-02-05 (1).xlsx

Page 97: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential 12

Savings Estimation TRM 12-1

ers

12. BUILDING ENVELOPE – RESIDENTIAL

12.1 Ceiling Insulation

Measure Summary Information

Measure description 1. Increasing ceiling insulation levels to R-30 or R-38 by adding additional insulation to the ceiling (in attics or crawl spaces) or to the roof (non-vented attics).

2. Add R-11 insulation in residential dwellings in attics or crawl spaces with limited space availability (R-30 cannot be achieved).

3. Add R-19 insulation to the ceiling (attic or crawl spaces) or roof (non-vented attics).

End use HVAC

Project eligibility 1. Applicable to air conditioned or heated residential single and multifamily dwellings.

2. Not eligible if increase in insulation is required by code.

Savings type UES

Unit energy savings See Energy Savings Tables

Measure cost Costs1

are per sq ft of insulation installed:

1. Ceiling insulation, increase to R-30: $0.54

2. Ceiling insulation, increase to R-38: $0.54

3. Ceiling insulation, R-11 addition: $0.42

4. Ceiling insulation, R-19 addition: $0.54

5. Ceiling insulation, R-30 addition: $0.86

EUL 20 years2

Baseline and Efficient Case Conditions Applicable baseline types Natural replacement – preexisting conditions

Baseline description 1. For all measures: preexisting ceiling insulation, or no ceiling insulation.

2. For R-30 measures, the preexisting insulation resistance value is R-19 or less.

3. For R-38 measures, no ceiling insulation.

Efficient case description 1. The insulation R-value for preexisting and additional insulation equals or exceeds R-19, R-30, or R-38.

2. For restricted spaces, additional insulation of at least R-11 is added.

Savings Calculation

Annual energy savings Measure savings values from DEER 2014 are weighted by building vintage and by HVAC system type. Energy savings values for electrically heated homes are based on heat pumps with electric back-up heat and electric resistance heat with no cooling.

Peak demand reduction See Energy Savings Table

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Determine preexisting insulation levels. 1.

Determine if dwelling has mechanical cooling and/or natural gas, heat pump, or electrical resistance heating. 2.

Important Notes N/A

1Measure cost data was derived from retail market research.

2DEER_EUL_Summary_10-1-2008.xls

Page 98: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-2 Savings Estimation TRM

ers

12.1.1 Energy Savings Table – Weighted Average for all HVAC Types

This table provides the energy savings and peak demand reduction for each climate zone.

Savings data is per square foot of installed insulation. Savings are applicable to both single-

family and multifamily homes.

Measure Name

CZ02 CZ03 CZ04

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 0.000 0.541 0.198 0.000 0.518 0.197 0.000 0.505 0.161

Ceiling insulation 0 to R-38 0.000 0.554 0.203 0.000 0.531 0.203 0.000 0.517 0.166

Ceiling insulation, R-11 addition 0.000 0.024 0.009 0.000 0.019 0.009 0.000 0.018 0.007

Ceiling insulation, R-19 addition 0.000 0.034 0.013 0.000 0.028 0.012 0.000 0.026 0.010

Ceiling insulation, R-30 addition 0.000 0.043 0.016 0.000 0.036 0.016 0.000 0.033 0.013

Measure Name

CZ05 CZ08 CZ09

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 0.000 0.489 0.222 0.000 0.510 0.123 0.001 0.785 0.154

Ceiling insulation, 0 to R-38 0.000 0.502 0.228 0.000 0.522 0.126 0.001 0.803 0.158

Ceiling insulation, R-11 addition 0.000 0.019 0.009 0.000 0.037 0.010 0.000 0.033 0.007

Ceiling insulation, R-19 addition 0.000 0.028 0.013 0.000 0.049 0.014 0.000 0.046 0.011

Ceiling insulation, R-30 addition 0.000 0.035 0.017 0.000 0.060 0.017 0.000 0.059 0.013

Measure Name

CZ10 CZ11 CZ12

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 0.001 0.860 0.163 0.001 0.953 0.180 0.001 0.874 0.199

Ceiling insulation, 0 to R-38 0.001 0.883 0.167 0.001 0.977 0.185 0.001 0.895 0.204

Ceiling insulation, R-11 addition 0.000 0.033 0.007 0.000 0.042 0.008 0.000 0.028 0.007

Ceiling insulation, R-19 addition 0.000 0.047 0.010 0.000 0.061 0.011 0.000 0.041 0.010

Ceiling insulation, R-30 addition 0.000 0.058 0.013 0.000 0.078 0.014 0.000 0.053 0.013

Measure Name

CZ14 CZ15 CZ16

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 0.001 1.520 0.203 0.001 1.640 0.106 0.000 0.660 0.222

Ceiling insulation, 0 to R-38 0.001 1.560 0.207 0.001 1.680 0.109 0.000 0.678 0.228

Ceiling insulation, R-11 addition 0.000 0.047 0.007 0.000 0.093 0.007 0.000 0.035 0.014

Ceiling insulation, R-19 addition 0.000 0.068 0.010 0.000 0.129 0.009 0.000 0.050 0.020

Ceiling insulation, R-30 addition 0.000 0.088 0.013 0.000 0.161 0.012 0.000 0.063 0.024

Page 99: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential Section 12

Savings Estimation TRM 12-3

ers

12.1.2 Energy Savings Table – Air Source Heat Pump

Measure Name

CZ02 CZ03 CZ04

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 2.810 0.001 -0.001 2.060 0.001 -0.001 2.220 0.001 0.000

Ceiling insulation, 0 to R-38 2.880 0.001 -0.001 2.100 0.001 -0.001 2.270 0.001 -0.001

Ceiling insulation, R-11 addition 0.131 0.000 0.000 0.096 0.000 0.000 0.097 0.000 0.000

Ceiling insulation, R-19 addition 0.186 0.000 0.000 0.135 0.000 0.000 0.138 0.000 0.000

Ceiling insulation, R-30 addition 0.235 0.000 0.000 0.170 0.000 0.000 0.175 0.000 0.000

Measure Name

CZ05 CZ08 CZ09

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 2.420 0.001 -0.001 1.810 0.001 0.000 2.390 0.001 0.000

Ceiling insulation, 0 to R-38 2.470 0.001 -0.001 1.850 0.001 0.000 2.440 0.001 0.000

Ceiling insulation, R-11 addition 0.117 0.000 0.000 0.112 0.000 0.000 0.167 0.000 0.000

Ceiling insulation, R-19 addition 0.165 0.000 0.000 0.154 0.000 0.000 0.226 0.000 0.000

Ceiling insulation, R-30 addition 0.208 0.000 0.000 0.188 0.000 0.000 0.278 0.000 0.000

Measure Name

CZ10 CZ11 CZ12

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 2.500 0.001 -0.001 2.910 0.001 -0.001 2.740 0.001 -0.001

Ceiling insulation, 0 to R-38 2.550 0.001 -0.001 2.970 0.001 -0.001 2.800 0.001 -0.001

Ceiling insulation, R-11 addition 0.137 0.000 0.000 0.159 0.000 0.000 0.148 0.000 0.000

Ceiling insulation, R-19 addition 0.190 0.000 0.000 0.220 0.000 0.000 0.205 0.000 0.000

Ceiling insulation, R-30 addition 0.235 0.000 0.000 0.274 0.000 0.000 0.255 0.000 0.000

Measure Name

CZ14 CZ15 CZ16

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 3.690 0.002 -0.001 2.800 0.001 0.000 4.970 0.001 -0.001

Ceiling insulation, 0 to R-38 3.780 0.002 -0.001 2.870 0.002 0.000 5.070 0.001 -0.001

Ceiling insulation, R-11 addition 0.227 0.000 0.000 0.186 0.000 0.000 0.227 0.000 0.000

Ceiling insulation, R-19 addition 0.315 0.000 0.000 0.256 0.000 0.000 0.318 0.000 0.000

Ceiling insulation, R-30 addition 0.392 0.000 0.000 0.316 0.000 0.000 0.397 0.000 0.000

Page 100: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-4 Savings Estimation TRM

ers

12.1.3 Energy Savings Table – Electric Resistance Heating

Measure Name

CZ02 CZ03 CZ04

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 5.770 0.000 0.000 5.200 0.000 0.000 4.650 0.000 0.000

Ceiling insulation, 0 to R-38 5.900 0.000 0.000 5.310 0.000 0.000 4.750 0.000 0.000

Ceiling insulation, R-11 addition 0.304 0.000 0.000 0.261 0.000 0.000 0.241 0.000 0.000

Ceiling insulation, R-19 addition 0.424 0.000 0.000 0.363 0.000 0.000 0.334 0.000 0.000

Ceiling insulation, R-30 addition 0.531 0.000 0.000 0.454 0.000 0.000 0.416 0.000 0.000

Measure Name

CZ05 CZ08 CZ09

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 6.090 0.000 0.000 3.560 0.000 0.000 3.910 0.000 0.000

Ceiling insulation, 0 to R-38 6.230 0.000 0.000 3.640 0.000 0.000 3.990 0.000 0.000

Ceiling insulation, R-11 addition 0.293 0.000 0.000 0.260 0.000 0.000 0.282 0.000 0.000

Ceiling insulation, R-19 addition 0.410 0.000 0.000 0.349 0.000 0.000 0.379 0.000 0.000

Ceiling insulation, R-30 addition 0.514 0.000 0.000 0.422 0.000 0.000 0.458 0.000 0.000

Measure Name

CZ10 CZ11 CZ12

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 4.180 0.000 0.000 4.540 0.000 0.000 4.650 0.000 0.000

Ceiling insulation, 0 to R-38 4.270 0.000 0.000 4.640 0.000 0.000 4.740 0.000 0.000

Ceiling insulation, R-11 addition 0.296 0.000 0.000 0.289 0.000 0.000 0.316 0.000 0.000

Ceiling insulation, R-19 addition 0.400 0.000 0.000 0.394 0.000 0.000 0.427 0.000 0.000

Ceiling insulation, R-30 addition 0.486 0.000 0.000 0.483 0.000 0.000 0.519 0.000 0.000

Measure Name

CZ14 CZ15 CZ16

kW kWh Therms kW kWh Therms kW kWh Therms

Ceiling insulation, 0 to R-30 4.810 0.000 0.000 0.000 0.000 0.000 8.440 0.000 0.000

Ceiling insulation, 0 to R-38 4.910 0.000 0.000 0.000 0.000 0.000 8.610 0.000 0.000

Ceiling insulation, R-11 addition 0.310 0.000 0.000 0.000 0.000 0.000 0.343 0.000 0.000

Ceiling insulation, R-19 addition 0.423 0.000 0.000 0.000 0.000 0.000 0.482 0.000 0.000

Ceiling insulation, R-30 addition 0.519 0.000 0.000 0.000 0.000 0.000 0.607 0.000 0.000

Page 101: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential Section 12

Savings Estimation TRM 12-5

ers

12.2 Wall Insulation

Measure Summary Information

Measure description Adding insulation of a minimum of R-13 to previously uninsulated walls separating conditioned and unconditioned spaces.

End use HVAC

Project eligibility 1. Applicable to air-conditioned or heated residential single-family and multifamily dwellings.

2. Installed as a retrofit to an existing uninsulated wall connecting conditioned and unconditioned living areas.

3. Measure covers a minimum of 75% of the living area.

4. Measure is not applicable if installed as part of a retrofit that requires the building envelope be upgraded to meet Title 24 code requirements.

Savings type UES

Unit energy savings 1. See Energy Savings Table.

2. Savings unit values are per square foot of insulation installed.

Incremental measure cost 1. $0.94 per square foot of insulation installed

EUL 20 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description No insulation

Efficient case description Insulation of R-13 or greater

Savings Calculation

Annual energy savings formula

Saving values obtained from DEER are weighted based on building vintage and HVAC type.

