co2 separation and capture technology: present …...industries, ltd. kansai electric power co. inc....

36
1 Y. Fujioka Y. Fujioka Research Institute of Innovative Technology for the Earth Research Institute of Innovative Technology for the Earth CO2 separation and capture technology: Present and future CO2 separation and capture technology: CO2 separation and capture technology: Present and future Present and future CCS Workshop 2007 CCS Workshop 2007 15 15 th th , , February February , 2007 , 2007 The Keihanna Plaza in Kyoto The Keihanna Plaza in Kyoto Cross section of Organic composite Membrane

Upload: others

Post on 06-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

1

Y. FujiokaY. FujiokaResearch Institute of Innovative Technology for the EarthResearch Institute of Innovative Technology for the Earth

CO2 separation and capture technology: Present and future

CO2 separation and capture technology: CO2 separation and capture technology: Present and future Present and future

CCS Workshop 2007CCS Workshop 20071515thth, , FebruaryFebruary , 2007, 2007The Keihanna Plaza in KyotoThe Keihanna Plaza in Kyoto

Cross section of Organic composite Membrane

2

OutlineOutline

1. Measures against global warming

2. Introduction of CO2 capture technology for CCS

3. Development of CO2 capture technology in RITE

4. Progress of organic membrane separation

3

DNE 21 ModelDNE 21 Model

Measures against global warming

Energy Saving

Fuel Switching

1. Energy managementNuclear Power

3. Nuclear Power

Ocean Seq.

Aquifer Seq.

Gas Well Seq.

EOR

4. CO2 capture and Storage

2. Renewable Energy

Biomass

Solar cell

Wind Power

Hydro & Geoth.

5. Enlargement of CO2 sinkReforestation

4

Technological Options for 550 ppmv StabilizationTechnological Options for 550 ppmv Stabilization

0

5

10

15

20

25

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100Year

Car

bon

emis

sion

s an

d re

duct

ions

(GtC

/yr)

Net Carbon Emissionsin 550ppmv Case

Net Carbon Emissionsin Reference Case

Energy SavingFuel SwitchingBiomassSolar CellWind PowerHydro & Geoth.Nuclear PowerOcean Seq.Aquifer Seq.Gas Well Seq.EORReforestationNet CO2 Emission

RITE Report NEDO-GET-9623 (1997)

Under 550ppm Case

CCS (CO2 capture and storage)

5

COCO22 emission without COemission without CO22 CaptureCapture

0 0.2 0.4 0.6 0.8 1

Nuclear

LNGC P.P.

LNG P.P.

Oil P.P.

Coal P.P.

ton-CO2/MWh

ConstructionFuel

6

Trend of energy cost in JapanTrend of energy cost in Japan

0

5

10

15

20

25

30

35

40

45

1990 1995 2000 2001 2002 2003 2004 2005

千円/トン

石炭(オーストラリア)

石油(サウジアラビア)

天然ガス(インドネシア)

針葉樹木材(アメリカ)

広葉樹木材(オーストラリア)

Ref: Trade Statistics of Ministry of Finance in JapanYear

X 1

000

JPY

/ton-

fuel

Coal (Australia)

Oil (Saudi Arabia )

NG (Indonesia)

Lumber (USA)

Lumber (Australia)

Comparison of fuel cost (% / MJ) in JapanOil : NG : Coal : Lumber = 300 : 300 : 100 : 500

7

Coal Conversion & COCoal Conversion & CO22 CaptureCapture(1) Post-Combustion Capture

H2O,N2,O2CO2,H2O,N2,O2

AirCoalDe-Dust De-

NOxDe-SOx

PC

CO2 Capture(Chemical Absorption)

CO2 Capture

Pre-Combustion De Carbonization

G/TCO,CO2,H2,H2O CO2,H2 H2H2O

(3)

De-Dust,SOx Shift Reac.

