compacidad, optimización y riesgowebs.um.es/joseori/documentos/charlas/charlaalmeria2013.pdfe....

148
Compactness and Optimization Compactness, Convex Analysis and Risk Risk Measures in Orlicz spaces Variational problems and reflexivity Compacidad, Optimización y Riesgo J. Orihuela 1 1 Department of Mathematics University of Murcia Jornada 10 de Mayo de 2013. Universidad de Almeria J. Orihuela Compacidad, Optimización y Riesgo

Upload: others

Post on 03-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Compacidad, Optimización y Riesgo

J. Orihuela1

1Department of MathematicsUniversity of Murcia

Jornada 10 de Mayo de 2013. Universidad de Almeria

J. Orihuela Compacidad, Optimización y Riesgo

Page 2: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 3: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 4: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 5: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 6: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 7: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 8: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 9: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 10: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 11: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 12: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

The coauthors

M. Ruiz Galán and J.O. A coercive and nonlinear James’sweak compactness theorem Nonlinear Analysis 75 (2012)598-611M. Ruiz Galán and J.O. Lebesgue Property for ConvexRisk Meausures on Orlicz Spaces Math. Finan. Econ.(2012)B. Cascales, M. Ruiz Gal’an and J.O. Compactness,Optimality and Risk Computational and AnalyticalMathematics Conference, in honour of J.M Borwein 60’thbirthday. Springer 2012.

J. Orihuela Compacidad, Optimización y Riesgo

Page 13: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Contents

Compactness and OptimizationCompactness, Convex Analysis and RiskRisk measures on Orlicz spacesVariational problems and reflexivity.

J. Orihuela Compacidad, Optimización y Riesgo

Page 14: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Contents

Compactness and OptimizationCompactness, Convex Analysis and RiskRisk measures on Orlicz spacesVariational problems and reflexivity.

J. Orihuela Compacidad, Optimización y Riesgo

Page 15: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Contents

Compactness and OptimizationCompactness, Convex Analysis and RiskRisk measures on Orlicz spacesVariational problems and reflexivity.

J. Orihuela Compacidad, Optimización y Riesgo

Page 16: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Contents

Compactness and OptimizationCompactness, Convex Analysis and RiskRisk measures on Orlicz spacesVariational problems and reflexivity.

J. Orihuela Compacidad, Optimización y Riesgo

Page 17: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]proper, lsc map s.t. {↵ c} is compact for all c 2 R. Then forany proper lsc map f : X ! (�1,+1] bounded from below,the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)If X is metrizable and ↵ : X ! (�1,+1] is a proper functionsuch that for all bounded continuous functionf : X ! (�1,+1], the function ↵+ f attains its minimum, then↵ is a lsc map, bounded form below, whose sublevel sets{↵ c} are all compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 18: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]proper, lsc map s.t. {↵ c} is compact for all c 2 R. Then forany proper lsc map f : X ! (�1,+1] bounded from below,the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)If X is metrizable and ↵ : X ! (�1,+1] is a proper functionsuch that for all bounded continuous functionf : X ! (�1,+1], the function ↵+ f attains its minimum, then↵ is a lsc map, bounded form below, whose sublevel sets{↵ c} are all compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 19: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]proper, lsc map s.t. {↵ c} is compact for all c 2 R. Then forany proper lsc map f : X ! (�1,+1] bounded from below,the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)If X is metrizable and ↵ : X ! (�1,+1] is a proper functionsuch that for all bounded continuous functionf : X ! (�1,+1], the function ↵+ f attains its minimum, then↵ is a lsc map, bounded form below, whose sublevel sets{↵ c} are all compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 20: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]proper, lsc map s.t. {↵ c} is compact for all c 2 R. Then forany proper lsc map f : X ! (�1,+1] bounded from below,the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)If X is metrizable and ↵ : X ! (�1,+1] is a proper functionsuch that for all bounded continuous functionf : X ! (�1,+1], the function ↵+ f attains its minimum, then↵ is a lsc map, bounded form below, whose sublevel sets{↵ c} are all compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 21: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]proper, lsc map s.t. {↵ c} is compact for all c 2 R. Then forany proper lsc map f : X ! (�1,+1] bounded from below,the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)If X is metrizable and ↵ : X ! (�1,+1] is a proper functionsuch that for all bounded continuous functionf : X ! (�1,+1], the function ↵+ f attains its minimum, then↵ is a lsc map, bounded form below, whose sublevel sets{↵ c} are all compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 22: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 23: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 24: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

↵ + f 2 Cb(X ) attain minimum ) {↵ c} compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 25: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

↵ + f 2 Cb(X ) attain minimum ) {↵ c} compact

J. Orihuela Compactness, Optimization and Risk

Page 26: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness Theorem of R.C. James

TheoremA Banach space is reflexive if and only if each continuous linearfunctional attains its supremum on the unit ball

TheoremA bounded and weakly closed subset K of a Banach space isweakly compact if and only if each continuous linear functionalattains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,G. Rodà c� 1981, G. Godefroy 1987, V. Fonf, J.Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda2007, the boundary problem ...

J. Orihuela Compacidad, Optimización y Riesgo

Page 27: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness Theorem of R.C. James

TheoremA Banach space is reflexive if and only if each continuous linearfunctional attains its supremum on the unit ball

TheoremA bounded and weakly closed subset K of a Banach space isweakly compact if and only if each continuous linear functionalattains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,G. Rodà c� 1981, G. Godefroy 1987, V. Fonf, J.Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda2007, the boundary problem ...

J. Orihuela Compacidad, Optimización y Riesgo

Page 28: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness Theorem of R.C. James

TheoremA Banach space is reflexive if and only if each continuous linearfunctional attains its supremum on the unit ball

TheoremA bounded and weakly closed subset K of a Banach space isweakly compact if and only if each continuous linear functionalattains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda2007, the boundary problem ...

J. Orihuela Compactness, Optimization and Risk

Page 29: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness Theorem of R.C. James

TheoremA Banach space is reflexive if and only if each continuous linearfunctional attains its supremum on the unit ball

TheoremA bounded and weakly closed subset K of a Banach space isweakly compact if and only if each continuous linear functionalattains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda2007, the boundary problem ...

J. Orihuela Compactness, Optimization and Risk

Page 30: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness Theorem of R.C. James

TheoremA Banach space is reflexive if and only if each continuous linearfunctional attains its supremum on the unit ball

TheoremA bounded and weakly closed subset K of a Banach space isweakly compact if and only if each continuous linear functionalattains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda2007, the boundary problem ...