Peak demand reduction Not applicable. Insulation saves energy by reducing the duty cycle of HVAC equipment, resulting in no appreciable demand reduction.

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Ensure that installed insulation meets minimum requirements. 1.

Ensure that preexisting walls have no insulation. 2.

Verify that installation of insulation is not required to meet Title 24 code requirements. 3.

Verify that wall has conditioned space on one side and unconditioned space on the other side. 4.

Important Notes

N/A

1DEER_EUL_Summary_10-1-2008.xls

Page 102: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-6 Savings Estimation TRM

ers

12.2.1 Energy Savings Table

The following table provides the energy savings for single-family and multifamily dwellings.

Savings are per square feet of installed insulation.

Climate Zone

Single-Family Savings (kWh)

Single-Family Savings (Therms)

Multifamily Savings (kWh)

Multifamily Savings (Therms)

CZ02 0.241 0.139 0.223 0.076

CZ03 0.197 0.153 0.245 0.087

CZ04 0.210 0.126 0.193 0.071

CZ05 0.216 0.162 0.192 0.089

CZ08 0.224 0.099 0.140 0.057

CZ09 0.297 0.106 0.145 0.054

CZ10 0.326 0.111 0.164 0.056

CZ11 0.331 0.133 0.225 0.074

CZ12 0.273 0.133 0.228 0.790

CZ14 0.493 0.131 0.230 0.065

CZ15 0.574 0.074 0.232 0.036

CZ16 0.403 0.226 0.319 0.105

12.2.2 Measure Cost Table

The table provides insulation material costs1. Labor costs are not included.

Unit Size and Type Measure Cost,

per sq ft

Wall insulation – R-13 – single family $0.32

Wall insulation – R-13 – multifamily $0.32

1SCE work paper, SCE13BS010, Revision, 0, June 1, 2012

12.3 Solar Attic Fan

Measure Summary Information

Measure description Installation of a solar attic fan to replace an electric-powered attic fan

End use HVAC

Project eligibility All sizes of solar-powered attic fans

Savings type UES

Unit energy savings See Energy Savings Table

Measure cost $300 per 1,000 cfm fan or $0.30 per cfm1

EUL 10 years

Page 103: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential Section 12

Savings Estimation TRM 12-7

ers

Baseline and Efficient Case Conditions

Applicable baseline types

Natural replacement – existing conditions

Baseline description Electric-powered fan with equivalent annual cooling capacity as solar-powered fan

Efficient case description

Solar attic fan

Savings Calculation

Annual energy savings 1. Savings based on eliminating the use of electric-powered attic fan.

2. Assumes a 1,000 cfm solar fan has the same annual cooling effect as a 600 cfm electric-powered fan. Solar fan cannot always meet ventilation demands (i.e., after sunset or when PV panel is shaded).

3. Annual operating hours of the fan vary by climate zone. TMY weather data was used to determine the operating hours for each climate zone.

See TRM213 residential solar attic fan spreadsheet for savings calculations.

Peak demand reduction 0.0004 kW per cfm

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the fan’s solar panel is optimally positioned to maximize its power output.

Important Notes

N/A 1

Grainger retail pricing

12.3.1 Energy Savings Table

The following table provides the energy savings values for solar attic fan by climate zone.

Savings are presented in per cfm and per 1,000 cfm.

Climate Zone Energy Savings per

cfm (kWh) Energy Savings per

1,000 cfm (kWh)

CZ02 0.156 156

CZ03 0.019 19

CZ04 0.085 85

CZ05 0.022 22

CZ08 0.130 130

CZ09 0.217 217

CZ10 0.295 295

CZ11 0.295 295

CZ12 0.220 220

CZ14 0.365 365

CZ15 0.766 766

CZ16 0.105 105

Page 104: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-8 Savings Estimation TRM

ers

12.4 Reflective Window Film

Measure Summary Information

Measure description Retrofit of existing single-pane clear glass windows with reflective window film

End use HVAC

Project eligibility Applicable to existing air-conditioned or heated residential single-family and multifamily dwellings. North-facing windows are excluded.

Savings type UES

Unit energy savings Energy savings varies by climate zone - See Energy Savings Table

Incremental measure cost $3.32 per sq ft of window glass covered

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Single-pane clear-glass windows with an assumed SHGC of 0.82

Efficient case description Single-pane tinted glass windows with an assumed SHGC of 0.39

Savings Calculation

Annual energy savings formula

Savings data is from IOU work paper2. Based on multifamily updated savings values

from DEER 2005

Peak demand reduction See Savings Table

Definitions

SHGC

= Solar heat gain coefficient

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

3. Verify performance rating of window film.

4. Verify that dwelling space is conditioned.

Important Notes

N/A

1DEER_EUL_Summary_10-1-2008.xls

2PG&E work Paper PGECOBLD108, “Reflective Window Film,” Revision 3, June 1, 2012

12.4.1 Savings Table

This table provides the energy savings and peak demand reduction for reflective window film

by climate zone. Savings are per square feet of window glass covered.

Climate Zone

Energy Savings (kWh

per sf)

Demand Reduction (kW

per sf)

2 1.16 0.001

3 0.43 0.005

4 1.07 0.003

5 0.63 0.004

8 1.48 0.002

Page 105: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential Section 12

Savings Estimation TRM 12-9

ers

Climate Zone

Energy Savings (kWh

per sf)

Demand Reduction (kW

per sf)

9 1.56 0.001

10 1.32 0.001

11 1.17 0.001

12 1.16 0.001

14 1.50 0.001

15 2.07 0.001

16 0.72 0.003

12.5 Solar Screen

Measure Summary Information

Measure description Installation of an exterior window solar screen

End use HVAC – residential

Project eligibility Applicable to existing air-conditioned or heated residential single-family and multifamily dwellings. North-facing windows are excluded.

Savings type UES

Unit energy savings Energy savings varies by climate zone – See Energy Savings Table

Incremental measure cost $3 per sq ft of installed screen

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Single or dual-pane window with bug screen

Efficient case description Dark colored solar screen with ≤ 5% openness factor

Savings Calculation

Annual energy savings formula

See TRM219 spreadsheet. The savings analysis is based on the CEC solar heat gain

coefficient worksheet2.

To estimate savings, the solar screen SHGC reduction is compared to the SHGC reduction for the reflective window film measure (81.2%). An adjustment factor (86.5%) is also applied to account for the difference in total installed screen area compared to the total window glass area. The solar screen savings is the product of the overall adjustment factor (70.2%) multiplied by the reflective window film savings.

Peak demand reduction See Savings Table.

Definitions

SHGC

Openness factor

= Solar heat gain coefficient

= Measure of the tightness of the solar screen weave

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that space is conditioned.

Important Notes

N/A 1DEER_EUL_Summary_10-1-2008.xls

2CEC CF10WKS-03-E SHGC

Page 106: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-10 Savings Estimation TRM

ers

12.5.1 Savings Table

This table provides the energy savings and peak demand reduction for solar screens by climate

zone. Savings are per square feet of installed screen.

Climate Zone Energy Savings

(kWh per sf) Demand Reduction (kW

per sf)

2 0.81 0.001

3 0.30 0.003

4 0.75 0.002

5 0.44 0.003

8 1.04 0.001

9 1.10 0.001

10 0.93 0.001

11 0.82 0.001

12 0.81 0.001

14 1.05 0.001

15 1.45 0.001

16 0.51 0.002

12.6 Reduced Building Leakage

Measure Summary Information

Measure description Blower door test and seal of building envelope air leaks, resulting in either a 15% or 30% reduction in building leakage.

End use HVAC – residential

Project eligibility Existing single-family home with an infiltration rate of 0.350 air changes per hour (ACH) or higher.

Savings type UES

Unit energy savings See Energy Savings Table. Savings estimates are per home.

Incremental measure cost $350 for a 15% reduction and $500 for a 30% reduction1

EUL 11 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Air conditioned single-family home, with an infiltration rate of 0.350 ACH

Efficient case description Building air gaps sealed with an overall building leakage reduction of either 15% or 30%

Savings Calculation

Annual energy savings formula

Savings estimates from IOU work paper1

are based on building energy simulation

models of existing single-family homes (vintages 1978 – 2001). The home prototype is developed from CEC Residential Appliance Saturation Survey (RASS) data. The AC is an electric cooling/gas heating system.

Peak demand reduction See Savings Table

Definitions

Blower door test

A blower door is a diagnostic tool for determining the airtightness of a whole building. The blower door is mounted to the frame of an exterior door. The house is de-pressurized and the infiltration rate is measured with an airflow manometer.

Page 107: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential Section 12

Savings Estimation TRM 12-11

ers

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that the pre- and post-air sealing test results indicate the building air leakage was effectively reduced.

Important Notes

N/A

1SCE13MI005, March 2013

2DEER_EUL_Summary_10-1-2008.xls

12.6.1 Savings Table

This table provides the energy savings and peak demand reduction per home for each climate

zone. Savings estimates are provided for a 15% and 30% building leakage reduction in both a

single story and two-story home.

Climate Zone

Single-Story, 15% Reduction

Single-Story, 30% Reduction

Two -Story, 15% Reduction

Two-Story, 30% Reduction

kWh Savings

Therm Savings

kWh Savings

Therm Savings

kWh Savings

Therm Savings

kWh Savings

Therm Savings

CZ02 7.2 13.5 14.6 27.0 10.4 26.5 21.3 52.9

CZ03 7.2 15.1 14.5 30.3 10.5 29.2 20.4 58.1

CZ04 7.5 13.1 15.1 26.2 8.2 25.4 17.6 50.7

CZ05 7.5 16.3 15.3 32.8 11.5 30.6 21.2 61.7

CZ08 5.4 8.8 11.4 17.3 3.2 17.7 5.9 35.3

CZ09 7.7 9.5 15.7 18.9 8.3 20.1 17.1 40.3

CZ10 9.2 10.0 17.3 19.8 10.3 20.7 20.2 41.5

CZ11 13.9 12.7 27.5 25.4 19.6 25.9 39.1 52.0

CZ12 10.8 13.3 21.2 26.5 14.0 27.2 30.4 54.4

CZ14 23.6 14.7 47.6 29.4 31.7 28.6 60.6 57.4

CZ15 33.9 8.0 68.6 16.0 65.5 15.9 131.8 31.8

CZ16 10.8 18.0 20.8 36.0 13.6 33.7 29.2 67.6

Page 108: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-12 Savings Estimation TRM

ers

12.7 Energy Efficient Windows

Measure Summary Information

Measure description Replacement of single pane window with an energy efficient window

End use HVAC – residential

Project eligibility Window retrofit that is not part of a major remodel or otherwise required to meet 2013 T24 window code requirements

Savings type UES

Unit energy savings Savings vary by climate zone – see Energy Savings Table. Savings are per square foot of window area.

Measure cost For cost-effectiveness and reporting purposes, program administrators should use project-specific costs. Costs include windows, installation materials, and installation labor costs.

EUL 20 years1

Applicable baseline types

Natural replacement – preexisting conditions

Baseline description Single pane window with a U-factor of 1.19 and SHGC of 0.83

Efficient case description

Double pane window with a U-factor of 0.32 or lower and SHGC of 0.25 or lower.

Savings Calculation

Annual energy savings formula

See Energy Savings Table. Savings estimates are based on Energy Pro (V6.7.0.4) building energy simulation models. See TRM 222 spreadsheet.

Peak demand reduction See Energy Savings Table.

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify energy performance rating of replacement window and verify the dwelling is a conditioned space.

Important Notes

N/A

1 DEER2014-EUL-table_update_2014-02-05

Page 109: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Building Envelope – Residential Section 12

Savings Estimation TRM 12-13

ers

12.7.1 Energy Savings Table

Savings estimate are provided by climate and are normalized to square feet of window area.

