colorado space grant consortium  · web viewthe ozone layer is located in the stratosphere at an...

16
Colorado Space Grant Consortium GATEWAY TO SPACE FALL 2012 DESIGN DOCUMENT Team Super 8

Upload: others

Post on 21-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Colorado Space Grant Consortium

GATEWAY TO SPACE

FALL 2012

DESIGN DOCUMENT

Team Super 8

Written by:

Jorge Cervantes, Jonothan Sobol, Evan Graser, Anthony Lima, Daniel DeWolf, Dan Nowicki, Scott Worst, MattJoo Hong

October 22nd 2012

RevisionComment by Chris Koehler: Should have Revision Log and Table of Contents.

Mission Overview:Comment by Chris Koehler: Pretty good mission overview but could still be even better. How could what you are doing with your BalloonSat benefit the scientific community? Could this be a good way to measure ozone density around the world or over targeted areas? Could your method be used to validate current models? Those were just examples but think of ways that your results could contribute and/or be applied in the real world. I would also like to see your paragraphs, and thus their content, better organized with appropriate paragraph titles. Background, current research, etc. Again those were just examples.Comment by Chris Koehler: Also be sure that you are using the same numbering and section headers as the template.

Mission Statement: Morpheus will measure the concentration of ozone and the intensity of 285 nm ultraviolet-B radiation at different altitudes in the atmosphere to examine the effects of the former on the latter. In addition, Morpheus will measure the relative humidity at different elevations in the atmosphere to determine how this affects the concentration of ozone at the mentioned elevations.Comment by Chris Koehler: Not bad except for the end of the first sentence.Comment by Chris Koehler: Ugh. Change this sentence…

Abstract: The ozone layer is located in the stratosphere at an elevation of approximately 10 to 50 kilometers above the Earth’s surface. Ozone (O3) is a triatomic molecule consisting of 3 oxygen atoms. As the Chapman’s cycle states, ozone is formed when ultraviolet radiation strikes molecular oxygen (O2) in the atmosphere, breaking them down into two oxygen atoms. The individual oxygen atoms, which are highly reactive, then bond to more oxygen molecules to form ozone. Similarly, ozone can be broken down into an oxygen molecule and an oxygen atom by the same ultraviolet radiation. The lone oxygen atom then reacts with other oxygen atoms to form more oxygen molecules. Since ultraviolet radiation is essential to both the creation and destruction of ozone and oxygen, the net gain of ozone in the ozone layer is zero.[footnoteRef:1] Since ultraviolet radiation does not target either oxygen or ozone, one could deduce that, even at different altitudes, there will necessarily be a constant density distribution of ozone in the ozone layer. Comment by Chris Koehler: What is this? Should I know what this is? This should be explained… [1: http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap_5/index.htm]

Although ozone is more prevalent in the ozone layer, from 10 to 50 kilometers in altitude, it can also be created and exist in smaller concentrations at lower altitudes due to chemical interaction between ultraviolet radiation and photochemical smog. This lower altitude ozone exists only for a small amount of time compared to ozone at higher altitudes-namely, in the ozone layer- due to the instability of ozone molecules. Ozone molecules are highly reactive, so they have a short life span. This means that most ozone will be located near the source that created it. For low altitude ozone that source is air pollution, for ozone in the upper atmosphere-the ozone layer- that source is oxygen.[footnoteRef:2] [2: http://aspire.cosmic-ray.org/labs/atmosphere/ozone_main.html]

Ozone is a very essential part of human life. By absorbing the energy of harmful ultraviolet radiation when ozone is created or destroyed, it protects life on Earth from the damaging effects of the radiation. UV radiation exists in different wavelengths, but ozone only absorbs ultraviolet-B radiation, which has a wavelength from 280 to 320 nanometers.[footnoteRef:3] [3: http://earthobservatory.nasa.gov/Features/UVB/]

From the information given prior, one can hypothesize that the concentration of ozone will be relatively constant in the ozone layer, and it will exist in much smaller quantities at most altitudes other than that of the ozone layer. Furthermore, the intensity of ultraviolet-B radiation of any given wavelength will be inversely related to ozone concentration and elevation. Morpheus plans to test these hypotheses by recording the intensity of 285 nm UV-B and concentration of ozone as a function of altitude.