J. Orihuela Compactness, Optimization and Risk

Page 31: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness Theorem of R.C. James

TheoremA Banach space is reflexive if and only if each continuous linearfunctional attains its supremum on the unit ball

TheoremA bounded and weakly closed subset K of a Banach space isweakly compact if and only if each continuous linear functionalattains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,G. Rodà c� 1981, G. Godefroy 1987, V. Fonf, J.Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda2007, the boundary problem ...

J. Orihuela Compacidad, Optimización y Riesgo

Page 32: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Compactness, Functional Analysis and Risk

H.Follmer and A.Schied Stochastic FinanceF.Delbaen Monetary Utility FunctionsF.Delbaen and W.Schachermayer The Mathematics ofArbitrageE. Zeidler Nonlinear Functional Analysis and itsApplicationsJ. Borwein and Q. Zhu Techniques of Variational Analysis

J. Orihuela Compacidad, Optimización y Riesgo

Page 33: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 34: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Compactness, Functional Analysis and Risk

H.Follmer and A.Schied Stochastic FinanceF.Delbaen Monetary Utility FunctionsF.Delbaen and W.Schachermayer The Mathematics ofArbitrageE. Zeidler Nonlinear Functional Analysis and itsApplicationsJ. Borwein and Q. Zhu Techniques of Variational Analysis

J. Orihuela Compacidad, Optimización y Riesgo

Page 35: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Compactness, Functional Analysis and Risk

H.Follmer and A.Schied Stochastic FinanceF.Delbaen Monetary Utility FunctionsF.Delbaen and W.Schachermayer The Mathematics ofArbitrageE. Zeidler Nonlinear Functional Analysis and itsApplicationsJ. Borwein and Q. Zhu Techniques of Variational Analysis

J. Orihuela Compacidad, Optimización y Riesgo

Page 36: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 37: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Compactness, Functional Analysis and Risk

H.Follmer and A.Schied Stochastic FinanceF.Delbaen Monetary Utility FunctionsF.Delbaen and W.Schachermayer The Mathematics ofArbitrageE. Zeidler Nonlinear Functional Analysis and itsApplicationsJ. Borwein and Q. Zhu Techniques of Variational Analysis

J. Orihuela Compacidad, Optimización y Riesgo

Page 38: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 39: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Compactness, Functional Analysis and Risk

H.Follmer and A.Schied Stochastic FinanceF.Delbaen Monetary Utility FunctionsF.Delbaen and W.Schachermayer The Mathematics ofArbitrageE. Zeidler Nonlinear Functional Analysis and itsApplicationsJ. Borwein and Q. Zhu Techniques of Variational Analysis

J. Orihuela Compacidad, Optimización y Riesgo

Page 40: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 41: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E◆K (x) = 0 if x 2 K and +1 otherwisex⇤ 2 E⇤ attains its supremum on K atx0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 EThe minimization problem

min{◆K (·)� x⇤(·)}on E for every x⇤ 2 E⇤ has always solution if and only if theset K is weakly compactWhen the minimization problem

min{↵(·) + x⇤(·)}on E has solution for all x⇤ 2 E⇤ and a fixed properfunction ↵ : E ! (�1,+1]?

J. Orihuela Compacidad, Optimización y Riesgo

Page 42: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E◆K (x) = 0 if x 2 K and +1 otherwisex⇤ 2 E⇤ attains its supremum on K atx0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 EThe minimization problem

min{◆K (·)� x⇤(·)}on E for every x⇤ 2 E⇤ has always solution if and only if theset K is weakly compactWhen the minimization problem

min{↵(·) + x⇤(·)}on E has solution for all x⇤ 2 E⇤ and a fixed properfunction ↵ : E ! (�1,+1]?

J. Orihuela Compacidad, Optimización y Riesgo

Page 43: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E◆K (x) = 0 if x 2 K and +1 otherwisex⇤ 2 E⇤ attains its supremum on K atx0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 EThe minimization problem

min{◆K (·)� x⇤(·)}on E for every x⇤ 2 E⇤ has always solution if and only if theset K is weakly compactWhen the minimization problem

min{↵(·) + x⇤(·)}on E has solution for all x⇤ 2 E⇤ and a fixed properfunction ↵ : E ! (�1,+1]?

J. Orihuela Compacidad, Optimización y Riesgo

Page 44: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E◆K (x) = 0 if x 2 K and +1 otherwisex⇤ 2 E⇤ attains its supremum on K atx0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 EThe minimization problem

min{◆K (·)� x⇤(·)}on E for every x⇤ 2 E⇤ has always solution if and only if theset K is weakly compactWhen the minimization problem

min{↵(·) + x⇤(·)}on E has solution for all x⇤ 2 E⇤ and a fixed properfunction ↵ : E ! (�1,+1]?

J. Orihuela Compacidad, Optimización y Riesgo

Page 45: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E◆K (x) = 0 if x 2 K and +1 otherwisex⇤ 2 E⇤ attains its supremum on K atx0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 EThe minimization problem

min{◆K (·)� x⇤(·)}on E for every x⇤ 2 E⇤ has always solution if and only if theset K is weakly compactWhen the minimization problem

min{↵(·) + x⇤(·)}on E has solution for all x⇤ 2 E⇤ and a fixed properfunction ↵ : E ! (�1,+1]?

J. Orihuela Compacidad, Optimización y Riesgo

Page 46: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(x) + x⇤(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)Let E be a Banach space, ↵ : E ! (�1,+1] proper, (lowersemicontinuous) function with

limkxk!1

↵(x)kxk = +1

Suppose that there is c 2 R such that the level set {↵ c} failsto be (relatively) weakly compact. Then there is x⇤ 2 E⇤ suchthat,the infimum

infx2E

{hx , x⇤i+ ↵(x)}

is not attained.

J. Orihuela Compacidad, Optimización y Riesgo

Page 47: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(x) + x⇤(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)Let E be a Banach space, ↵ : E ! (�1,+1] proper, (lowersemicontinuous) function with

limkxk!1

↵(x)kxk = +1

Suppose that there is c 2 R such that the level set {↵ c} failsto be (relatively) weakly compact. Then there is x⇤ 2 E⇤ suchthat,the infimum

infx2E

{hx , x⇤i+ ↵(x)}

is not attained.

J. Orihuela Compacidad, Optimización y Riesgo

Page 48: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(x) + x⇤(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)Let E be a Banach space, ↵ : E ! (�1,+1] proper, (lowersemicontinuous) function with

limkxk!1

↵(x)kxk = +1

Suppose that there is c 2 R such that the level set {↵ c} failsto be (relatively) weakly compact. Then there is x⇤ 2 E⇤ suchthat,the infimum

infx2E

{hx , x⇤i+ ↵(x)}

is not attained.