Climate Zone kW/Sq Ft kWh/Sq Ft Therms/Sq

Ft

CZ02 0.004 2.7 0.107

CZ03 0.005 0.5 0.013

CZ04 0.006 2.8 0.057

CZ05 0.006 0.6 -0.010

CZ08 0.006 3.3 0.020

CZ09 0.006 4.2 0.027

CZ10 0.006 5.0 0.043

CZ11 0.006 6.1 0.110

CZ12 0.005 4.6 0.113

CZ14 0.005 6.1 0.040

CZ15 0.006 10.3 0.017

CZ16 0.003 2.4 0.190

12.8 Radiant Barriers

Measure Summary Information

Measure description Installation of radiant barriers in an existing attic space

End use HVAC – residential

Project eligibility Installation of a radiant barrier in an existing residential dwelling without a radiant barrier. The installation is not subject to 2013 T24 code requirements. Radiant barriers installed to meet code-required insulation levels are not eligible.

Savings type UES

Unit energy savings See Energy Savings Table. Savings vary by climate zone and are normalized to square feet of installed radiant barrier.

Measure cost For cost-effectiveness and reporting purposes, program administrators should use project-specific costs. Costs include radiant barrier material and installation labor costs.

EUL 15 years1

Applicable baseline types

Natural replacement – preexisting conditions

Baseline description Roof over residential dwelling (vented attic) with no radiant barrier

Efficient case description

Roof with radiant barrier

Savings Calculation

Annual energy savings formula

See Energy Savings Table. Savings estimates are based on Energy Pro (V6.7.0.4) building energy simulation models. See TRM 223 spreadsheet.

Peak demand reduction See Energy Savings Table.

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that radiant barrier was installed per manufacturer recommendations and industry-standard guidelines.

Page 110: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 12 Building Envelope – Residential

12-14 Savings Estimation TRM

ers

Important Notes

N/A 1 DEER2014-EUL-table_update_2014-02-05

12.8.1 Energy Savings Table

Savings are provided by climate zone and are normalized to square foot of installed radiant

barrier.

Climate Zone kWh/Sq Ft kW/Sq Ft

Therms/Sq Ft

CZ02 0.123 0.0003 0.249

CZ03 0.026 0.0001 0.310

CZ04 0.129 0.0003 0.188

CZ05 0.031 0.0002 0.298

CZ08 0.154 0.0004 0.056

CZ09 0.206 0.0003 0.024

CZ10 0.233 0.0004 0.011

CZ11 0.292 0.0004 0.068

CZ12 0.211 0.0004 0.153

CZ14 0.294 0.0004 0.049

CZ15 0.495 0.0004 -0.327

CZ16 0.115 0.0003 0.525

Page 111: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

All Other – Residential 13

Savings Estimation TRM 13-1

ers

13. ALL OTHER – RESIDENTIAL

13.1 Smart Power Strip

Measure Summary Information

Measure description Replacement of standard electric power strips with smart strips in home offices and home entertainment centers

Smart power strips have one outlet that controls the power supplied to a number of other related devices attached to the same power strip. Smart power strips can automatically eliminate the electrical load of peripheral devices (computer printer, scanner, DVD player, etc.) when an electronic control device (personal computer or television) is in standby or off mode.

End use Plug load – consumer electronics

Project eligibility Applicable to smart power strips installed in both single-family and multifamily residential buildings

Savings type UES

Unit energy savings 24 kWh per smart strip installed

Measure cost $37.29 per smart strip

EUL 8 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Preexisting standard power strips without any control mechanism and which are controlled with a single manual switch

Efficient case description A smart power strip with the capability to sense the drop in current that occurs when the control device enters a low-power mode. A current-sensing transformer attached to an outlet on the plug strip monitors the current draw of the designated device. When the current draw of this device drops below a certain threshold, power is disconnected from the controlled outlets on the plug strip.

Savings Calculation

Annual energy savings 1. Calculations are based on the SCE smart power strip work paper2

2. Calculation methodology is based on a 2008 California home electronics

survey3 which provides installation percentage of a variety of common home

theatre equipment. This information was combined with data from a

NYSERDA study4 that detailed total standby loads of these various pieces of

equipment as well as average standby time percentages.

Peak demand reduction No peak demand reduction for this measure.

Key Parameters

N/A

Page 112: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 13 All Other – Residential

13-2 Savings Estimation TRM

ers

Quality Assurance: Design, Installation, Commissioning, and Operation

Ensure that the master electronic device, TV, or computer, is connected to the appropriate master outlet on the power strip.

Important Notes

N/A 1DEER_EUL_Summary_10-1-2008.xls, assumed equivalent to occupancy sensor control.

2 SCE work paper SCE13CS002, Revised May 8, 2012

3 California Energy Commission’s Public Interest Energy Research Program Technical Brief. “Energy Use of Household Electronics:

Taming the Wild Growth,” September 2008. 4 New York State Energy Research & Development Authority (NYSERDA). Advanced Power Strip Research Report. August 2011

13.2 Variable Speed Residential Pool Pump

Measure Summary Information

Measure description Replace existing pool pump with a variable speed pool pump and variable speed pump control.

End use Other – residential pool pump.

Project eligibility Single-family residential pool pumps greater or equal to 1 hp.

Savings type UES

Unit energy savings 674 kWh ‒ Natural replacement

1,711 kWh ‒ Early retirement period

Measure cost $455 per VSD pump1

EUL 10 years2

RUL: 3.3 years or EUL minus preexisting pump age

Baseline and Efficient Case Conditions

Applicable baseline types 1. Natural replacement – code

2. Dual baseline ‒ early retirement

Baseline description 1. Natural replacement: two speed pump, as required by Title 20 Appliance Standards for pumps 1 hp and larger

2. Early retirement: single speed pump

Efficient case description VSD pump with programmable VSD control

Savings Calculation

Annual energy savings See TRM214 variable speed residential pool pump spreadsheet.

Peak demand reduction No peak demand reduction for this measure

Key Parameters

Average pump size

Energy factors

Average pool size

% time at low speed

1.73 kW

2.06 – 4.68 gallons/watt-hour

20,000 gallons

83%

Quality Assurance: Design, Installation, Commissioning, and Operation

Pool pump should be properly sized and VSD controls should be programmed for: default operation at lowest optimal speed (less than 50% of full speed), pump speed ramp up as filter pressure increases, and minimal use at high speed pump operation.

Important Notes

N/A 1SCE work paper, SCE13WP001, Revision 1, Aug. 2012

2DEER_EUL_Summary_10-1-2008.xls

Page 113: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures ‒Nonresidential 14

Savings Estimation TRM 14-1

ers

14. GAS MEASURES - NONRESIDENTIAL

14.1 Tank Insulation

Measure Summary Information

Measure description Installation of insulation of either 1” thick or 2” thick on an existing tank containing hot

liquid between 120°F – 170°F or 170°F – 200°F.

End use Heating – hot fluid for process uses

Project eligibility Existing tanks that heat or store hot liquid. Tanks that must be insulated to meet building codes or occupancy safety codes are not eligible. Tanks with existing insulation are also not eligible. Cellular glass insulation or foam insulation are allowed.

Savings type UES

Unit energy savings See Energy Savings Table. Range of savings is 13.4 – 25.2 therms per sq ft per year, depending on the liquid temperature and insulation thickness.

Incremental measure cost See Measure Cost Table. Materials and labor for 1” thick insulation is $8 per sq ft and 2” thick insulation is $9 per sq ft.

EUL 15 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Hot liquid heating or storage tanks with no insulation

Efficient case description Installation of insulation of either 1” or 2” thick

Savings Calculation

Annual energy savings formula ( )

( )

Peak demand reduction NA

Definitions

t=

Qp=

Qi=

Eb=

100,000=

Annual operating hours assumed to be 8,760 hours per year

Heat loss from uninsulated pipe in Btu/h per sq ft of tank surface area

Heat loss from insulated pipe in Btu/h per sq ft of tank surface area

Efficiency of the boiler, assumed to be 82.5%

Number of Btu per therm

Key Parameters

Liquid temperature For liquids between 120°F – 170°F, 145°F is used for the liquid temperature. For

liquids between 170°F – 200°F, 185°F is used for the liquid temperature.

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A

1PGECOPRO103 R4 Tank Insulation, June 2012

Page 114: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 14 Gas Measures – Nonresidential

14-2 Savings Estimation TRM

ers

14.1.1 Energy Savings Table

This table provides the ranges of savings values for1” and 2” insulation for tanks that are

heating or storing liquid at temperatures between 120°F – 170°F and 170°F – 200°F.

Measure Name

Gas Savings1

(Therms per sq ft of insulation)

1" tank insulation, 120°F – 170

°F liquid 13.4

1" tank insulation, 170°F – 200

°F liquid 23.9

2" tank insulation, 120°F – 120

°F liquid 14.2

2" tank insulation, 170°F – 200

°F liquid 25.2

1PGECOPRO103 R4 Tank Insulation, June 2012

14.1.2 Measure Cost Table

This table provides the incremental measure cost.

Measure Name Cost1

1" tank insulation, 120°F – 170

°F liquid $8

1" tank insulation, 170°F – 200

°F liquid $8

2" tank insulation, 120°F – 120

°F liquid $9

2" tank insulation, 170°F – 200

°F liquid $9

1PGECOPRO103 R4 Tank Insulation, June 2012

14.2 Hot Water and Steam Pipe Insulation

Measure Summary Information

Measure description Installation of insulation at least 1” thick on existing hot water or low pressure (<15 psig) steam pipe.

End use Heating – steam and hot water for process, HVAC, and domestic uses.

Project eligibility Existing hot water or steam piping is uninsulated. Piping that must be insulated to meet building codes or occupancy safety codes are not eligible. For hot water systems, rigid polyurethane, rigid polystyrene, and rigid foam rubber insulation are allowed. For low pressure steam systems, mineral fiber, cellular glass, and calcium silicate are allowed.

Savings type UES

Unit energy savings See Energy Savings Table. Range of savings is 1 to 15 therms per linear foot per year depending on boiler type, pipe diameter, and building type.

Incremental measure cost See Measure Cost Table. Range of savings is $6 to $13 per linear foot based on boiler type.

EUL 15 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Hot water or steam piping system with no insulation

Efficient case description Installation of insulation of at least 1” thick

Page 115: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures – Nonresidential Section 14

Savings Estimation TRM 14-3

ers

Savings Calculation

Annual energy savings formula

From PG&E work paper:

( ) ( )

Peak demand reduction NA

Definitions

t=

Qp=

Qi=

Eb=

100,000=

Annual operating hours

Heat loss from uninsulated pipe in Btu/h per foot of pipe

Heat loss from insulated pipe in Btu/h per foot of pipe

Efficiency of the boiler, assumed to be 83%

Number of Btu per therm

Key Parameters

Annual operating hours Annual operating hours were modeled for three building types; small commercial, large commercial and industrial. Small commercial facilities operate 7.5 to 9 hours per day, 6 days per week year-round for an average of 2,425 hours per year. This number is based on a survey of dry cleaners performed in southern California. Large commercial facilities such as hotels, schools, office buildings are assumed to operate 4,380 hours per year. Industrial facilities are assumed to operate 24 hours per day, 7 days per week for 46 weeks per year for a total of 7,752 hours per year.

Pipe parameters Hot water and steam pipes were assumed to be Schedule 40 steel. For pipes with an inside diameter (I.D.) of ≤1”, an I.D. of 0.75” was used. For pipes with an I.D. >1”, an I.D. of 1.7” was used.

Fluid temperature Hot water is assumed to be 150°F. Low pressure steam is assumed to be 241°F.