AirO2Coal GasifierASU

Air

CO2 Capture(Physical Absorption or Membrane Separation)

CO2 Capture

N2, O2

Air

Oxy-Fuel(2)

H2O

ASU

CO2,H2O,O2

AirCO2 Capture

(Cooling)

De-Dust (De-NOx) De-SOx

Heat Ex.O2Coal

PC

CO2

8

Electricity Cost with & without COElectricity Cost with & without CO22 CaptureCapture

Ref: IPCC Special Report (2005)

9

COCO22 Separation CostSeparation CostMinimum Maximum Average

[ US$/t on-CO2 avoided]

Existing PC + Chemical Absorption 45 73 59

New Designed PC + Chemical Absorption 29 51 41

NGCC + Chemical Absorption 37 74 53

IGCC + Physical Absorption 13 37 28

Oxyfuel (PC) 14 72 40

System

Ref; IPCC Special Report (2005)

10

COCO22 Separation EnergySeparation Energy

Capture MethodSeparation Energy [GJ/ton-CO2]

CO2 Source Experimental Scale

Rotational TSA 3.1 PCPCPC

PC

NG Boiler

IGCC

Oxy-fuel (Coal)

IGCC

BenchPTSA 6.5 BenchTSA 4.2 BenchChemical Absorption (MEA) 4.0 Pilot

Membrane 0.7 Beaker

Chemical Absorption (KS solution) 2.9 Pilot

Physical Absorption 1.7 Commercial

Cooling 2.5 Bench

11

SeparationSeparation EnergyEnergy

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 0.2 0.4 0.6 0.8 1

298 K

573 K

873 K

Theoretical

Initial CO2 Concentration [ - ]

Sep

erat

ion

Ene

rgy

[ G

J / t

on-C

O2

]Chemical Absorption

Physical Absorption

Membrane

12

OxyfuelOxyfuel

• Increase of energy in Oxyfuela. ASU (Air Separation Unit) ∆ 2.1 GJ/ton-CO2

b. CO2 Recirculation fun ∆ 0.3c. Cooling Water ∆ 0.1d. Total 2.5

• ASU Energy RatioPractical/Theoretical Energy = 4

It is difficult to reduce Oxyfuel energy.

13

Vision of power plant and CO2 capture

Technology Development or practical application time

PC: Pulverized coal combustion boilerNGCC: Natural gas combined cycle

IGCC: Integrated coal gasification combined cycleACC: Advanced Combined Cycle

ACC+Oxyfuel

Incr

ease

of e

cono

mic

effi

cien

cy

PC+CA

NGCC+CA

PC+Oxyfuel

IGCC+PA

IGCC+MS

IGCC+MS(or PA)+SOFC

CA: Chemical absorptionPA: Physical absorptionMS: Membrane separation

14

COCO22 Capture technology in RITECapture technology in RITE

1. Chemical AbsorptionImprovement of absorbent for CO2 for low separation energy

2. Inorganic MembraneMembrane reactor for water-gas shift reaction at high temperature

3. Organic MembraneMembrane with high CO2/N2 and CO2/H2 selectivity.

15

COCS projectCOCS project (Cost Saving CO2 Capture System )

Steel Works

Blust Furnace GasCO2 22%

(CO,H2 etc.)

CO299%

Fuel: CO2 2 %Chemical Absorption

Absorber

Regenerator

Reboiler

ObjectivesReduce CO2 Capture Cost

by half andEvaluate New Technology

Project Target: 2.5 GJ/t-CO2Future Target : 1.8 GJ/t-CO2

Low Cost of CO2absorption System

Improvement of Pre-treatment New Absorbent

Utilize of Low Grade Waste heat

in Steel Works

Pre-treatment

16

Development organization and issuersDevelopment organization and issuers

METI in Japan Issuers

Branch Laboratories

Nippon Steal co.

Mitsubishi Heavy Industries, Ltd.

Kansai Electric Power Co. inc.

New absorbent

Utilize of low grade waste heat

Duration of absorbent and process development for pilot plant

Development of absorbent and evaluation

Nippon Steal Engineering co., Ltd.

Process development and Evaluation of performances by BFG gas experimental apparatus

Committee for research promotion

Research institute of innovative technology for the earth

( RITE)

17

Development of New Absorbents Development of New Absorbents

First Step・Screening Commercial Amine・Formulate Amine CompoundSecond Step・Design and Synthesize New Amine

Amino Group: N・Electron Donor・Bond with CO2 (Formation of Carbamate or HCO3

- Anion)・Proton Acceptor( Formation of Protonated Cation)・Primary,Secondary,Tretiary Amine、Number of Amine Group

Hydroxyl Group: OH・Electron Acceptor (Activation of Amino

Group)・Hydrophilic (Increase in Solubility to water)・Formation of Hydrogen Bond(Elevation of

Boiling Point, Control of Volatility)

Steric Hindered Group:R1, R2, R3, R4・Control of Carbamate

Formation・Increase CO2 Desorption・Reduce Heat of Reaction

Example of Amine Molecule

R1

N C

R2R3 R4

C OH

R5 R6

18

2.7~2.8

GJ/t-CO2

Hea

t of C

aptu

re C

O2

4

0

1

2

3

MEA RITE-3ATargets

4.0

3.0

2.5

1.8

KS sol.