J. Orihuela Compacidad, Optimización y Riesgo

Page 49: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 50: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

{↵ c} not w.c.) 9x⇤ : infE{x⇤(·) + ↵(·)} not attained

LemmaLet A be a bounded but not relatively weakly compact subset ofthe Banach space E. If (an) ⇢ A is a sequence without weakcluster point in E, then there is (x⇤

n ) ⇢ BE⇤ , g0 =P1

n=1 �nx⇤n

with 0 �n 1 for all n 2 N andP1

n=1 �n = 1 such that:for every h 2 l1(A), with

lim infn

x⇤n (a) h(a) lim sup

nx⇤

n (a)

for all a 2 A, we will have that g0 + h doest not attain itsminimum on A

J. Orihuela Compacidad, Optimización y Riesgo

Page 51: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

{↵ c} not w.c.) 9x⇤ : infE{x⇤(·) + ↵(·)} not attained

LemmaLet A be a bounded but not relatively weakly compact subset ofthe Banach space E. If (an) ⇢ A is a sequence without weakcluster point in E, then there is (x⇤

n ) ⇢ BE⇤ , g0 =P1

n=1 �nx⇤n

with 0 �n 1 for all n 2 N andP1

n=1 �n = 1 such that:for every h 2 l1(A), with

lim infn

x⇤n (a) h(a) lim sup

nx⇤

n (a)

for all a 2 A, we will have that g0 + h doest not attain itsminimum on A

J. Orihuela Compacidad, Optimización y Riesgo

Page 52: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

{↵ c} not w.c.) 9x⇤ : infE{x⇤(·) + ↵(·)} not attained

J. Orihuela Compacidad, Optimización y Riesgo

Page 53: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Maximizing {x⇤(x)� ↵(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)Let E be a Banach space, ↵ : E ! (�1,+1] proper, lowersemicontinuous function, then we have:

If @↵(E) = E⇤ then the level sets {↵ c} are weaklycompact for all c 2 R whenever ↵ is a coercive map, i.e.limkxk!1

↵(x)kxk = +1. ,

It ↵ has weakly compact level sets and theFenchel-Legendre conjugate ↵⇤ is finite, i.e.sup{x⇤(x)� ↵(x) : x 2 E} < +1 for all x⇤ 2 E⇤, then@↵(E) = E⇤

J. Orihuela Compacidad, Optimización y Riesgo

Page 54: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Maximizing {x⇤(x)� ↵(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)Let E be a Banach space, ↵ : E ! (�1,+1] proper, lowersemicontinuous function, then we have:

If @↵(E) = E⇤ then the level sets {↵ c} are weaklycompact for all c 2 R whenever ↵ is a coercive map, i.e.limkxk!1

↵(x)kxk = +1. ,

It ↵ has weakly compact level sets and theFenchel-Legendre conjugate ↵⇤ is finite, i.e.sup{x⇤(x)� ↵(x) : x 2 E} < +1 for all x⇤ 2 E⇤, then@↵(E) = E⇤

J. Orihuela Compacidad, Optimización y Riesgo

Page 55: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Convex Analysis

We fix an atomless probability space (⌦,F ,P)We are going to work in a duality hX ,X ⇤i whereL1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)if : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

TheoremIf f : X ! (�1,+1] is convex, proper and lowersemicontinuous, then

f ⇤⇤ �X= ffor all x 2 X , x⇤ 2 X we have hx , x⇤i f (x) + f ⇤(x⇤)

J. Orihuela Compacidad, Optimización y Riesgo

Page 56: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Convex Analysis

We fix an atomless probability space (⌦,F ,P)We are going to work in a duality hX ,X ⇤i whereL1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)if : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

TheoremIf f : X ! (�1,+1] is convex, proper and lowersemicontinuous, then

f ⇤⇤ �X= ffor all x 2 X , x⇤ 2 X we have hx , x⇤i f (x) + f ⇤(x⇤)

J. Orihuela Compacidad, Optimización y Riesgo

Page 57: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Convex Analysis

We fix an atomless probability space (⌦,F ,P)We are going to work in a duality hX ,X ⇤i whereL1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)if : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

TheoremIf f : X ! (�1,+1] is convex, proper and lowersemicontinuous, then

f ⇤⇤ �X= ffor all x 2 X , x⇤ 2 X we have hx , x⇤i f (x) + f ⇤(x⇤)

J. Orihuela Compacidad, Optimización y Riesgo

Page 58: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Convex Analysis

We fix an atomless probability space (⌦,F ,P)We are going to work in a duality hX ,X ⇤i whereL1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)if : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

TheoremIf f : X ! (�1,+1] is convex, proper and lowersemicontinuous, then

f ⇤⇤ �X= ffor all x 2 X , x⇤ 2 X we have hx , x⇤i f (x) + f ⇤(x⇤)

J. Orihuela Compacidad, Optimización y Riesgo

Page 59: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Convex Analysis

We fix an atomless probability space (⌦,F ,P)We are going to work in a duality hX ,X ⇤i whereL1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)if : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

TheoremIf f : X ! (�1,+1] is convex, proper and lowersemicontinuous, then

f ⇤⇤ �X= ffor all x 2 X , x⇤ 2 X we have hx , x⇤i f (x) + f ⇤(x⇤)

J. Orihuela Compacidad, Optimización y Riesgo

Page 60: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Convex Analysis

We fix an atomless probability space (⌦,F ,P)We are going to work in a duality hX ,X ⇤i whereL1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)if : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

TheoremIf f : X ! (�1,+1] is convex, proper and lowersemicontinuous, then

f ⇤⇤ �X= ffor all x 2 X , x⇤ 2 X we have hx , x⇤i f (x) + f ⇤(x⇤)

J. Orihuela Compacidad, Optimización y Riesgo

Page 61: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Risk meausures

DefinitionA monetary utility function is a concave non-decreasing map

U : L1(⌦,F ,P) ! [�1,+1)

with dom(U) = {X : U(X ) 2 R} 6= ; and

U(X + c) = U(X ) + c, for X 2 L1, c 2 R

Defining ⇢(X ) = �U(X ) the above definition of monetary utilityfunction yields the definition of a convex risk measure.Both U, ⇢are called coherent if U(0) = 0, U(�X ) = �U(X ) for all� > 0,X 2 L1