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A 1PG&E work paper PGECOHVC104 Pipe Insulation R5, June 2012

14.2.1 Energy Savings Table

The following table provides the ranges of savings values for how water and low-pressure

steam in pipes with diameter of ≤1” and >1” in small commercial, large commercial, and

industrial facilities.

Page 116: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 14 Gas Measures – Nonresidential

14-4 Savings Estimation TRM

ers

Measure Name Building Type

Gas Savings1

(Therms per linear foot of pipe)

Hot water pipe insulation, ≤1" diameter pipe

Small retail 1.2

Hot water pipe insulation, ≤1" diameter pipe

Large office 2.2

Hot water pipe insulation, ≤1" diameter pipe

Light industrial mfg. 3.7

Hot water pipe insulation, >1" diameter pipe

Small retail 2.2

Hot water pipe insulation, >1" diameter pipe

Large office 4.0

Hot water pipe insulation, >1" diameter pipe

Light industrial mfg. 7.2

Low pressure steam pipe insulation, ≤1" diameter pipe

Small retail 2.6

Low pressure steam pipe insulation, ≤1" diameter pipe

Large office 4.7

Low pressure steam pipe insulation, ≤1" diameter pipe

Light industrial mfg. 8.2

Low pressure steam pipe insulation, >1" diameter pipe

Small retail 4.7

Low pressure steam pipe insulation, >1" diameter pipe

Large office 8.6

Low pressure steam pipe insulation, >1" diameter pipe

Light industrial mfg. 15.1

1PG&E work paper PGECOHVC104 Pipe Insulation R5, June 2012

14.2.2 Measure Cost Table

This table provides the incremental measure cost for hot water and steam pipes with an inside

diameter of ≤1” and >1”. The cost is listed in dollars per linear foot of pipe.

Measure Name Cost1

Hot water ≤1" pipe $6

Hot water >1" pipe $9

Low pressure steam ≤1" pipe $11

Low pressure steam >1" pipe $13 1PG&E work paper PGECOHVC104 Pipe Insulation R5, June 2012

Page 117: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures – Nonresidential Section 14

Savings Estimation TRM 14-5

ers

14.3 High Efficiency Commercial Gas Hot Water Heaters

Measure Summary Information

Measure description Installation of a new high efficiency hot water heater in a commercial application

End use Domestic hot water

Project eligibility Applicable to both retrofit and new construction. See Unit Efficiency Ratings Table for minimum efficiency requirements.

Savings type UES

Unit energy savings 1. See Energy Savings Table – varies based on unit type and size.

2. All savings are listed as therms per MBtu/h of capacity.

Incremental measure cost 1. See Energy Savings Table – varies based on unit type and size.

2. All costs are listed as total costs.

EUL 1. Instantaneous water heaters – 20 years1

2. Storage tank water heaters – 15 years

1

Baseline and Efficient Case Conditions

Applicable baseline types 1. Natural replacement – code

2. Dual baseline – early retirement

Baseline description Small storage gas hot water heater or instantaneous hot water heater meeting the minimum efficiency allowed by the April 2015 Federal regulations. For early replacement, the baseline is a vintage -weighted average of typical unit efficiencies.

Efficient case description 1. Instantaneous water heaters with an Energy Factor (EF) of 0.82 and 0.92

2. Gas storage water heaters ranging in size from 30 to 75 gallons with EF ranging from 0.65 to 0.82

Savings Calculation

Annual energy savings formula

From 2015 DEER update - see TRM304 DHW Spreadsheet for source data

Peak demand reduction N/A for gas measures

Definitions

EF =

Energy factor – total annual energy efficiency of a unit including recovery efficiency, standby losses and cycling losses.

Key Parameters

Building type All commercial buildings.

Quality Assurance: Design, Installation, Commissioning, and Operation

Determine if new unit will be replacing a functional unit or a failed unit. 1.

Verify that new unit meets or exceeds the Energy Factor listed for each measure. 2.

Verify that new unit is properly installed and commissioned. 3.

Important Notes

Savings are revised to account for the update to federal regulations that went into effect in April 2015. 1DEER2014-EUL-table-update_2014-02-05.xls

14.3.1 Energy Savings Table

This table provides the savings by unit size and type.

Page 118: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 14 Gas Measures – Nonresidential

14-6 Savings Estimation TRM

ers

Unit Size and Type

Early Retirement (Therms per unit

heater)

Natural Replacement (Therms per unit heater)

Hot water heater 30 gallon storage, EF 0.72 122 48

Hot water heater 40 gallon storage, EF 0.65 35 14

Hot water heater 40 gallon storage, EF 0.82 252 227

Hot water heater 50 gallon storage, EF 0.82 294 277

Hot water heater 60 gallon storage, EF 0.78 229 89

Hot water heater 60 gallon storage, EF 0.80 266 125

Hot water heater 60 gallon storage, EF 0.82 270 129

Hot water heater 75 gallon storage, EF 0.78 470 49

Hot water heater 75 gallon storage, EF 0.80 519 93

Hot water heater 75 gallon storage, EF 0.82 567 134

Hot water heater instantaneous, EF 0.82, replacing 75 gallon HWH 398 -154

Hot water heater instantaneous, EF 0.92, replacing 75 gallon HWH 772 153

Hot water heater instantaneous, EF 0.82, replacing 40 gallon HWH 391 334

Hot water heater instantaneous, EF 0.92, replacing 40 gallon HWH 764 701

Hot water heater instantaneous, EF 0.82 65 65

Hot water heater instantaneous, EF 0.92 326 326

14.3.1 Unit Efficiency Ratings

The following table shows the efficiency ratings used in the DEER analysis.

Water Heater Type Efficiency Tiers

Fuel Gallons Min. Code Tier 1 Tier 2 Tier 3

Gas 30 0.630 EF 0.65 EF 0.70 EF 0.72 EF

Gas 40 0.615 EF 0.65 EF 0.70 EF 0.82 EF

Gas 50 0.600 EF 0.67 EF 0.70 EF 0.82 EF

Gas 60 0.754 EF 0.78 EF 0.80 EF 0.82 EF

Gas 75 0.743 EF 0.78 EF 0.80 EF 0.82 EF

Gas Tankless N/A 0.82 EF 0.92 EF N/A

14.3.2 Measure Cost Table

This table provides the incremental measure cost by heater type. Note that incremental costs

reflect older data and should be updated. Program administrators should collect equipment

costs and request equipment cost comparisons to standard efficiency units.

Unit Size and Type Incremental Cost

($/MBtu/h) Full Replacement Costs

($/MBtu/h)

Hot water heater, instantaneous $77 $122

Hot water heater, storage $209 $330

Page 119: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures – Nonresidential Section 14

Savings Estimation TRM 14-7

ers

14.4 Ozone Laundry

Measure Summary Information

Measure description Installation of an ozone generator on an existing or new nonresidential laundry facility. The addition of the ozone generator eliminates the need for bleach or detergents that require hot water during the washing process. The reduction in hot water usage results in less thermal load on the site’s boiler and reduces total site gas consumption.

End use Heating – commercial laundry

Project eligibility Applicable to both retrofit and new construction in the following facility types

1. Hotels with less than 250 rooms

2. Fitness or recreational sports centers

Savings type UES

Unit energy savings 39.3 therms per lbs of laundry capacity1

Incremental measure cost $75 per lbs of laundry capacity1

EUL 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Commercial laundry systems based on bleach and detergent cleaning requiring hot water supplied by a natural gas boiler.

Natural gas boiler is assumed to operate at 80% efficiency. Laundry is assumed to be washed using hot water.

Efficient case description Ozone generator which removes the need for the majority of hot water in the washing process. Hot water usage is assumed to be reduced by 86%.

Savings Calculation

Annual energy savings formula

Savings estimates from IOU work paper1

based on the following inputs:

1. City water temperature = 60ºF

2. Hot water washing temperature = 135ºF

3. Boiler efficiency = 80%

4. Hot water reduction due to ozone system = 86%

5. Water heating energy = 0.00781 therms/gallon

6. Washer utilization factor = 4380 lbs laundry/unit

7. Hot water usage factor = 1.34 gallons

[( ) ( ) ( )] [ ( ]

Peak demand reduction N/A

Key Parameters

Washer utilization factor Average total lbs of laundry cleaned per unit (based on survey results)

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Verify that existing hot water is supplied by a natural gas boiler.

2. Ozone laundry system must transfer ozone into the water through venture injection or bubble diffusion.

Important Notes

N/A 1PGE work paper PGECOAPP123 Ozone Laundry Nonresidential Revision #3 – 6/21/12

Page 120: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 14 Gas Measures – Nonresidential

14-8 Savings Estimation TRM

ers

14.5 Steam Traps

Measure Summary Information

Measure description Replace a failed steam trap with a new steam trap.

End use Heating – steam boiler, steam distribution system.

Project eligibility Existing system retrofit. Applies to steam traps of any size.

Savings type UES, semi-custom measure.

Unit energy savings 119 therms per trap, or custom-calculated using the TRM402 steam trap savings calculator.

Incremental measure cost $233 per trap1

EUL 6 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description

Efficient case description A new or rebuilt (new steam capsule) steam trap. The new steam trap can be thermostatic, mechanical, thermodynamic, or fixed orifice.

Savings Calculation

Annual energy savings formula

Savings estimates obtained from SCG work paper1, and is based on the following

assumptions:

1. 25% of the steam traps are line pressure traps and 75% are load (reduced pressure) traps.

2. Traps leak steam less often than system operates.

3. A number of traps will fail in the closed position (therefore no energy loss).

4. An 81% factor is used to account for traps failed in the closed position.

5. Heat exchanger load factor reduces stream trap losses.

6. The combined load factor/pressure factor is 21.4%.

The TRM402 steam trap savings calculator can be used to determine more accurate, project-specific savings estimates. The calculator is designed to estimate savings for both replacement and repair of steam straps. Calculations are based on site steam system characteristics and steam trap size and type.

Peak demand reduction N/A

Definitions N/A

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Obtain a copy of any ultrasonic testing and mapping of failed steam traps, including information on steam trap pressure, steam trap type, location, and load/end use served.

2. Verify the quantity of steam traps failed in the closed position.

3. Verify quantity and type of new steam traps installed.

Important Notes

N/A 1SCG work paper SCWP100310A, Revision 9, Deemed Program for Commercial Steam Traps, Aug. 2012

Page 121: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures ‒Residential 15

Savings Estimation TRM 15-1

ers

15. GAS MEASURES – RESIDENTIAL

15.1 High Efficiency Residential Furnace & Boiler

Measure Summary Information

Measure description Installation of a new high efficiency furnaces or boilers (85 – 96 AFUE) in either single- or multifamily homes. Not applicable for central boilers serving a multifamily dwelling.

End use HVAC – CZ04

Project eligibility Furnaces must meet either CEE Tier 2 (92 AFUE) or Tier 3 (94 AFUE) requirements.

Hot water boilers must meet ENERGY STAR requirements (85 AFUE).

Savings type UES

Unit energy savings 1. See Energy Savings Table – varies based on unit type and size as well as

building type1.

2. All savings are listed as therms per kBtu/h of heating capacity (kBtu/h output).

Incremental measure cost 1. See Energy Savings Table – varies based on unit type and size as well as building type.

2. All costs2

are per kBtu/h of heating capacity.

EUL 20 years3

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description 1. The baselines are adjusted from those listed in the DEER database. Baseline furnace efficiency is determined by federal standards of 80% AFUE for units of less than 225,000 Btu/h.