“Changing environmental conditions such as air temperature and humidity also affect ozone chemistry.”[footnoteRef:4]Morpheus will also test this hypothesis by measuring relative humidity in the atmosphere as a function of altitude. The results can then be compared to the data collected about the density of ozone based on altitude. [4: http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap_5/index.htm]

Requirements Flow Down:Comment by Chris Koehler: Overall you did some good work but didn’t quite get the concept of RFD fully. Too much detail at different levels. Try again after looking at the examples given in class and referred to in previous semesters team reports.

The following is a table of our mission requirements. The requirements are divided into different levels, indicating the origin of that requirement. Level 0 requirements were derived from our mission statement and from the request for proposal document. Level 1 requirements were derived from the previous level requirements, and so on.

Level 0 Requirements

Requirement

Origin

0.0

Measure the concentration of atmospheric ozone

Mission Statement

0.1

Measure the intensity of atmospheric UVB radiation

Mission Statement

0.2

Reach an altitude of 30kmComment by Chris Koehler: Where is this in your mission statement?

Mission Statement

0.3

Keep internal temperature above -10°C

RFP

0.4

Keep total weight and budget spent under or equal to 1.125 kg and $250 respectively

RFP

0.5

Record photographs during flight and measure internal and external temperature

RFP

0.6

Maintain safety of all team members at all times

RFP

0.7

BalloonSat must be able to fly again within 24 hour period of recoveryComment by Chris Koehler: Need to find a way to add the requirement of building a balloonSat per the class guidelines to your mission statement.

RFP

Level 1 RequirementsComment by Chris Koehler: Many of these requirements are level 2, 3 and 4 in detail. Think higher level at Level 0 and Level 1. Many of these read like a solution to a homework problem. Not trying to mean with that comment.

Requirement 0.0: Measure concentrations of Ozone

#

Requirement

Origin

0.0.0

Activate three (3) ozone sensorsComment by Chris Koehler: Not a well written requirement.

0.0

0.0.1

Begin to collect readings and time of reading with Arduino UNO

0.0

0.0.2

Convert readings into digital output

0.0

0.0.3

Store digital output in micro SD card

0.0

0.0.4

Recover and analyze data and compare with altitude

0.0

Requirement 0.1: Measure UV radiation

#

Requirement

Origin

0.1.0

Measure UVB radiation using photodiode

0.1

0.1.1

Begin to collect readings and time of reading with Arduino UNO

0.1

0.1.2

Recover and analyze data and compare with altitude

0.1

Requirement 0.2: Reach an altitude of 30km

#

Requirement

Origin

0.2.0

Attach to hydrogen weather balloon to flight string

0.2

0.2.1

Have flight string running through center of Morpheus

0.2

0.2.2

Attach to BalloonSat through a non-metal tube with washers and paperclips

0.2

0.2.3

Record and compare pressure over time to verify altitude and ensure requirement 0.2 is met.

0.2

Requirement 0.3: Keep internal temperature above -10°C

#

Requirement

Origin

0.3.0

Run electric active heater system powered by 3 9V batteries

0.3

0.3.1

Insulate Morpheus using foam insulation and aluminum tape

0.3

0.3.2

Test Morpheus prior to launch and make necessary alterations

0.3

0.3.3

Record temperature with Arduino (codename HOBO) to ensure requirement 0.3 is met

0.3

Requirement 0.4: Keep total weight and budget spent under or equal to 1.125 kg and $250 respectively

#

Requirement

Origin

0.4.0

Maintain weight and spending budget

0.4

0.4.1

Team member in charge of spending budget: Evan Graser

0.4

0.4.2

Schedule and plan ahead to maintain budget

0.4

Requirement 0.5: Record photographs (external) and measure temperature (internal and external)

#

Requirement

Origin

0.5.0

Include a Canon SD 780 IS in Morpheus’ design

0.5

0.5.1

Program the camera to photograph external environment once every ten (10) seconds.