J. Orihuela Compacidad, Optimización y Riesgo

Page 62: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Risk meausures

DefinitionA monetary utility function is a concave non-decreasing map

U : L1(⌦,F ,P) ! [�1,+1)

with dom(U) = {X : U(X ) 2 R} 6= ; and

U(X + c) = U(X ) + c, for X 2 L1, c 2 R

Defining ⇢(X ) = �U(X ) the above definition of monetary utilityfunction yields the definition of a convex risk measure.Both U, ⇢are called coherent if U(0) = 0, U(�X ) = �U(X ) for all� > 0,X 2 L1

J. Orihuela Compacidad, Optimización y Riesgo

Page 63: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Risk meausures

DefinitionA monetary utility function is a concave non-decreasing map

U : L1(⌦,F ,P) ! [�1,+1)

with dom(U) = {X : U(X ) 2 R} 6= ; and

U(X + c) = U(X ) + c, for X 2 L1, c 2 R

Defining ⇢(X ) = �U(X ) the above definition of monetary utilityfunction yields the definition of a convex risk measure.Both U, ⇢are called coherent if U(0) = 0, U(�X ) = �U(X ) for all� > 0,X 2 L1

J. Orihuela Compacidad, Optimización y Riesgo

Page 64: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 65: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Representing risk measures

TheoremA convex (resp. coherent) risk measure ⇢ : L1(⌦,F ,P) ! Radmits a representation

⇢(X ) = sup{µ(�X )� ↵(µ) : µ 2 ba, µ � 0µ(⌦) = 1}

(resp.⇢(X ) = sup{µ(�X ) : µ 2 S ✓ {µ 2 ba, µ � 0, µ(⌦) = 1}}) If inaddition ⇢ is �(L1,L1)-lower semicontinuous we have:

⇢(X ) = sup{EQ(�X )� ↵(Q) : Q << P and EP(dQ/dP) = 1}}

(resp.⇢(X ) = sup{EQ(�X )) : Q 2 {Q << P and EP(dQ/dP) = 1}})

J. Orihuela Compacidad, Optimización y Riesgo

Page 66: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Representing risk measures

TheoremA convex (resp. coherent) risk measure ⇢ : L1(⌦,F ,P) ! Radmits a representation

⇢(X ) = sup{µ(�X )� ↵(µ) : µ 2 ba, µ � 0µ(⌦) = 1}

(resp.⇢(X ) = sup{µ(�X ) : µ 2 S ✓ {µ 2 ba, µ � 0, µ(⌦) = 1}}) If inaddition ⇢ is �(L1,L1)-lower semicontinuous we have:

⇢(X ) = sup{EQ(�X )� ↵(Q) : Q << P and EP(dQ/dP) = 1}}

(resp.⇢(X ) = sup{EQ(�X )) : Q 2 {Q << P and EP(dQ/dP) = 1}})

J. Orihuela Compacidad, Optimización y Riesgo

Page 67: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Representing risk measures

TheoremA convex (resp. coherent) risk measure ⇢ : L1(⌦,F ,P) ! Radmits a representation

⇢(X ) = sup{µ(�X )� ↵(µ) : µ 2 ba, µ � 0µ(⌦) = 1}

(resp.⇢(X ) = sup{µ(�X ) : µ 2 S ✓ {µ 2 ba, µ � 0, µ(⌦) = 1}}) If inaddition ⇢ is �(L1,L1)-lower semicontinuous we have:

⇢(X ) = sup{EQ(�X )� ↵(Q) : Q << P and EP(dQ/dP) = 1}}

(resp.⇢(X ) = sup{EQ(�X )) : Q 2 {Q << P and EP(dQ/dP) = 1}})

J. Orihuela Compacidad, Optimización y Riesgo

Page 68: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(Y ) + E(X · Y ) : Y 2 L1}Theorem (Jouini-Schachermayer-Touzi)Let U : L1(⌦,F ,P) ! R be a monetary utility function with theFatou property and U⇤ : L1(⌦,F ,P)⇤ ! [0,1] itsFenchel-Legendre transform. They are equivalent:

1 {U⇤ c} is �(L1,L1)-compact subset for all c 2 R2 For every X 2 L1 the infimum in the equality

U(X ) = infY2L1

{U⇤(Y ) + E[XY ]},

is attained3 For every uniformly bounded sequence (Xn) tending a.s. to

X we havelim

n!1U(Xn) = U(X ).

J. Orihuela Compacidad, Optimización y Riesgo

Page 69: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(Y ) + E(X · Y ) : Y 2 L1}Theorem (Jouini-Schachermayer-Touzi)Let U : L1(⌦,F ,P) ! R be a monetary utility function with theFatou property and U⇤ : L1(⌦,F ,P)⇤ ! [0,1] itsFenchel-Legendre transform. They are equivalent:

1 {U⇤ c} is �(L1,L1)-compact subset for all c 2 R2 For every X 2 L1 the infimum in the equality

U(X ) = infY2L1

{U⇤(Y ) + E[XY ]},

is attained3 For every uniformly bounded sequence (Xn) tending a.s. to

X we havelim

n!1U(Xn) = U(X ).

J. Orihuela Compacidad, Optimización y Riesgo

Page 70: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(Y ) + E(X · Y ) : Y 2 L1}Theorem (Jouini-Schachermayer-Touzi)Let U : L1(⌦,F ,P) ! R be a monetary utility function with theFatou property and U⇤ : L1(⌦,F ,P)⇤ ! [0,1] itsFenchel-Legendre transform. They are equivalent:

1 {U⇤ c} is �(L1,L1)-compact subset for all c 2 R2 For every X 2 L1 the infimum in the equality

U(X ) = infY2L1

{U⇤(Y ) + E[XY ]},

is attained3 For every uniformly bounded sequence (Xn) tending a.s. to

X we havelim

n!1U(Xn) = U(X ).

J. Orihuela Compacidad, Optimización y Riesgo

Page 71: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Minimizing {↵(Y ) + E(X · Y ) : Y 2 L1}Theorem (Jouini-Schachermayer-Touzi)Let U : L1(⌦,F ,P) ! R be a monetary utility function with theFatou property and U⇤ : L1(⌦,F ,P)⇤ ! [0,1] itsFenchel-Legendre transform. They are equivalent:

1 {U⇤ c} is �(L1,L1)-compact subset for all c 2 R2 For every X 2 L1 the infimum in the equality

U(X ) = infY2L1

{U⇤(Y ) + E[XY ]},

is attained3 For every uniformly bounded sequence (Xn) tending a.s. to

X we havelim

n!1U(Xn) = U(X ).