2. Baseline efficiency for boilers is 82% AFUE, per federal regulations.

3. A summary of the baseline unit efficiency assumptions has been listed in the Savings Adjustment Table.

Efficient case description 1. Furnaces with AFUE (annual fuel utilization efficiency) between 92% to 96%

2. Boiler AFUE efficiency of at least 85%

Savings Calculation

Annual energy savings formula

1. See TRM305 residential furnace spreadsheet.

2. Savings for this measure were derived from figures contained within the 2011 DEER database. The DEER database contains savings for six building vintage categories (ranges of buildings by age) for every measure and building use type. Only multifamily and single-family types were used in the analysis. For RUL values, the TRM spreadsheet combines the building vintage weights by total installed square

footage (California building stock data from IOU work paper2) to produce a single

weighted savings value.

3. Specific DEER savings figures were not available for the boiler measure. The savings calculations assume that the heating load for the furnace and the boiler are the same for this measure. Savings are determined using heating loads and efficiency improvements from baseline to efficient case conditions.

Peak demand reduction N/A for gas measures

Definitions

Vintage =

AFUE =

Building age as indicated in DEER savings database

Annual fuel utilization efficiency

Page 122: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 15 Gas Measures – Residential

15-2 Savings Estimation TRM

ers

Key Parameters

Building type Determines the average hours of operation and internal building loads.

HVAC unit size Total full-load heating capacity in kBtu/h. Units are assumed to be properly sized.

Quality Assurance: Design, Installation, Commissioning, and Operation

1. Determine if new unit will be replacing a functional unit or a failed unit.

2. Verify that new unit meets minimum efficiency requirements.

3. Verify that new unit is properly installed and commissioned.

Important Notes

Unit savings are for CZ04. 1

PGECOHVC145 R0 execsumm.xls, PGE, June 16, 2012 2PGECOHVC145 R0 execsumm.xls, PGE, November 15, 2012; Boiler pricing based on Internet research. Crown Boiler, 82% and

85% AFUE, 91,000 Btu/h 3DEER_EUL_Summary_10-1-2008.xls

15.1.1 Energy Savings Table

This table provides the ranges of savings values for each furnace type.

Unit Size and Type

Energy Savings Therms per kBtu/h

Output

Residential furnace – 90% AFUE – single family 0.386

Residential furnace – 90% AFUE – multifamily 0.329

Residential furnace – 92% AFUE – single family 0.477

Residential furnace – 92% AFUE – multifamily 0.406

Residential furnace – 94% AFUE – single family 0.568

Residential furnace – 94% AFUE – multifamily 0.483

Residential furnace – 96% AFUE – single family 0.658

Residential furnace – 96% AFUE – multifamily 0.560

Residential hot water boiler – 85% AFUE – single family 0.069

Residential hot water boiler – 85% AFUE – multifamily 0.059

15.1.2 Unit Efficiency Ratings

This table shows the efficiency ratings used in the DEER analysis, the minimum federal baseline

efficiencies, and measure furnace efficiencies.

Unit Size and Type

DEER Baseline ‒ (AFUE)

Federal Baseline – (AFUE)

TRM Replacement Unit Efficiency

(AFUE)

Residential furnace – 92% AFUE 78 80 92

Residential furnace – 94% AFUE 78 80 94

Residential furnace – 96% AFUE 78 80 96

Residential hot water boiler – 80% AFUE N/A 82 85

Page 123: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures – Residential Section 15

Savings Estimation TRM 15-3

ers

15.1.3 Measure Cost Table

This table provides the incremental measure cost.

Unit Size and Type Measure Cost (per

kBtu/h output)

Residential furnace – 90% AFUE – single family $3.44

Residential furnace – 90% AFUE – multifamily $3.44

Residential furnace – 92% AFUE – single family $5.11

Residential furnace – 92% AFUE – multifamily $5.11

Residential furnace – 94% AFUE – single family $6.91

Residential furnace – 94% AFUE – multifamily $6.91

Residential furnace – 96% AFUE – single family $8.85

Residential furnace – 96% AFUE – multifamily $8.85

Residential hot water boiler – 85% AFUE – single family $6.59

Residential hot water boiler – 85% AFUE – multifamily $6.59

15.2 Domestic Hot Water Piping Insulation – Multifamily Recirculating System

Measure Summary Information

Measure description Installation of insulation at least of ½ – ¾ inches thick on existing hot water pipes

End use DHW

Project eligibility Existing hot water pipes are uninsulated in multifamily central hot water systems with recirculation pumps.

Savings type UES

Unit energy savings 0.54 therms per year per linear foot of pipe1

Incremental measure cost $1 per linear foot1

EUL 11 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Hot water pipe with no insulation

Efficient case description Installation of insulation of ½ – ¾ inches thick

Savings Calculation

Annual energy savings formula

IOU work paper1. The energy savings were calculated using the NAIMA’s 3E Plus

V4.0 software.

Peak demand reduction N/A

Key Parameters

Annual EFLH 2,641 hours per year

Pipe parameters The pipe is assumed to be copper with a 1-inch pipe diameter

Fluid temperature Hot water is assumed to be 120°F

Insulation parameters Polyethylene foam insulation of ½ inch thickness or greater

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

N/A 1SDG&E work paper WPSDGEREWH1203 Rev0 MF Multi-Family Pipe Wrap Central Recirculation Systems, June 2012

Page 124: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 15 Gas Measures – Residential

15-4 Savings Estimation TRM

ers

15.3 Domestic Hot Water Heater

Measure Summary Information

Measure description Installation of a new high efficiency domestic hot water (DHW) heater in a residential application

End use DHW

Project eligibility 1. Gas storage water heaters must meet CEE Tier 1 or Tier 2 specifications and be ENERGY STAR certified.

2. Instantaneous gas-fired water heaters must meet or exceed measure efficiency requirements.

Savings type UES

Unit energy savings See Energy Savings Table

Incremental measure cost $931

EUL 15 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code

Baseline description Minimum hot water efficiency as required by the 2015 California Appliance Efficiency Regulations (Title 20)

Efficient case description 1. CEE Tier I: 0.67 EF

2. CEE Tier 2: 0.80 EF

3. Instantaneous hot water heater: EF ≥ 0.90 and EF ≥ 0.95

Savings Calculation

Annual energy savings formula

1. See TRM209 residential hot water heater spreadsheet.

2. Savings for this measure were derived using median daily water usage statistics

from LBNL studies3

and DOE test procedures.

Peak demand reduction N/A

Definitions

EF =

Energy factor – total annual energy efficiency of a unit including recovery efficiency, standby losses, and cycling losses.

Key Parameters

Median daily water use Average hot water usage for single-family homes

Quality Assurance: Design, Installation, Commissioning, and Operation

Verify that new unit meets minimum efficiency requirements.

Important Notes

N/A 1

IOU workpaper, PGECODHW104 R3 Gas Storage Wtr Htr.docx, 2012 2DEER_EUL_Summary_10-1-2008.xls

3Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies, LBNL, June 2012

Page 125: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures – Residential Section 15

Savings Estimation TRM 15-5

ers

15.3.1 Energy Savings Table

Unit Size and Type Energy Savings, Therms per Year

Gas hot water storage, 29 gallons, CEE Tier I, 0.67 EF 11

Gas hot water storage, 38 gallons, CEE Tier I, 0.67 EF 15

Gas hot water storage, 40 gallons, CEE Tier I, 0.67 EF 16

Gas hot water storage, 48 gallons, CEE Tier I, 0.67 EF 20

Gas hot water storage, 50 gallons, CEE Tier I, 0.67 EF 21

Gas hot water storage, 29 gallons, CEE Tier II, 0.80 EF 39

Gas hot water storage, 38 gallons, CEE Tier II, 0.80 EF 43

Gas hot water storage, 40 gallons, CEE Tier II, 0.80 EF 44

Gas hot water storage, 48 gallons, CEE Tier II, 0.80 EF 48

Gas hot water storage, 50 gallons, CEE Tier II, 0.80 EF 49

Instantaneous hot water heater, natural gas, 0.90 EF 13

Instantaneous hot water heater, natural gas, 0.95 EF 20

Page 126: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 15 Gas Measures – Residential

15-6 Savings Estimation TRM

ers

15.4 Low-Flow Showerheads

Measure Summary Information

Measure description Installation of a low-flow showerhead which reduces total water flow by introducing air into the stream. This reduction in flow reduces the load on a home’s hot water heating system.

End use DHW

Project eligibility Low-flow showerhead that reduces water flow below state code requirements or below preexisting conditions

Savings type UES

Unit energy savings There are no updated savings estimates available at this time. Current saving estimates in DEER are pre-code requirement changes made in August of 2015.

For existing condition baseline projects, the DEER energy savings data for low-flow showerheads ranging from 1.5 gpm to 2.0 gpm are provided with the TRM spreadsheets.

Incremental measure cost N/A

EUL DEER 2011 – 10 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code, Natural replacement - preexisting conditions.

Baseline description Showerhead available for purchase in the state of California, or preexisting showerhead

Efficient case description Showerhead with reduced flow rate

Savings Calculation

Annual energy savings formula

N/A

Peak demand reduction N/A

Definitions N/A

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

Code update:

As of August 2015, the California Appliance Standards (Title 20) limit showerheads to a maximum flow of 2 gpm. On July 1, 2018, the limit will be lowered to 1.8 gpm.

1

DEER_EUL_Summary_10-1-2008.xls

Page 127: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Gas Measures – Residential Section 15

Savings Estimation TRM 15-7

ers

15.5 Faucet Aerators

Measure Summary Information

Measure description Installation of a faucet flow aerator that reduces total water flow by introducing air into the stream. This reduction in flow reduces the load on a home’s hot water heating system.

End use DHW

Project eligibility Installation of aerators that reduces water flow below state code requirements or preexisting conditions

Savings type UES

Unit energy savings There are no updated savings estimates available at this time. Current saving estimates in DEER are pre-code requirement changes as of January 1, 2016.

For existing conditions baseline projects, the DEER energy savings data for low-flow aerators are provided with the TRM spreadsheets

Incremental measure cost Total measure cost – $13.241

EUL DEER 2011 – 10 years2

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – code, Natural replacement - preexisting conditions

Baseline description Aerator available for purchase in the state of California, or preexisting faucet aerator

Efficient case description Faucet aerators with reduced water flow

Savings Calculation

Annual energy savings formula

N/A

Peak demand reduction N/A

Definitions N/A

Key Parameters

N/A

Quality Assurance: Design, Installation, Commissioning, and Operation

N/A

Important Notes

Code update:

As of January 1, 2016, the California Appliance Efficiency Regulations (Title 20) limit faucet and aerator flow rates as follows:

Lavatory faucets and aerators – 1.2 gpm at 60 psi Kitchen faucets and aerators – 1.8 gpm with optional temporary flow of 2.2 gpm at 60 psi Public lavatory faucets – 0.5 gpm at 60 psi

1

PGE3PDHW116 Faucet Aerators Revision 0 – August 29, 2012 2DEER_EUL_Summary_10-1-2008.xls

Page 128: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol 16

Savings Estimation TRM 16-1

ers

16. CUSTOM MEASURE PROTOCOL

This section describes how program administrators can reliably estimate and document energy

savings for custom measures.

A custom measure is any measure not defined by this manual as either a unit energy savings

measure or a semi-custom measure. In more general terms, a custom measure is defined as an

energy-related project, action, equipment change, or system improvements that reduce energy

consumption.

16.1 Baseline Use in Estimating Energy Savings

In order to estimate energy savings, energy usage must be determined for both a baseline and

an efficient-case condition. The baseline condition is an estimate of the future energy use that

would have occurred in the absence of the installed measure. It is constrained by the available

alternatives to installing the measure. Alternatives are often project-specific and may include

“do nothing” or be limited by minimum code requirements or product availability. In practice,

the pre-retrofit energy use is adjusted3 to account for the alternative constraints and normalized

for comparison to the efficient-case condition. The efficient-case condition is the energy

consumption after the measure has been implemented. Energy savings are the difference

between the baseline and efficient-case energy use.