0.5

0.5.2

Store pictures on SD card included in camera

0.5

0.5.3

Include HOBO

0.5

0.5.4

Measure temperature, relative humidity, acceleration on 3 axes and pressure with sensors attached to HOBO

0.5

0.5.5

Record data on SD card on HOBO

0.5

0.5.6

Recover and analyze data and photos

0.5

Requirement 0.6: Safety

#

Requirement

Origin

0.6.0

Always maintain safe habits and working conditions when working with Morpheus

0.6

0.6.1

Test Morpheus in a cooler with dry ice

0.6

0.6.2

Test and calibrate ozone sensors

0.6

0.6.3

Test and calibrate UVB photodiode

0.6

0.6.4

Test HOBO with sensing and recording data

0.6

0.6.5

Test Morpheus with drop and whip tests

0.6

0.6.6

Test camera and automation

0.6

0.6.7

Practice retrieving and analyzing data from HOBO and Arduino Uno, both alone and after previously mentioned tests

0.6

0.6.8

Place LEDs on exterior of Morpheus to indicate power to systems

0.6

0.6.9

Place contact information and U.S. flag visibly on exterior

0.6

Requirement 0.7: Morpheus must fly again

#

Requirement

Origin

0.7.0

Design and test Morpheus to withstand forces encountered at balloon burst and landing

0.7

0.7.1

Make necessary adjustments to Morpheus after termination of mission.

0.7

Design:

Structure: Morpheus will be a cube constructed of foam core, measuring 20cm in length, width, and girth. Aluminum tape will provide structural integrity and hot glue and epoxy will be used to seal the foam core walls and hold the cube together. Internal components will be placed along the walls of the cube with organized and minimal wiring to facilitate airflow and temperature control. Through the center of the cube will be a vertical PVC pipe which the flight string will run through. At either end of the pipe, washers, pins and knots in the rope will be added to minimize whipping and to maintain Morpheus’ position on the flight string. Two external switches and two LEDs will be incorporated to facilitate power up, and to indicate function of the internal components when needed. All structural elements are in place with the intent of proper function and mission success.

Internal Design: Morpheus will 8000 cubic centimeter cube, holding all components within. In the topmost four corners will be three ozone sensors and a UV-sensing diode. Their position was chosen as to ensure accuracy and precision in measurement, as well as to prevent interference from other satellites or the balloon itself. The ozone sensors will measure the concentration of ozone as the balloon rises, giving us concentration as a function of altitude. The photodiode will measure intensity of UV-B radiation as it rises, also giving us a function of altitude. We will run one ozone sensor at ground-level as a control. Data retrieval from the SD Cards will occur post-flight after retrieval of Morpheus. The data will then be interpreted and compared. All primary mission sensors will be controlled by a single Arduino UNO microcontroller, in which we will write code redundancies to ensure mission success. All other required sensors and equipment will be controlled by the other Arduino UNO-codenamed “HOBO”. Comment by Chris Koehler: Nice drawing. Consider making this take up more of the page and also consider someone who might be color blind. I can see just fine but a more traditional approach is to use arrows and callouts.Comment by Chris Koehler: Grammar…Comment by Chris Koehler: Great!

All individual components will undergo individual testing and evaluation. Once satisfactorily tested and approved to fulfill mission requirements, sensors, structure, and items will be assembled as one effective unit. Should through trial any aspect of the satellite require redesign or re-implementation of any kind, this failure will be promptly corrected with the aim of improving overall mission implementation. During flight, data will be collected and recorded on a 2gb flash drive. Upon termination of flight, the recovered data will be examined to determine correlations between ozone, UV radiation, three-dimensional position, temperature, and humidity. Morpheus will be insulated by its structure and aluminum tape provided to us. Also, a heater has been provided which will assist in maintaining an internal temperature of -10 C. The heater will be powered by two 9-volt alkaline batteries. All other components will be powered by two 9-volt alkaline batteries. Various design options will be tested to ensure maximum performance and acquiescence to the mission requirements. Our design will be power intensive, given that it must run all systems from of at least an altitude of 8km—9km until at least apoapsis (~30km).Comment by Chris Koehler: This is very, very fluffy. I hope I see much more detail in your test section. This reads like a marketing brochure.Comment by Chris Koehler: Typically 3 9 Volts for the heater.Comment by Chris Koehler: Why not start on the ground?