J. Orihuela Compacidad, Optimización y Riesgo

Page 72: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Tools for the proof

The proof in [JST] is for separable L1(⌦,F ,P). Theseparability is needed to show 2) ) 1) with a variant of theseparable James’ compactness Theorem we provided toauthors.Delbaen has given a proof for general non separablespaces using an homogenisation trick. He shows how toapply directly the non separable James’ compactnessTheorem in the duality hL1(⌦,F ,P),L1(⌦,F ,P)i.

J. Orihuela Compacidad, Optimización y Riesgo

Page 73: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Tools for the proof

The proof in [JST] is for separable L1(⌦,F ,P). Theseparability is needed to show 2) ) 1) with a variant of theseparable James’ compactness Theorem we provided toauthors.Delbaen has given a proof for general non separablespaces using an homogenisation trick. He shows how toapply directly the non separable James’ compactnessTheorem in the duality hL1(⌦,F ,P),L1(⌦,F ,P)i.

J. Orihuela Compacidad, Optimización y Riesgo

Page 74: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Tools for the proof

The proof in [JST] is for separable L1(⌦,F ,P). Theseparability is needed to show 2) ) 1) with a variant of theseparable James’ compactness Theorem we provided toauthors.Delbaen has given a proof for general non separablespaces using an homogenisation trick. He shows how toapply directly the non separable James’ compactnessTheorem in the duality hL1(⌦,F ,P),L1(⌦,F ,P)i.

J. Orihuela Compacidad, Optimización y Riesgo

Page 75: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

De la Vallée Poussin’s Theorem

DefinitionA family H 2 L1 is uniformly integrable if it is bounded andlimP(A)&0

RA |X |dP = 0 uniformly in X 2 H

TheoremA family H ⇢ L0 is uniformly integrable if, and only if there is aconvex function � : R ! [0,+1) s.t�(0) = 0,�(x) = �(�x), limx!1

�(x)x = +1 which

sup{Z

�(X )dP : X 2 H} < 1

J. Orihuela Compactness, Optimization and Risk

Page 76: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Orlicz spaces

An even, convex function : E ! R [ {1} such that:1 (0) = 02 limx!1 (x) = +13 < +1 in a neighbourhood of 0

is called a Young function1 L (⌦,F ,P) := {X 2 L0 : 9↵ > 0,EP[ (↵X )] < +1}2 N (X ) := inf{c > 0 : EP[ (

1c X )] 1}

3 L1(⌦,F ,P) ⇢ L (⌦,F ,P) ⇢ L1(⌦,F ,P)4 the Morse subspace

M = {X 2 L : EP[ (�X )] < +1for all � > 0},

J. Orihuela Compacidad, Optimización y Riesgo

Page 77: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Orlicz spaces

An even, convex function : E ! R [ {1} such that:1 (0) = 02 limx!1 (x) = +13 < +1 in a neighbourhood of 0

is called a Young function1 L (⌦,F ,P) := {X 2 L0 : 9↵ > 0,EP[ (↵X )] < +1}2 N (X ) := inf{c > 0 : EP[ (

1c X )] 1}

3 L1(⌦,F ,P) ⇢ L (⌦,F ,P) ⇢ L1(⌦,F ,P)4 the Morse subspace

M = {X 2 L : EP[ (�X )] < +1for all � > 0},

J. Orihuela Compacidad, Optimización y Riesgo

Page 78: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Orlicz spaces

An even, convex function : E ! R [ {1} such that:1 (0) = 02 limx!1 (x) = +13 < +1 in a neighbourhood of 0

is called a Young function1 L (⌦,F ,P) := {X 2 L0 : 9↵ > 0,EP[ (↵X )] < +1}2 N (X ) := inf{c > 0 : EP[ (

1c X )] 1}

3 L1(⌦,F ,P) ⇢ L (⌦,F ,P) ⇢ L1(⌦,F ,P)4 the Morse subspace

M = {X 2 L : EP[ (�X )] < +1for all � > 0},

J. Orihuela Compacidad, Optimización y Riesgo

Page 79: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Orlicz spaces

An even, convex function : E ! R [ {1} such that:1 (0) = 02 limx!1 (x) = +13 < +1 in a neighbourhood of 0

is called a Young function1 L (⌦,F ,P) := {X 2 L0 : 9↵ > 0,EP[ (↵X )] < +1}2 N (X ) := inf{c > 0 : EP[ (

1c X )] 1}

3 L1(⌦,F ,P) ⇢ L (⌦,F ,P) ⇢ L1(⌦,F ,P)4 the Morse subspace

M = {X 2 L : EP[ (�X )] < +1for all � > 0},

J. Orihuela Compacidad, Optimización y Riesgo

Page 80: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Lebesgue measures go to Orlicz spaces

A Lebesgue risk measure ⇢ : L1 ! R can be extended toa risk measure on some Orlicz space ⇢ : L ! R

Theorem (F. Delbaen)

Every risk measure ⇢ : L ! R defined on an Orlicz space L with L \ L1 6= ; has the Lebesgue property restricted to L1

(Biagini-Fritelli) In general financial markets, theindifference price is a (except for the sign) a convex riskmeasure on an Orlicz space Lu naturally induced by theutility function u of the agent.

J. Orihuela Compacidad, Optimización y Riesgo

Page 81: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Lebesgue measures go to Orlicz spaces

A Lebesgue risk measure ⇢ : L1 ! R can be extended toa risk measure on some Orlicz space ⇢ : L ! R

Theorem (F. Delbaen)

Every risk measure ⇢ : L ! R defined on an Orlicz space L with L \ L1 6= ; has the Lebesgue property restricted to L1

(Biagini-Fritelli) In general financial markets, theindifference price is a (except for the sign) a convex riskmeasure on an Orlicz space Lu naturally induced by theutility function u of the agent.

J. Orihuela Compacidad, Optimización y Riesgo

Page 82: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Lebesgue measures go to Orlicz spaces

A Lebesgue risk measure ⇢ : L1 ! R can be extended toa risk measure on some Orlicz space ⇢ : L ! R

Theorem (F. Delbaen)

Every risk measure ⇢ : L ! R defined on an Orlicz space L with L \ L1 6= ; has the Lebesgue property restricted to L1

(Biagini-Fritelli) In general financial markets, theindifference price is a (except for the sign) a convex riskmeasure on an Orlicz space Lu naturally induced by theutility function u of the agent.