3 Often referred to as the adjusted baseline. In the context presented in this manual, adjusted baseline and

baseline have the same meaning.

Page 129: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 16 Custom Measure Protocol

16-2 Savings Estimation TRM

ers

Figure 16-1 Baseline and Efficient Case Energy Use

16.1.1 Baseline Examples

The following are examples of how pre-retrofit conditions are adjusted to determine the

baseline energy use:

Energy code baseline adjustment – The lighting fixtures in a warehouse are to be completely

replaced with new energy efficient high-bay fixtures. Energy code requires fixture replacements

to meet current code lighting power densities. Therefore, the baseline energy use is based on the

existing fixtures or on the energy code requirements, whichever uses less energy.

Federal regulations baseline adjustment – Lighting fixtures with T12 lamps will be retrofitted

with high performance T8 lamps and new ballasts. Recent federal regulations have ceased the

manufacturing of standard T12 lamps, such as the ones in the fixtures to be retrofitted. If the

existing stock of T12 replacement lamps has been depleted, then T12 lamps are not a viable

option. Therefore, the baseline energy use is based on a fixture lamp that meets federal

regulations. The lamp choices would be either first-generation T8 lamps or code-compliant T12

lamps (high-efficacy T12 lamps made with rare-earth elements that meet federal regulations).

Production rate baseline adjustment – An electric boiler at a manufacturing plant will be

replaced with a new, energy efficient boiler with heat recovery. The existing boiler energy use is

driven by the amount of product produced at the plant, which varies based on market demand.

The baseline energy use is based on the existing boiler energy use per unit of product produced,

which allows the projected baseline energy use to be compared to the efficient-case energy use.

Current practice baseline adjustment – A plant is expanding and needs to replace a heat

exchanger to meet its new capacity requirements. The existing two-stage heat exchanger is

considered obsolete. The least-efficient heat exchanger available for purchase is a four-stage

Page 130: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 16-3

ers

heat exchanger. Therefore, the baseline energy use is based on the use of a four-stage heat

exchanger to meet the expanded capacity requirements.

16.1.2 Dual Baseline

A dual baseline is used to properly assess a measure’s cost-effectiveness when more than one

baseline is applicable over the life of the measure. In this scenario, the baseline energy use for

the first baseline time period may be the preexisting conditions and is limited to the remaining

useful life (RUL) of the preexisting equipment. The second baseline energy use is based on code

or current practice, and its time period starts after the RUL time period ends and continues up

to the effective useful life (EUL) of the measure. The energy savings benefit of the measure

(used in cost-effectiveness tests) is based on the sum of the annual savings over the life of the

measure. Note that annual energy savings in this context is not the same as first-year savings,

which may be used for tracking program energy savings goals.

For example, consider that a packaged AC unit is replaced with a more energy-efficient unit.

The existing AC unit is 8 years old at the time of replacement, and its EUL is 15 years. The first

baseline energy use is based on the existing AC unit’s efficiency and the calculated annual

energy savings for this baseline is appropriate for the first 7 years (EUL minus the age of the

unit) of lifecycle energy savings. The second baseline energy use is based on the current energy

code efficiency requirements, and the calculated energy savings for the second baseline is

appropriate for the last 8 years of life cycle energy savings.

Figure 16-2 Dual Baseline Example

16.2 Energy Savings Estimate Approach

Custom measure energy savings can be estimated by using one of the three following

approaches:

1. Modified unit energy savings – The program administrator uses the analysis methodology

provided for a UES (or semi-custom) measure and adjusts project-specific parameters that

Page 131: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 16 Custom Measure Protocol

16-4 Savings Estimation TRM

ers

differ from those specified for the measure. This is often the simplest approach, because the

savings estimate methodology, assumptions, and key operating parameters are already

documented. Only the project-specific changes need to be documented.

2. Unit energy savings from other credible sources – Credible sources of reliable savings

estimate are those documented and vetted through peer engineering review or regulatory

process. Examples of credible sources include: California DEER database, CPUC-

approved IOU work papers4, Regional Technical Forum (RTF) approved and provisional

savings estimates and protocols, Efficiency Maine Technical Reference Manual, and the

New York Department of Public Service Technical Reference Manual. Use of savings

values from other credible sources should be confirmed to be current and the best-

available source of savings estimation. The underlying assumptions, conditions, or other

factors on which the savings estimates are based on should be verified as applicable for its

intended use. Note that weather-sensitive measures from other regions may need to be

adjusted for local climatic conditions.

3. Project-specific savings calculations – The program administrator estimates energy

savings using generally accepted engineering calculations and methodologies. Or, the

program administrator sets guidelines for program participants to provide energy savings

estimates. In either case, the energy savings estimates should be consistent with the

approach described in this section of the manual and fully documented.

16.3 Measure Description

The custom measure description should be described in terms of what systems or equipment is

affected, how the measure will be implemented, and how energy will be saved. Key

assumptions or operating parameters should also be described. The description is summary in

nature, and it is written so it clearly conveys all key aspects of the measure. The level of detail is

contingent upon the measure’s complexity or its uniqueness.

What systems or equipment are affected – Identify the system or equipment that will

reduce its energy consumption after the measure is implemented. For example, the

building’s central cooling plant utilizes two 25 hp chilled water supply pumps to deliver a

constant flow of chilled water to multiple air handlers. Another example: The open office

area is illuminated by recessed 4-foot, four-lamp T12 lighting fixtures. The lights are

controlled by time clocks.

How the measure will be implemented – Describe what actions are taken, what

equipment is removed or installed, or what changes are made to the affected system. For

the previous two examples: VFDs will be installed to control the speed of the two chilled

water pumps, the air handlers’ three-way valves will be replaced by two-way valves, and

new control algorithms will be programmed into the existing building automation system

4 Note that older versions (pre-2012) of IOU work papers or DEER data (pre-2011) may be obsolete and

not representative of the best available energy savings information.

Page 132: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 16-5

ers

to vary chilled water flow based on zone cooling load. Or, for the lighting system

example, the existing fixture T12 lamps and ballasts will be retrofitted with high

performance T8 lamps and premium electronic ballasts. Two T8 lamps will replace four

T12 lamps in each fixture. Occupancy sensors will be installed in the private offices.

How the measure saves energy – Explain how implementing the measure brings about a

reduction in energy use. For the HVAC example: By converting the chilled water flow

from constant to variable flow, the chiller water pump speed will vary and therefore use

less energy. For the lighting example: The new lamps and ballast require less power while

maintaining space lighting levels. The private office occupancy sensors will reduce the

lighting on-time by turning off lights when the office is unoccupied.

Key assumptions and operating parameters – Identify the key assumptions or operating

parameters that significantly affect the estimated energy savings. Often, these parameters

are the focus of post-project evaluation efforts to verify reported energy savings. For the

HVAC example: System trend data indicates the cooling system operates most of the time

at part load, with the majority of operating hours at or near 50% of full load. For the

lighting example: The building is occupied for more than 16 hours per day, resulting in

more than 3,000 annual lighting operating hours. Although the private office lights have

manual switches, building staff reported that the lights are never turned off. Occupancy

light loggers were deployed and they confirmed that the lights are operating for extended

periods when the offices are unoccupied.

Examples of operating parameters – Examples include: hours of operation, occupancy

schedules, production rates, variable or constant loads, automated control sequences (i.e.,

the boilers are shut off when the outside temperature is above 60°F), conditioned or

unconditioned space, human interaction and behavioral influences, interactive effects, and

equipment efficiency at full and part load.

16.4 Savings Calculation Methods

To estimate energy savings, the baseline and efficient case energy use are estimated. The

difference between the two is the measure energy savings. Annual energy savings are estimated

using an engineering model or estimated/validated through measurement and verification.

16.4.1 Engineering Model

Engineering models are generally one of two types: a spreadsheet model or a computer

software model. The engineering model can be as simple a single equation utilizing applicable

input parameters (i.e., difference in pre- and post-equipment efficiency multiplied by equivalent

full load hours) or a more complex analysis that accounts for dynamic operating parameters

and system interactions that affect energy use. A spreadsheet HVAC bin analysis, for example,

can be constructed to account for variable cooling and heating equipment loads that correlate to

outside weather conditions, production schedules, occupancy schedules, and/or operating

schedules. Computer software simulation models are effective at modeling complex and

dynamic building, equipment, or system interactions that affect energy use.

Page 133: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 16 Custom Measure Protocol

16-6 Savings Estimation TRM

ers

16.4.2 Model Transparency

Engineering models are subject to review. For models submitted by the program participant,

the program administrator must be able to review the savings estimates to ensure its validity.

Models used by a program administrator to estimate program or project-specific measure

savings are often subject to third-party review for the purposes of validating energy savings.

To assure an engineering model’s savings estimate is valid and reliable, the model should be

transparent and accessible to the reviewer. The savings algorithms for all calculations should be

completely described and sufficient enough so that the reviewer can reproduce the saving

estimate results. Equations in spreadsheet cells should be summarized (for each applicable

group or category) and each equation constant or variable defined. Any values derived from

external references or sources should be described. For complex models, a narrative should

accompany the model to guide the reviewer through the analysis.

Spreadsheet mega-formulas should be sufficiently described so that any reviewer can follow

and confirm the formula logic. A mega-formula is a complex formula created by combining

multiple formulas into a single formula, and it is characterized by the use of multiple embedded

functions. Mega-formulas are very difficult, if not impossible, to decipher, so it is essential that a

step-by-step breakdown of the formula be fully explained.

16.4.3 Measurement and Verification

Where savings estimates are highly variable or uncertain, post-project M&V can be used to

either validate energy savings or be the source of reported energy savings. Measurement and

verification (M&V), as defined by the IPMVP5, is the process of using measurements to reliably

determine actual savings. There are a variety of methods defined by IPMVP for using measured

data to estimate savings. They generally involve using measured data as input for engineering

models (the measured data calibrates the engineering model to site-specific conditions) or as the

basis of statistical models, such as a whole-building utility bill analysis. Statistical models can be

used to estimate energy savings based on measured data that is correlated to key parameters

that affect energy use, such as weather or production. In addition to the IPMVP, there are a

variety of available resources that provide guidance on statistical modeling techniques.6 M&V

costs can quickly escalate, so use of M&V to validate energy savings should be used sparingly.

And where used, M&V costs should be minimized through the use of statistical sampling

techniques.

16.5 Quality Assurance and Savings Validation

Whether or not a custom measure will realize its savings potential is dependent upon the

measure being properly installed, commissioned, and operating as predicted (in the savings

5 International Performance Measurement and Verification Protocol

6 For example, BPA regression guidelines, CPUC evaluation protocols, ASHRAE Guideline 14, CEC

commissioning guidelines. See Section 14 – References.

Page 134: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 16-7

ers

analysis). The following approaches are used to ensure the measure is achieving, or is capable

of achieving, energy savings.

Pre-Implementation

Documentation review – The measure should be properly documented, as described in

the following section. The documentation should be examined to ensure that it is complete

and that it provides all essential information for verifying savings estimates.

Site pre-inspection and interviews – Site inspections may be conducted to verify

preexisting conditions, quantities of measures, key operating parameters, equipment

performance, and baseline assumptions in the measure documentation.

Measured data collection – To address uncertainties regarding the performance of the

measure or to confirm the validity of assumptions used in the baseline analysis, spot

measurements, data trending (via data loggers or building control systems), or other

performance tests may be conducted before the measure is implemented. Pre-

implementation measured data is also collected if required as part of an M&V approach to

estimating savings.

Post-Implementation

Documentation retention – All program-required documents should be reviewed to

ensure they are accurate and complete. All energy savings-related documentation should

be retained for future savings validation or evaluation efforts.

Site post-inspection and interviews – Site inspections and interviews may be conducted

to verify that the measure was installed, commissioned, and operating as intended.