RITE-3A 開発 RITE-4

Screening of reaction rate

Screening of reaction heat

Performances of amines

Method

Results and Target Molecular design

RITE-5

ITCMEA-MDEA

CASTORTarget

3.7

2.0

RITE-4B

2.9

Measurements of heat

Estimation of kinetics

Theoretical Chemistry

Decreasing reaction energy by new absorbentDecreasing reaction energy by new absorbent

Reaction heat of CO2 release from absorbent

19

Bench scale apparatus using BFG gasBench scale apparatus using BFG gas

CO2 Lord:1 t-CO2/d

• Location: Kimitsu iron works of Nippon Steal co.• Absorber: Diameter 150 mm, Height 3600 mm (Fixed bed 1000mm x 2)• Regenerator: Diameter 200mm, Height 3720 mm(Fixed bed 1000mm×2)• Input (BFG): 100 m3(STP)/h

20

Inorganic Membrane ReactorInorganic Membrane Reactor

GS/T G/T

Gasifier

H2, CO,H2O

H2O

H2, CO2

Coal

H2

Inorganic Membrane > 523 K

Membrane Water-Gasshift Reactor

Catalyst

Abs

orbe

r

H2S, CO2

21

Hydrogen separation membrane with Pd Hydrogen separation membrane with Pd nano particles within nano particles within mesoporesmesopores

Cross sectional view: Mesoporous silica membrane prepared on porous alumina substrate TEM image

Schematic images

22

Organic MembraneOrganic Membrane

Water-Gasshift Reactor

GS/T G/T

Gasifier

Membrane

H2, CO,H2O

H2S, CO2

H2, CO2

Coal

CO2

H2, CO2

Membrane

23

Cost target of COCost target of CO22 Capture DevelopmentCapture Development

GasPres.

MembranePerformance(Target)

CO2Capture

GasComp.

0 2,000 4,000 6,000

ChemicalAbsorption

Flue gasAtmospheric pressure

2013 Target(New Solvent)

Membrane

IGCC CO2:40%H2, H2O4MPa

Current (KS solution)

Membrane Cost: 50,000 JPY/m2 = 420 $ / m2

JPY / t-CO2

QCO2 :1x10-9(m3 m-2 s-1 Pa-1 )αCO2/H2: 500

* Duration period Facility:15 years Membrane:5 years

Physical Absorption 1,600 ~4,400 JPY(13 ~ 37$)/t-CO2

2010 Target(New Solvent)

*

24

Concept of Concept of COCO22 Molecular Gate MembraneMolecular Gate Membrane

CO20.33nm

N2、H2etc.0.36, 0.29 nm Conventional Polymeric

Membrane:

CO2 N2

CO2/N2 Selectivity: 35

Feed

High

PressureDifference

Permeate

LowMembrane

Excellent CO2 / H2 , CO2 / N2 selectivity>500

25

Improvement of DendrimerImprovement of Dendrimer

N NNH

NH

NH

HN

O O

OO

NH2

NH2

H2N

H2N

Conventional PAMAM( Polyamidoamine) dendrimer

Hydroxyl PAMAM (Polyamidoamine ) dendrimer

Dendrimer 1

Dendrimer 2

CO2/N2 separation:A. S. Kovvali, H. Chen, and K. K. SirkarJ. Am. Chem. Soc. 2000, 122, 7594-7595

Optimization of chemical structure of dendrimer for CO2 molecular gate function:Computer simulation, Synthesis, Analysis

N NNH

NH

NH

HN

O O

OO

H2NHO

H2NHO

OHNH2

OHNH2

Newly Synthesized

26

Definition of Permeance & SelectivityDefinition of Permeance & Selectivity

CO2 permeance, QCO2: Ft·yCO2 / (p1·xCO2 - p2·yCO2) / AN2 permeance, QN2: Ft·yN2 / (p1·xN2 - p2·yN2) / ACO2/N2 selectivity, αCO2/N2 : QCO2/QN2

p1, xCO2, xN2

Ft, p2, yCO2, yN2

Q (m3 m-2 s-1 Pa-1): permeancex (-): molar fraction in feed, y (-): molar fraction in permeateP1 (Pa): total pressure in feed, p2 (Pa): total pressure in permeateFt (m3 s-1): total gas flux of permeateA (m2): membrane area