J. Orihuela Compacidad, Optimización y Riesgo

Page 83: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Namioka-Klee Theorem

Theorem

Any linear and positive functional ' : X ! R on a Frà c�chetlattice X is continuous

Theorem (S. Biagini and M. Fritelli 2009)Let (X , T ) be an order continuous Frechet lattice. Any convexmonotone increasing functional U : X ! R is order continuousand it admits a dual representation as

U(x) = maxy 02(X⇠

n )+{y 0(x)� U⇤(y 0)}

for all x 2 X

J. Orihuela Compacidad, Optimización y Riesgo

Page 84: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Namioka-Klee Theorem

Theorem

Any linear and positive functional ' : X ! R on a Frà c�chetlattice X is continuous

Theorem (S. Biagini and M. Fritelli 2009)Let (X , T ) be an order continuous Frechet lattice. Any convexmonotone increasing functional U : X ! R is order continuousand it admits a dual representation as

U(x) = maxy 02(X⇠

n )+{y 0(x)� U⇤(y 0)}

for all x 2 X

J. Orihuela Compacidad, Optimización y Riesgo

Page 85: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Komlos C-Properties

A linear topology T on X has the C-property if for everyA ⇢ X and every x 2 AT there is a sequence (xn) 2 Atogether with zn 2 co{xp : p � n} such that (zn) is orderconvergent to x .If {vn}n�1 2 A ⇢ X , another one {un}n�1 is a convex blocksequence of {vn}n�1 if there are finite subsets of Nmax F1 < min F2 · · · < max Fn < min Fn+1 < · · · and{�n

i : i 2 Fn} ⇢ (0, 1],P

i2Fn�n

i = 1 with un =P

i2Fn�n

i vi .

When each sequence {xn}n�1 in A has a convex blockT -convergent sequence we say that A is T -convex blockcompact.

J. Orihuela Compacidad, Optimización y Riesgo

Page 86: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Komlos C-Properties

A linear topology T on X has the C-property if for everyA ⇢ X and every x 2 AT there is a sequence (xn) 2 Atogether with zn 2 co{xp : p � n} such that (zn) is orderconvergent to x .If {vn}n�1 2 A ⇢ X , another one {un}n�1 is a convex blocksequence of {vn}n�1 if there are finite subsets of Nmax F1 < min F2 · · · < max Fn < min Fn+1 < · · · and{�n

i : i 2 Fn} ⇢ (0, 1],P

i2Fn�n

i = 1 with un =P

i2Fn�n

i vi .

When each sequence {xn}n�1 in A has a convex blockT -convergent sequence we say that A is T -convex blockcompact.

J. Orihuela Compacidad, Optimización y Riesgo

Page 87: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Komlos C-Properties

A linear topology T on X has the C-property if for everyA ⇢ X and every x 2 AT there is a sequence (xn) 2 Atogether with zn 2 co{xp : p � n} such that (zn) is orderconvergent to x .If {vn}n�1 2 A ⇢ X , another one {un}n�1 is a convex blocksequence of {vn}n�1 if there are finite subsets of Nmax F1 < min F2 · · · < max Fn < min Fn+1 < · · · and{�n

i : i 2 Fn} ⇢ (0, 1],P

i2Fn�n

i = 1 with un =P

i2Fn�n

i vi .

When each sequence {xn}n�1 in A has a convex blockT -convergent sequence we say that A is T -convex blockcompact.

J. Orihuela Compacidad, Optimización y Riesgo

Page 88: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Theorem (S.Biagini and M.Fritelli 2009)Let (X , T ) a locally convex Frechet lattice andU : X ! (�1,+1] proper and convex. If �(X ,X⇠

n ) has theC-property then U is order lower semicontinuous if, and only if

U(x) = supy 02(X⇠

n ){y 0(x)� U⇤(y 0)}

for all x 2 X

Question (Biagini-Fritelli)When is it possible to turn sup to max on X⇠

n ?

J. Orihuela Compacidad, Optimización y Riesgo

Page 89: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Theorem (S.Biagini and M.Fritelli 2009)Let (X , T ) a locally convex Frechet lattice andU : X ! (�1,+1] proper and convex. If �(X ,X⇠

n ) has theC-property then U is order lower semicontinuous if, and only if

U(x) = supy 02(X⇠

n ){y 0(x)� U⇤(y 0)}

for all x 2 X

Question (Biagini-Fritelli)When is it possible to turn sup to max on X⇠

n ?

J. Orihuela Compacidad, Optimización y Riesgo

Page 90: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Sup-limsup Theorem

Theorem (Simons)

Let � be a set and (zn)n a uniformly bounded sequence in`1(�). If ⇤ is a subset of � such that for every sequence ofpositive numbers (�n)n with

P1n=1 �n = 1 there exists b 2 ⇤

such that

sup{1X

n=1

�nzn(y) : y 2 �} =1X

n=1

�nzn(b),

then we have:

sup�2⇤

lim supk!1

xk (�) = sup�2�

lim supk!1

xk (�)

J. Orihuela Compacidad, Optimización y Riesgo

Page 91: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Sup-limsup Theorem

Theorem (Simons)

Let � be a set and (zn)n a uniformly bounded sequence in`1(�). If ⇤ is a subset of � such that for every sequence ofpositive numbers (�n)n with

P1n=1 �n = 1 there exists b 2 ⇤

such that

sup{1X

n=1

�nzn(y) : y 2 �} =1X

n=1

�nzn(b),

then we have:

sup�2⇤

lim supk!1

xk (�) = sup�2�

lim supk!1

xk (�)

J. Orihuela Compacidad, Optimización y Riesgo

Page 92: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness through Sup–limsup Theorem

TheoremLet E be a separable Banach space and K ⇢ E a closedconvex and bounded subset. They are equivalent:

1 K is weakly compact.2 For every sequence (x⇤

n ) ⇢ BE⇤ we have

supk2K

{lim supn!1

x⇤n (k)} = sup

2K w⇤{lim sup

n!1x⇤

n ()}

J. Orihuela Compacidad, Optimización y Riesgo

Page 93: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Sup–limsup Theorem ) Compactness

If K is not weakly compact there is x⇤⇤0 2 K w⇤

⇢ E⇤⇤ withx⇤⇤

0 /2 EThe Hahn Banach Theorem provide us x⇤⇤⇤ 2 BE⇤⇤⇤ \ E?