Measured data collection – Spot measurements or data trending may be conducted to

verify measure key operating parameters, or to meet the requirements of an M&V plan.

Third-party evaluation – The measure may be evaluated as part of a program evaluation

to verify energy savings.

16.6 Documentation

Proper documentation of custom measures is essential for demonstrating the reliability of

reported measure energy savings. A fully documented measure helps to ensure the measure is

installed and operating as intended. It will also help optimize program evaluation efforts by

providing evaluators with the necessary information that is needed to verify savings estimates.

A fully documented measure consists of a measure description, energy savings summary,

baseline description, savings calculations, and a summary of quality assurance activities.

Table 16-1 provides a template for guiding program administrators through the

documentation process.

Page 135: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 16 Custom Measure Protocol

16-8 Savings Estimation TRM

ers

Table 16-1 Custom Energy Savings Measure Template

Custom Energy Savings Measure Description

Measure name Provide brief, but descriptive name.

What systems or equipment are affected? Identify the systems or equipment that will use less energy.

How will the measure be implemented? Describe what actions are taken, what equipment is removed or installed, or what changes are made to the affected system.

How does the measure save energy? Explain how implementing the measure brings about a reduction in energy use.

List of key assumptions and operating parameters Identify factors that significantly affect energy saving estimates.

Energy Savings Summary

kWh/yr savings Estimated annual energy savings

kW peak demand reduction Demand reduction at the time of utility or CA grid peak demand.

Therms/yr savings Natural gas measures.

Measure EUL Cite source of EUL.

Incremental measure cost Report only costs associated with measure implementation, or additional costs of more efficient unit compared to baseline unit.

Baseline and Efficient Case Conditions

Baseline type Natural replacement – code, current practice or preexisting, or dual baseline – early retirement

Baseline description Pre-retrofit condition or adjusted baseline condition

Efficient case description Post-retrofit condition

Savings Calculations

Approach Modified UES, reference to other credible source, engineering model, measured data (M&V)

Savings equation(s) Savings formulas used in model, including a description of each equation parameter

Quality Assurance and Savings Validation

Pre-implementation activities Document as needed.

Post-implementation activities Document as needed.

M&V plan If M&V is required, all reports, data, and supporting information should be considered part of the measure documentation.

Page 136: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Provisional Measures 17

Savings Estimation TRM 17-1

ers

17. PROVISIONAL MEASURES

This section provides savings estimates for provisional measures. Provisional savings measures

are measures that do not yet meet the reliability standard of a UES measure. The most typical

are emerging technology or newly adopted program measures that exhibit significant energy

saving potential. Provisional measures may also include measures that have a minor impact

on overall program savings for which UES savings estimates are not yet available. Provisional

savings estimates provide an interim solution for reporting measure savings while testing,

evaluation, or demonstration efforts are under way to validate energy savings estimates.

Savings estimates for provisional measures have a higher degree of uncertainty than UES

estimates and are expected to be updated by current or future studies and evaluations. Given

the temporary nature of the savings estimate, each provisional measure is assigned a sunset

date after which the savings estimate should be updated or other sources or credible savings

estimates should be used. Future TRM updates will either revise the savings estimates and set a

new sunset date, revise the measure savings estimates and reclassify the measure as a UES

measure, or remove the measure. Revised savings will be based on the most current and best

available data.

The savings estimates provide a simplified approach for reporting measure savings. The

savings estimates are considered a secondary option when compared to savings estimates that

are validated through program measurement and verification.

It’s anticipated that provisional savings estimates will account for a relatively small portion of a

program administrator’s reported savings. Program administrators should track the percentage

of savings reported that are based on provisional savings estimates. If the percentage exceeds a

specified amount, it should be reported in the program’s annual regulatory compliance report

along with a plan of action for reducing the uncertainty in the reported savings.

Page 137: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 17 References

17-2 Savings Estimation TRM

ers

17.1 Web-Enabled Programmable Thermostats – Commercial Application

Measure Summary Information

Measure description Replacement of an existing nonprogrammable thermostat with a web-enabled programmable thermostat or replacement of a programmable thermostat with a web-enabled programmable thermostat.

End use HVAC – commercial

Measure eligibility The measure is applicable for advanced programmable thermostats that allow temperature setpoints and operating schedules to be monitored and set remotely via an Internet connection.

Savings type Provisional

Unit energy savings 101 – 223 kWh per tons of HVAC unit capacity

0.202 – 0.432 kWh per square foot of conditioned space

See Energy Savings Table for savings by HVAC unit type and climate zone

Incremental measure cost Project-specific costs should be obtained and used for reporting measure costs. The applicable measure costs are the full installation, equipment, and material costs for installing the thermostat.

EUL 11 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description A commercial-grade nonprogrammable thermostat. Or a commercial-grade programmable thermostat that has any of the following conditions: sensors are out of calibration, used primarily in manual bypass mode, has complex control settings that are not user-friendly, or has a high level of user dissatisfaction resulting in suboptimal use of the thermostat.

Efficient case description New web-enabled programmable thermostat. Remote access monitoring and adjustment capabilities are actively used. Thermostat features may include: ease of use, advanced control logic for optimum start/stop or setpoint adjustments, heat pump control logic minimizing or eliminating use of electric emergency heating, and accurate control of space temperature (proportional and integral control algorithms).

Savings Calculation

Annual energy savings formula

See TRM500 spreadsheet for methodology used and sources relied upon to estimate savings.

The savings estimates are based on CEUS2 data for energy use and assume a 10%

savings reduction.

Peak demand reduction 0 kW

Definitions See TRM500

Key Parameters for Estimating Savings

HVAC cooling capacity The HVAC unit nominal capacity or size, in tons, is needed to estimate measure savings. If the unit size is unknown, then the conditioned area served by the unit may be used to estimate savings

Square foot of conditioned area

The conditioned area may be used to estimate measure savings.

HVAC unit type The type of HVAC unit should be obtained. Applicable HVAC types are electric cooling only, electric cooling/gas heating, and all-electric air source heat pump units.

Existing thermostat type The thermostat make and model should be obtained to confirm thermostat capabilities and obtain other relevant data, such as wiring diagrams

Existing thermostat programmable settings

The thermostat operating status (e.g., in programming mode, in manual bypass) should be obtained as well as the currently used programmable settings. This information will be useful for evaluating and validating program savings

Page 138: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 17-3

ers

Program Design and Eligibility Considerations

Eligible thermostats should have advanced programming capabilities and be accessible via the Internet. Users should be required to maintain an Internet connection to the thermostat and be encouraged to regularly use its reporting and alarm features. Program administrators may also wish to limit or prohibit replacement of existing programmable thermostats where the thermostat’s operating schedules and temperature setbacks are being used effectively.

Savings Estimate Expiration Date

The savings estimates for this measure are provisional and expire on June 30, 2017. At that time, the savings estimates should be revised and updated based on the best available data.

There are a number of studies that are either ongoing or in the planning stages that are expected to provide recommendations on the best way to estimate and report program savings. In addition, the studies should identify and provide best practices for effective program design and implementation.

1DEER 2014, DEER2014-EUL-table-update_2014-02-05.xlsx

2California End Use Survey-2006, CEC

17.1.1 Energy Savings Table – kWh per Ton of Cooling Capacity1

Climate Zone AC Unit Heat Pump

CZ02 101 116

CZ03 200 218

CZ04 179 191

CZ05 179 191

CZ08 213 223

CZ09 195 204

CZ10 185 192

CZ11 164 169

CZ12 138 146

CZ13 164 169

CZ14 185 192

CZ15 204 218

CZ16 195 204 1Tons-capacity is the rated or nominal full load cooling capacity of the HVAC unit.

17.1.2 Energy Savings Table – kWh per Square Foot of Conditioned Area

Climate Zone AC Unit Heat Pump

CZ02 0.202 0.231

CZ03 0.317 0.347

CZ04 0.356 0.378

CZ05 0.356 0.378

CZ08 0.422 0.441

CZ09 0.378 0.396

CZ10 0.38 0.394

CZ11 0.334 0.343

CZ12 0.269 0.285

CZ13 0.334 0.343

CZ14 0.38 0.394

CZ15 0.404 0.432

CZ16 0.378 0.396

Page 139: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 17 References

17-4 Savings Estimation TRM

ers

17.1.3 Energy Savings Table – Therms per Ton of Cooling Capacity

Climate Zone Therms/Ton

CZ02 3

CZ03 9

CZ04 6

CZ05 6

CZ08 3

CZ09 3

CZ10 4

CZ11 6

CZ12 7

CZ13 6

CZ14 4

CZ15 4

CZ16 3

17.1.4 Energy Savings Table – Therms per Square Foot of Conditioned Area

Climate Zone Therms/sf

CZ02 0.006

CZ03 0.014

CZ04 0.011

CZ05 0.011

CZ08 0.006

CZ09 0.006

CZ10 0.007

CZ11 0.012

CZ12 0.014

CZ13 0.012

CZ14 0.007

CZ15 0.008

CZ16 0.006

17.2 Smart Thermostats – Residential

Measure Summary Information

Measure description Replacement of an existing nonprogrammable thermostat with a web-enabled programmable thermostat or replacement of a programmable thermostat with a web-enabled programmable thermostat.

End use HVAC – residential

Measure eligibility The measure is applicable for advanced programmable thermostats that allow temperature setpoints and operating schedules to be monitored and set remotely via an Internet connection.

Savings type Provisional

Unit energy savings 0.009 – 0.304 kWh per square foot of conditioned area

0.001 – 0.022 therms per square foot of conditioned area

See Energy Savings Tables for savings by climate zone and HVAC unit type

Page 140: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 17-5

ers

Incremental measure cost Project-specific costs should be obtained and used for reporting measure costs. The applicable measure costs are the full installation, equipment, and material costs for installing the thermostat.

EUL 11 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description A nonprogrammable thermostat. Or a programmable thermostat that has any of the following conditions: sensors are out of calibration, used primarily in manual by-pass mode, has complex control settings that are not user-friendly, or has a high level of user dissatisfaction resulting in suboptimal use of the thermostat.

Efficient case description New web-enabled programmable thermostat. Thermostat features may include: ease of use, advanced control logic for optimum start/stop or setpoint adjustments, heat pump control logic minimizing or eliminating use of electric backup heating, and accurate control of space temperature (proportional and integral control algorithms).

Savings Calculation

Annual energy savings formula

See TRM501 spreadsheet for methodology used and sources relied upon to estimate savings.

The savings estimates are based on RASS2 data for energy use and assume a 10%

savings reduction.

Peak demand reduction 0 kW

Definitions See TRM501 spreadsheet

Key Parameters for Estimating Savings

Square feet of conditioned area

The dwelling’s conditioned area is needed to estimate measure savings. If the area cannot be obtained, then the HVAC unit’s size may be used to estimate savings.

HVAC unit size The HVAC unit nominal capacity or size, in tons, may be used to estimate savings.

HVAC unit type The type of HVAC unit should be obtained if used for estimating savings. Applicable HVAC types are electric cooling only, electric cooling/gas heating, and all-electric air source heat pump units.

Existing thermostat type The thermostat make and model should be obtained to confirm thermostat capabilities and obtain other relevant data, such as wiring diagrams.

Existing thermostat programmable settings

The thermostat operating status (e.g., in programming mode, in manual bypass) should be obtained as well as the currently used programmable settings. This information will be useful for evaluating and validating program savings.

Program Design and Eligibility Considerations

Eligible thermostats should have advanced programming capabilities and be accessible via the Internet. Users should be required to maintain an Internet connection to the thermostat. Program administrators may also wish to limit or prohibit replacement of existing programmable thermostats where the thermostat’s operating schedules and temperature setbacks are being used effectively.