The current design meets mission requirements to the extent of measurement. For example, weight and budget constraints have been met thus far. Also, all required sensors, including at least two extra engineering sensors, as well as the camera, have been incorporated into the design. The limitations of mission requirement compliance occur when referring to currently non-measurable design specifications. For example, we have not tested if the heaters will maintain the required internal temperature. Also, we have not tested the functionality of most sensors or the camera. In sum, we are currently limited to meeting requirements that refer only to pre-built design specs. In theory, all requirements are being met, although testing will begin next week to ensure, in practice, that all requirements are met. Comment by Chris Koehler: Make sure your text is readable in figures.

Parts: All required sensors and the camera were provided by the Colorado Space Grant Consortium. The heater, Arduino UNO microcontrollers, and all structural equipment was also provided by the same. The primary mission of Morpheus requires five extra sensors. Four of these are ozone sensors, which were provided by Component Distributors, Inc. We will also attained a UV-B sensing diode, which was provided by Boston Electronics, Corp.Comment by Chris Koehler: On Functional Block Diagram…Check your size of camera SD card. Should be bigger. I would consider using a switch for each arduino. Also were are your LED indicators? I would show each of your Ozone sensors as separate sensors.Comment by Chris Koehler: This grammar is even gooder…

Management:

Jonathan Sobol is the continued leader of the project. Each of the team members have an assigned duty or subsystem, for which they are the lead of. To ensure that every member has a support system and that all requirements are completed in a timely and correct manner, every member has been assigned to a second subsystem. The following chart demonstrates the allocation of duties. Each team member’s support is located across from him on the chart.

The following is an updated schedule of the previous dates, and the accomplishments up to those dates, as well as future dates, and the deadlines for those dates. We are currently on schedule, and we will continue to put forth our best effort to stay that way. Comment by Chris Koehler: Between 10/24 and 12/1 the level of detail is too small. Much, much more is needed. Try to think and then capture everything you think you will have to do before launch.

Budget: Mass and Monetary

Test Plan:Comment by Chris Koehler: Nice job on this section. I would reorder the descriptions in the order you will perform the tests. You also need to discuss the other sensors from the Arduino and how they will be calibrated.

Structural Tests: Morpheus will undergo a series of tests to ensure its structural survival during the near space trip stages. It must be able to withstand extreme temperatures, as well as radical amounts of force both after burst of the balloon, during free fall, and also while landing. The tests we will conduct on the satellite are as follows:

Drop test: Morpheus will be dropped vertically from a height of at least 15 meters, and, in addition, it will be rolled down a flight of stairs. These tests will be performed to ensure that the structure of the satellite holds in the case of a landing where 1) it is dragged by weather conditions, or 2) hits the ground with a full force vertical impact. This test will be performed with the actual satellite structure, but not with the actual satellite hardware and subsystems because we do not want to damage the equipment before launch; rather, the satellite will be loaded with dead-weight of approximately the same magnitude as the actual equipment.

Whip test: The satellite will be tied to a string in the same way that it will be tied to the BalloonSat and it will be swung around with different velocities. This test will help us determine if the structure of our satellite is sound enough to stay attached to the BalloonSat throughout the flight, however, we are mostly interest in the post-burst environment of the flight. As with the drop test, this test will be performed with mass models of the actual hardware.

Functional Tests All hardware and software will be tested extensively both individually and as an integrated part of the payload during a mission simulation. We will integrate all subsystems into the satellite, and we will activate the payload as if it was launch day. We will run the satellite for a period of at least 150 minutes, simulating actual flight time. These tests will help us ensure that all software and hardware will run effectively throughout our flight. The mission simulation will also determine if we have provided enough power to complete the mission. Based on the results of this test, the power system will be adjusted as necessary.

Temperature Test: Morpheus will be placed and sealed in a Styrofoam cooler containing dry ice for a period of at least three hours, simulating flight time. The payload, including the camera, our primary mission sensors, and all other hardware, will be activated and operational during the entirety of this test. This test will allow us to determine whether the insulation component of our satellite is sound. We will discover if our satellite is able to protect our equipment from extreme temperatures for data collection, and, ultimately, success of the mission.