with x⇤⇤⇤(x⇤⇤0 ) = ↵ > 0

The separability of E , Ascoli’s and Bipolar Theoremspermit to construct a sequence (x⇤

n ) ⇢ BE⇤ such that:1 limn!1 x⇤

n (x) = 0 for all x 2 E2 x⇤

n (x⇤⇤0 ) > ↵/2 for all n 2 N

Then

0 = supk2K

{ limn!1

x⇤n (k)} = sup

k2K{lim sup

n!1x⇤

n (k)} �

= supv⇤⇤2K w⇤

{lim supn!1

x⇤n (v

⇤⇤)} � lim supn!1

x⇤n (x

⇤⇤0 ) � ↵/2 > 0

J. Orihuela Compacidad, Optimización y Riesgo

Page 94: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Sup–limsup Theorem ) Compactness

If K is not weakly compact there is x⇤⇤0 2 K w⇤

⇢ E⇤⇤ withx⇤⇤

0 /2 EThe Hahn Banach Theorem provide us x⇤⇤⇤ 2 BE⇤⇤⇤ \ E?

with x⇤⇤⇤(x⇤⇤0 ) = ↵ > 0

The separability of E , Ascoli’s and Bipolar Theoremspermit to construct a sequence (x⇤

n ) ⇢ BE⇤ such that:1 limn!1 x⇤

n (x) = 0 for all x 2 E2 x⇤

n (x⇤⇤0 ) > ↵/2 for all n 2 N

Then

0 = supk2K

{ limn!1

x⇤n (k)} = sup

k2K{lim sup

n!1x⇤

n (k)} �

= supv⇤⇤2K w⇤

{lim supn!1

x⇤n (v

⇤⇤)} � lim supn!1

x⇤n (x

⇤⇤0 ) � ↵/2 > 0

J. Orihuela Compacidad, Optimización y Riesgo

Page 95: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Sup–limsup Theorem ) Compactness

If K is not weakly compact there is x⇤⇤0 2 K w⇤

⇢ E⇤⇤ withx⇤⇤

0 /2 EThe Hahn Banach Theorem provide us x⇤⇤⇤ 2 BE⇤⇤⇤ \ E?

with x⇤⇤⇤(x⇤⇤0 ) = ↵ > 0

The separability of E , Ascoli’s and Bipolar Theoremspermit to construct a sequence (x⇤

n ) ⇢ BE⇤ such that:1 limn!1 x⇤

n (x) = 0 for all x 2 E2 x⇤

n (x⇤⇤0 ) > ↵/2 for all n 2 N

Then

0 = supk2K

{ limn!1

x⇤n (k)} = sup

k2K{lim sup

n!1x⇤

n (k)} �

= supv⇤⇤2K w⇤

{lim supn!1

x⇤n (v

⇤⇤)} � lim supn!1

x⇤n (x

⇤⇤0 ) � ↵/2 > 0

J. Orihuela Compacidad, Optimización y Riesgo

Page 96: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Sup–limsup Theorem ) Compactness

If K is not weakly compact there is x⇤⇤0 2 K w⇤

⇢ E⇤⇤ withx⇤⇤

0 /2 EThe Hahn Banach Theorem provide us x⇤⇤⇤ 2 BE⇤⇤⇤ \ E?

with x⇤⇤⇤(x⇤⇤0 ) = ↵ > 0

The separability of E , Ascoli’s and Bipolar Theoremspermit to construct a sequence (x⇤

n ) ⇢ BE⇤ such that:1 limn!1 x⇤

n (x) = 0 for all x 2 E2 x⇤

n (x⇤⇤0 ) > ↵/2 for all n 2 N

Then

0 = supk2K

{ limn!1

x⇤n (k)} = sup

k2K{lim sup

n!1x⇤

n (k)} �

= supv⇤⇤2K w⇤

{lim supn!1

x⇤n (v

⇤⇤)} � lim supn!1

x⇤n (x

⇤⇤0 ) � ↵/2 > 0

J. Orihuela Compacidad, Optimización y Riesgo

Page 97: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)Let E be a separable Banach space and K ⇢ E a closedconvex and bounded subset. They are equivalent:

1 K is weakly compact.2 For any covering K ⇢ [1

n=1Dn by an increasing sequenceof closed convex subsets Dn ⇢ K , we have

[1n Dn

w⇤k·k= K w⇤

.

The proof uses Krein Milman and Bishop Phelps theorems

J. Orihuela Compacidad, Optimización y Riesgo

Page 98: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)Let E be a separable Banach space and K ⇢ E a closedconvex and bounded subset. They are equivalent:

1 K is weakly compact.2 For any covering K ⇢ [1

n=1Dn by an increasing sequenceof closed convex subsets Dn ⇢ K , we have

[1n Dn

w⇤k·k= K w⇤

.

The proof uses Krein Milman and Bishop Phelps theorems

J. Orihuela Compacidad, Optimización y Riesgo

Page 99: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

I-generation ) Weak Compactness

Take {xn : n 2 N} norm dense in K

Bm := co({xn : n m})k·k is finite dimensional closedcompact setDm := Bm + �BE⇤⇤ for � > 0 fixedSince K ⇢ S1

m=1 Dm, the I-generation says that

1[

mDm

w⇤k·k

= K w⇤.

So (S1

m Bm) + 2�BE⇤⇤ � K w⇤.

FinallyT

�>0(S1

m Bm) + 2�BE⇤⇤ = K k·k= K = K w⇤

.

J. Orihuela Compacidad, Optimización y Riesgo

Page 100: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

I-generation ) Weak Compactness

Take {xn : n 2 N} norm dense in K

Bm := co({xn : n m})k·k is finite dimensional closedcompact setDm := Bm + �BE⇤⇤ for � > 0 fixedSince K ⇢ S1

m=1 Dm, the I-generation says that

1[

mDm

w⇤k·k

= K w⇤.

So (S1

m Bm) + 2�BE⇤⇤ � K w⇤.

FinallyT

�>0(S1

m Bm) + 2�BE⇤⇤ = K k·k= K = K w⇤

.

J. Orihuela Compacidad, Optimización y Riesgo

Page 101: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

I-generation ) Weak Compactness

Take {xn : n 2 N} norm dense in K

Bm := co({xn : n m})k·k is finite dimensional closedcompact setDm := Bm + �BE⇤⇤ for � > 0 fixedSince K ⇢ S1

m=1 Dm, the I-generation says that

1[

mDm

w⇤k·k

= K w⇤.

So (S1

m Bm) + 2�BE⇤⇤ � K w⇤.

FinallyT

�>0(S1

m Bm) + 2�BE⇤⇤ = K k·k= K = K w⇤

.