Savings Estimate Expiration Date

The savings estimates for this measure are provisional and expire on June 30, 2017. At that time, the savings estimates should be revised and updated based on the best available data.

There are a number of studies that are either ongoing or in the planning stages that are expected to provide recommendations on the best way to estimate and report program savings. In addition, the studies should identify and provide best practices for effective program design and implementation. 1DEER 2014, DEER2014-EUL-table-update_2014-02-05.xlsx

2RASS, Residential Appliance Saturation Survey, 2009

Page 141: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 17 References

17-6 Savings Estimation TRM

ers

17.2.1 Energy Savings Table – kWh per Square Foot of Conditioned Area

Climate Zone

Single Family A/C

Unit Single Family-

Heat Pump Multifamily-

A/C Unit Multifamily-Heat Pump

CZ02 0.051 0.070 0.015 0.038

CZ03 0.014 0.176 0.009 0.135

CZ04 0.034 0.055 0.017 0.041

CZ05 0.031 0.055 0.017 0.041

CZ08 0.037 0.304 0.024 0.030

CZ09 0.060 0.055 0.042 0.037

CZ10 0.087 0.084 0.096 0.025

CZ11 0.084 0.056 0.072 0.025

CZ12 0.060 0.065 0.045 0.035

CZ13 0.084 0.056 0.072 0.025

CZ14 0.087 0.084 0.096 0.025

CZ15 0.043 0.070 0.023 0.018

CZ16 0.060 0.055 0.042 0.037

17.2.2 Energy Savings Table – Therms per Square Foot of Conditioned Area

Climate Zone

Single Family-AC unit

Multifamily-AC unit

CZ02 0.012 0.002

CZ03 0.022 0.009

CZ04 0.010 0.003

CZ05 0.011 0.003

CZ08 0.009 0.002

CZ09 0.006 0.002

CZ10 0.012 0.004

CZ11 0.010 0.004

CZ12 0.011 0.006

CZ13 0.010 0.004

CZ14 0.012 0.004

CZ15 0.007 0.001

CZ16 0.005 0.002

17.3

Page 142: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 17-7

ers

17.4 Tier II Advanced Power Strips – Residential

Measure Summary Information

Measure description Replacement of a standard electric power strip with a new Tier II advanced power strip (Tier II APS)

End use Residential – for controlling audio video home entertainment equipment

Measure eligibility Qualifying products must be tested in both lab and field trials to demonstrate performance and savings potential

Savings type Provisional

Unit energy savings 212 kWh per unit1

Incremental measure cost $451

EUL 5 years1

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description A standard power strip that supplies electric power to a minimum of two AV devices with at least one being a television

Efficient case description A Tier II APS controlling power to a minimum of two AV devices with at least one being a television

Savings Calculation

Annual energy savings formula

Savings are derived from field trial test data.1

Peak demand reduction 0.003 kW

Definitions Currently, there are no industry-standard specifications for Tier II APS devices. The University of California, Irvine’s California Plug Load Research Center (CALPLUG) has suggested that the devices at a minimum have the following features:

Usage sensing – provide at least one method to sense and determine consumer utilization and usage patterns

Advanced power analysis – in addition to voltage and current sensing, the device must perform advanced power analysis, including true root mean square power analysis, power factor analysis, and load signature detection

Control algorithms – perform automated power management of connect devices based on data and information acquired

Key Parameters for Estimating Savings

AV entertainment equipment controlled by the device

Savings are relative to the amount of power controlled by the device.

Equipment use patterns Savings are achieved by powering down equipment after a period (typically 1 hour) of inactivity

Behavior User acceptance of device is essential to the persistence of savings

Program Design and Eligibility Considerations

Eligible Tier II devices should meet the performance and test recommendations of an independent testing or research agency, such as CALPLUG. Program administrators should consider ways to ensure that the device is properly installed and controls at a minimum one television and one other AV device such as a DVD player, cable box, or surround sound system. Program administrators should also consider ways to ensure the device is not removed, or verify installation and persistence of use by conducting post installation evaluation.

Savings Estimate Expiration Date

The savings estimates for this measure are provisional and expire on June 30, 2018. At that time, the savings and effective useful life of the measure should be revised based on ongoing tests, evaluations, and studies.

1IOU workpaper, WPSDGEREHE0004, Revision 0.3, August 25, 2015

Page 143: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 17 References

17-8 Savings Estimation TRM

ers

17.5 Home Energy Reports – Residential

Measure Summary Information

Measure description Behavioral program – delivery of monthly energy reports that are designed to influence customers to reduce energy use by providing comparisons to efficient and similar homes.

End use Residential – comprehensive

Measure eligibility Applicable to residential home energy reports that provide feedback, comparisons, and efficiency suggestions based on monthly electric and/or natural gas energy use.

Savings type Custom – provisional

Program savings are reported using the custom input section of the POU reporting tool (currently the E3 reporting tool spreadsheet)

Unit energy savings 1.48% of annual electric energy use1

0.60% of annual natural gas energy use2

The preferred approach for estimating program-specific savings is to conduct randomized control trial (RCT) evaluation. Other saving estimate methods are being explored that may eventually be proven to produce comparable results.

Incremental measure cost Program administrator implementation costs for the program

EUL 1 year.

It’s possible that savings could persist beyond the treatment (i.e., delivery of monthly reports), which would result in a EUL greater than 1. However, persistence of savings has not yet been substantiated to a degree that would allow for the use of default persistence assumptions. Additionally, reporting annual savings estimates with EULs greater than 1 year requires adjustment of savings claimed in future years should the program operate for more than 1 year.

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description Nonparticipant in the program (does not receive home energy reports)

Efficient case description Customer receives monthly energy reports

Savings Calculation

Annual energy savings formula

Based on post-measurement results using randomized control trials1

Peak demand reduction N/A

Definitions N/A

Key Parameters for Estimating Savings

Annual energy use Pre- and post-treatment energy use of participants and control group non-participants

Program Design and Eligibility Considerations

N/A

Savings Estimate Expiration Date

The savings estimates for this measure are provisional and expire on June 30, 2018. At that time, savings should be revised based on the best available data and studies. 1 Comparison of Methods for Estimating Energy Savings from Home Energy Reports, 2015, PG&E

2 Evaluation of Pacific Gas and Electric Company’s Home Energy Report Initiative for the 2010-2012 Program, 2013, PG&E

Page 144: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Custom Measure Protocol Section 16

Savings Estimation TRM 17-9

ers

17.6 T8 LED Tube Lamp Replacement – Nonresidential

Measure Summary Information

Measure description T8 LED tube lamp replacement of an existing T8 lamp. The new LED lamp uses the existing lamp ballast.

End use Lighting - nonresidential

Measure eligibility Replacement of existing T8 or T12 lamp

Savings type UES – provisional

Unit energy savings See Energy Savings Table

Incremental measure cost $231

EUL 5 years

Baseline and Efficient Case Conditions

Applicable baseline types Natural replacement – preexisting conditions

Baseline description For 23W LED lamp: T8 32W

For 19W LED lamp: T8 28W

For 16W LED lamp: T8 25W

Efficient case description 23W LED tube lamp

19W LED tube lamp

16W LED tube lamp

Existing lamp ballast

Savings Calculation

Annual energy savings formula

( )( )

See TRM504 spreadsheet

Peak demand reduction ( )( )

Definitions

kW =

hrs =

IE =

IEd =

CDF=

Demand reduction between baseline and new lamp

Default operating hours, for retail and office end-use spaces

HVAC interactive effects, energy (statewide average)

HVAC interactive effects, demand (statewide average)

Coincident demand factor (building type average)

Key Parameters for Estimating Savings

See CalTF proceedings

Program Design and Eligibility Considerations

See CalTF proceedings

Savings Estimate Expiration Date

The savings estimates for this measure are provisional and expire on June 30, 2017, or when CalTF approves a final savings estimate, whichever occurs first.

1 2015-02-04-LED-Tube-Lamp_Replacement-Cal-TF-Workpaper-Abstract-9zjp.docx

Page 145: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 17 References

17-10 Savings Estimation TRM

ers

17.6.1 Energy Savings Table

T8 Tube Lamp Wattage End Use

kWh Savings

kWp Reduction

23 Office 18 0.004

19 Office 17 0.004

16 Office 17 0.004

23 Retail 24 0.004

19 Retail 22 0.004

16 Retail 22 0.004

Page 146: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

References 18

Savings Estimation TRM 18-1

ers

18. REFERENCES

The following resources were used in the development of this technical reference manual.

ACEE Emerging Hot Water Technologies and Practices for Energy Efficiency as of 2011, Feb

2012.

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings, Lawrence

Berkeley National Laboratory, 2011.

ASD Calculator for Fan & Pump Applications, BPA – summary of information provided in

"Flow Control," a Westinghouse publication, Bulletin B-851, F/86/Rev-CMS 8121.

ASHRAE Guideline 14-2002 – Measurement of Energy and Demand Savings.

California Energy Commission’s Public Interest Energy Research Program Technical Brief,

“Energy Use of Household Electronics: Taming the Wild Growth,” September 2008.

California Energy Commission CASE study: “Night Ventilation Cooling Compliance Option”

September 2011

California Public Utilities Commission evaluation policy, reports, and protocols, http://www.cpuc.ca.gov

California Technical Forum

Consortium for Energy Efficiency, various specifications.

Consortium for Energy Efficiency, High Efficiency Residential Gas Water Heating Initiative

Consortium for Energy Efficiency, High Efficiency Residential Gas Heating Initiative

CL&P and UI Program Savings Documentation for 2008 Program Year, Connecticut Light &

Power Company, September 2007.

Database for Energy Efficient Resources, www.deeresources.com.

DesignLights™ Consortium Qualified Products List, www.designlights.org/.

Efficiency Maine Commercial Technical Reference Manual, December 2011.

ENERGY STAR lists qualified LED fixtures and qualified screw-in LED lamps:

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=LU.

ENERGY STAR room air conditioner calculator, www.energystar.gov.

ENERGY STAR Room Air Conditioners Key Product Criteria

Page 147: CMUA - ers CMUA POU TRM_Final... · 2019. 3. 22. · contents savings estimation trm ers v 10. trm109_display case ec motor_v3 15 2016.xlsx 11. trm110_strip curtains_v2 18 2014.xlsx

Section 17 References

18-2 Savings Estimation TRM

ers

ENERGY STAR Automatic Commercial Ice Maker Specifications

ENERGY STAR commercial equipment kitchen calculator

ENERGY STAR appliance calculator

Guidelines for the Development and Maintenance of RTF Savings Estimation Methods, July 2012,

Regional Technical Forum.

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies, LBNL, June 2012.

International Performance Measurement and Verification Protocol, January 2012, Efficiency Valuation

Organization, www.evo-world.org.

Lighting Research Program Project 5.1 Bi-Level Stairwell Fixture Performance, California

Energy Commission, 2011.

Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency

Measures, Massachusetts Electric and Gas Energy, October 2010.

Measure Quantification Methodology Statewide Savings and Cost, prepared for Northern California

Power Agency and Southern California Public Power Authority, KEMA, December 2009.

National Renewable Energy Laboratory Analysis of Hot Water Heat Pumps, Technical Report #

NREL/TP-5500-58594, July 2013.

New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs,

New York Department of Public Service, December 2008.

Northwest Power and Conservation Council’s Regional Technical Forum, http://www.nwcouncil.org/energy/rtf/Default.htm.

PG&E Food Service Technology Center.

Regression for M&V: Reference Guide, Version 1, Bonneville Power Administration (BPA),

September 2011.

Super-Efficient Dryer Initiative (SEDI)

Uniform Methods Project for Determining Energy Efficiency Program Savings, Office of the

Energy Efficiency & Renewable Energy (EERE), U.S. Department of Energy, http://www1.eere.energy.gov/office_eere/de_ump.html.