Feed

Permeate

Retentate

27

COCO22 Separation Membranes StructureSeparation Membranes Structure

CO2N2

Porous Substrate

Selective LayerCO2 affinity

Well-controlled pore diameter

Sub-Nanoscale Materials Control

No defect structure of thin film

Membrane concept

High CO2 selectivity and permeability

28

Evaluation of performance of Selective LayerEvaluation of performance of Selective Layer

Schematic diagram of gas permeation apparatus (sweep method)

Feed gas CO2/H2=5/95(v/v), Relative humidity (RH) 0 - 97%,Temperature 298 K, Feed gas flow rate, 100 mL/min, Sweep gas (He) flow rate, 10 mL/min, Effective membrane area, 8.0 cm2

Membrane ( Dendrimer in porous substrate )Thermometer/hygrometer

Membrane cellGC

Feed gas

Thermostatic chamber

Humidifier

Water

He

RetentatePermeate

Feed

29

Structure of MembraneStructure of Membrane

Hydrophobic porous substrate

Hydrophilic porous substrate

47mm

After supporting Dendrimer in Hydrophilic porous substrate

Selective Layer(Dendrimer1 or Dendrimer 2

+Hydrophilic porous substrate)

Dendrimer• Dendrimer 1 (PAMAM; Reagent by Aldrich )• Dendrimer 2 (Hydroxyl PAMAM; Synthesized reagent by RITE)

Hydrophilic porous substrate• PVDF (pore size 0.1 µm, void volume 70%, thickness 100 µm)

Hydrophobic porous substrate•PVDF (pore size 0.45 µm, void volume 75%, thickness 100 µm)

30

COCO22/H/H22 Separation by DendrimerSeparation by Dendrimer

PH2

PCO2

10-14

10-13

10-12

10-11

10-10

10 -9

0 20 40 60 80 100

Per

mea

nce

[Nm3

m-2

s-1P

a-1]

Relative humidity in Feed Gas [%]

ConventionalPAMAM

HydroxylPAMAM

Conventional PAMAM CO2:●H2▲, Hydroxyl PAMAM CO2:●H2▲Feed:(CO2/H2=5/95) at 298K (25 °C),

∆pCO2=0.005MPa ∆pH2=0.095MPa

31

CO2/H2 Selectivity of Dendrimers

Relative Humidity in Feed Gas [ % ]

CO

2/H2

Sele

ctiv

ity [

-] Hydroxyl PAMAM

dendrimer

PAMAM dendrimer

- Feed:(CO2/H2=5/95) at 25 °C- Sweep Method

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Hydroxyl PAMAM DendrimerPCO2=8.1×10-11 [m3 (STP) m-2 s-1 Pa-1], αCO2/H2=730 at 80RH%

32

CO2 decreases H2 permeability

H2 PermeabilityPure gas > Mixed-gas

(CO2: 5 %)

CO2 apparentlyobstructs

H2 permeation inDendrimerMixed-gas (CO2/H2)

Pure H2

10-14

10-13

10-12

10-11

0 20 40 60 80 100

H2

Per

mea

nce

[Nm

3m

-2s-1

Pa-1

]

Mixed-gas

Pure gas

Relative Humidity in Feed Gas [ % ]

Mixed-gas Pure gas5%CO2

Dendrimer 2 ▲ ■

33

200mm200mm Membrane ModuleMembrane Module

1 mmSupport Substrate, PSF Hollow fiber

Selective Layer ,Chitosan + PAMAM Dendrimer

200 mm , φ3/8 inch

34

In-situ Module Modification Method

Hollow Fiber

Coating Solution

GlueSolution

Pump

Reduced Pressure

Membrane Module

Hollow Fiber

SupportingSubstrate

Chitosan

ReducedPressure

35

SEM Images of Selective Layer SEM Images of Selective Layer

600 nm

600 nm

600 nm

600 nm

600 nm

600 nm

200nm 300nm

100nm

(1a) (2a) (3a)

(1b) (2b) (3b)

2c) (3c)(1c) (

36

Concluding Remarks

• The combination of measures against global warming will have good effect.

• CCS is one of great measures against global warming, which is acted in advanced countries.

• Among CO2 separation system, RITE have been developing the chemical absorbent and membrane material.

• The target of RITE absorbent is decreasing the cost by half.

• If a membrane separation method will be applicable to IGCC, CO2 separation will become really economical.