Ozone Sensor Test: The ozone sensors of our satellite will be tested for functionality in an air quality room at the university. A set concentration of ozone will be fired into a chamber containing our activated payload. The ozone sensors are to collect data from the chamber. The data will be collected at the end of the test to ensure the sensors are operational. The data will be compared to the actual value of ozone fired into the chamber. If there are any discrepancies in the data, we will calibrate the ozone sensors as needed. This test will also include the control sensor that will measure ozone levels at ground level.

Ultraviolet Photodiode Test: The UV photodiode will be tested to ensure the validity of the data and the functionality of the sensor itself. The diode will be placed under a black light of known UV concentration for an extended period of time. The data collected by the diode will then be collected and compared to the actual value of the intensity of the black light. Any discrepancies will be corrected though proper calibration of the diode. This test will occur separate from the temperature test and is designed to test the general functionality of the diode. During the temperature test, the diode will also be activated, but only to test its functionality under extreme temperature conditions, since its general functionality would have already been confirmed.

Camera Testing: The camera will be tested, not only to determine if it can withstand drastic temperatures, but also to ensure the quality of photographs. The camera will be tested individually with the microcontroller as well as an integrated part of the payload during the cooler test and the mission simulation test. During all tests, the camera will be set to take one picture every 20 seconds, which is the rate at which we currently plan to run the camera during the actual flight.

Arduino Uno Test: The Arduino Uno microcontrollers will be tested with the activated payload to determine their capability of retrieving data and controlling the mission components. First, we will ensure that all components run individually under the control of the Arduinos. Next, we will test to ensure that everything runs in conjunction with the Arduino Uno. Finally, the mission simulation test will serve as a means to test whether the Arduino function properly throughout the entire mission.

Test Results:

Testing of all sensors, not including the ozone sensors and photodiode, has been completed. All tests have resulted satisfactorily. The pressure test resulted satisfactorily, but, days after the test, the sensor stopped functioning. We have determined that an enormous amount of human saliva has halted the sensor’s proper function. A replacement sensor will be requested, and tests will be performed on the replacement sensors upon its attainment. Morpheus is at its final stages of completion, as far as building it goes. Testing of the camera, primary mission sensors, and structure will begin this week. Test results will be added into the design document as they are acquired.Comment by Chris Koehler: What a phrase…

All sensor tests thus far have been performed by the following procedure:

1. The sensor in question has been connected to its corresponding Arduino Uno Microcontroller.

2. The microcontroller has been programmed to run the sensor, and to receive the voltage ouput readings from the sensor, which it converts to digital readings displayed on a monitor.Comment by Chris Koehler: Spelling…

3. Depending on the sensor, different environmental changes pertaining to that sensor have been made to surround the sensor to determine its functionality.

As stated, all sensor test have resulted satisfactorily thus far.

Expected Mission Results:

The main objective of this mission is to prove our hypotheses, which are the following:

1. The concentration of ozone in the ozone layer- from 10 to 50 kilometers in altitude- is relatively constant. The concentration of ozone at all other altitudes will vary, but is sure to be far less than the concentration in the ozone layer.

2. The measured intensity of UV-B radiation will be proportional to the elevation at which it was measured. The rate of change of intensity measured will be small below the ozone layer, and will be large as we rise through the ozone layer. The intensity of UV-B radiation will be the greatest at maximum altitude.

3. If both previous hypotheses prove to be correct, we can deduce that ozone reduces the amount of UV-B that reaches the Earth’s surface.

These hypotheses have been conjured through severe and extensive modification of previous versions. Intense research has been done and has influenced the way the hypotheses were modified. The hypotheses have been derived from facts, and only facts, both mathematical and scientific, as to ensure that they are as accurate prediction as possible. With that said, and with the amount of work put in to creating them, the only thing left to do is to expect to prove these theories. Team 8 definitely expects to prove these hypotheses. Comment by Chris Koehler: FLUFF FACTOR A+++