J. Orihuela Compacidad, Optimización y Riesgo

Page 102: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

I-generation ) Weak Compactness

Take {xn : n 2 N} norm dense in K

Bm := co({xn : n m})k·k is finite dimensional closedcompact setDm := Bm + �BE⇤⇤ for � > 0 fixedSince K ⇢ S1

m=1 Dm, the I-generation says that

1[

mDm

w⇤k·k

= K w⇤.

So (S1

m Bm) + 2�BE⇤⇤ � K w⇤.

FinallyT

�>0(S1

m Bm) + 2�BE⇤⇤ = K k·k= K = K w⇤

.

J. Orihuela Compacidad, Optimización y Riesgo

Page 103: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

I-generation ) Weak Compactness

Take {xn : n 2 N} norm dense in K

Bm := co({xn : n m})k·k is finite dimensional closedcompact setDm := Bm + �BE⇤⇤ for � > 0 fixedSince K ⇢ S1

m=1 Dm, the I-generation says that

1[

mDm

w⇤k·k

= K w⇤.

So (S1

m Bm) + 2�BE⇤⇤ � K w⇤.

FinallyT

�>0(S1

m Bm) + 2�BE⇤⇤ = K k·k= K = K w⇤

.

J. Orihuela Compacidad, Optimización y Riesgo

Page 104: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

I-generation ) Weak Compactness

Take {xn : n 2 N} norm dense in K

Bm := co({xn : n m})k·k is finite dimensional closedcompact setDm := Bm + �BE⇤⇤ for � > 0 fixedSince K ⇢ S1

m=1 Dm, the I-generation says that

1[

mDm

w⇤k·k

= K w⇤.

So (S1

m Bm) + 2�BE⇤⇤ � K w⇤.

FinallyT

�>0(S1

m Bm) + 2�BE⇤⇤ = K k·k= K = K w⇤

.

J. Orihuela Compacidad, Optimización y Riesgo

Page 105: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)Let E be a Banach space, K ⇢ E⇤ be w⇤�compact convex,B ⇢ K , TFAE:

1 For any covering B ⇢ [1n=1Dn by an increasing sequence

of convex subsets Dn ⇢ K , we have

[1n Dn

w⇤k·k= K .

2 supf2B (lim supk f (xk )) = supg2K (lim supk g(xk ))for every sequence {xk} ⇢ BX .

3 supf2B (lim supk f (xk )) � infP�i=1,�i�0(supg2K g(P

�i xi))for every sequence {xk} ⇢ BX .

J. Orihuela Compacidad, Optimización y Riesgo

Page 106: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)Let E be a Banach space, K ⇢ E⇤ be w⇤�compact convex,B ⇢ K , TFAE:

1 For any covering B ⇢ [1n=1Dn by an increasing sequence

of convex subsets Dn ⇢ K , we have

[1n Dn

w⇤k·k= K .

2 supf2B (lim supk f (xk )) = supg2K (lim supk g(xk ))for every sequence {xk} ⇢ BX .

3 supf2B (lim supk f (xk )) � infP�i=1,�i�0(supg2K g(P

�i xi))for every sequence {xk} ⇢ BX .

J. Orihuela Compacidad, Optimización y Riesgo

Page 107: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)Let E be a Banach space, K ⇢ E⇤ be w⇤�compact convex,B ⇢ K , TFAE:

1 For any covering B ⇢ [1n=1Dn by an increasing sequence

of convex subsets Dn ⇢ K , we have

[1n Dn

w⇤k·k= K .

2 supf2B (lim supk f (xk )) = supg2K (lim supk g(xk ))for every sequence {xk} ⇢ BX .

3 supf2B (lim supk f (xk )) � infP�i=1,�i�0(supg2K g(P

�i xi))for every sequence {xk} ⇢ BX .

J. Orihuela Compacidad, Optimización y Riesgo

Page 108: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Inf-liminf Theorem in R�

Theorem (Inf-liminf Theorem in R�)

Let {�k}k�1 be a pointwise bounded sequence in R�. We set⇤ ✓ � satisfying the following boundary condition:For all � =

P1i=1 �i�i ,

P1i=1 �i = 1, 0 �i 1, there exists

�0 2 ⇤ with �(�0) = inf{�(�) : � 2 �}

Then

inf{�2⇤}

✓lim inf

k�1�k (�)

◆= inf

{�2�}

✓lim inf

k�1�k (�)

◆.

J. Orihuela Compacidad, Optimización y Riesgo

Page 109: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Inf-liminf Theorem in R�

Theorem (Inf-liminf Theorem in R�)

Let {�k}k�1 be a pointwise bounded sequence in R�. We set⇤ ✓ � satisfying the following boundary condition:For all � =

P1i=1 �i�i ,

P1i=1 �i = 1, 0 �i 1, there exists

�0 2 ⇤ with �(�0) = inf{�(�) : � 2 �}

Then

inf{�2⇤}

✓lim inf

k�1�k (�)

◆= inf

{�2�}

✓lim inf

k�1�k (�)

◆.

J. Orihuela Compacidad, Optimización y Riesgo

Page 110: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)Let E be a Banach space with BE⇤ convex-block compact for�(E⇤,E). If

↵ : E ! R [ {+1}is a proper map such that for every x⇤ 2 E⇤ the minimizationproblem

inf{↵(y) + x⇤(y) : y 2 E}is attained at some point of E, then the level sets

{y 2 E : ↵(y) c}

are relatively weakly compact for every c 2 R.

J. Orihuela Compacidad, Optimización y Riesgo

Page 111: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)Let E be a Banach space with BE⇤ convex-block compact for�(E⇤,E). If

↵ : E ! R [ {+1}is a proper map such that for every x⇤ 2 E⇤ the minimizationproblem

inf{↵(y) + x⇤(y) : y 2 E}is attained at some point of E, then the level sets

{y 2 E : ↵(y) c}

are relatively weakly compact for every c 2 R.

J. Orihuela Compacidad, Optimización y Riesgo

Page 112: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)Let E be a Banach space with BE⇤ convex-block compact for�(E⇤,E). If

↵ : E ! R [ {+1}is a proper map such that for every x⇤ 2 E⇤ the minimizationproblem

inf{↵(y) + x⇤(y) : y 2 E}is attained at some point of E, then the level sets

{y 2 E : ↵(y) c}

are relatively weakly compact for every c 2 R.

J. Orihuela Compacidad, Optimización y Riesgo

Page 113: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)Let ⇢(X ) = supY2M ⇤{EP[�XY ]� ↵(Y )} be a finite convex riskmeasure on L with ↵ : (L (⌦,F ,P)⇤ ! (�1,+1] a penaltyfunction w⇤-lower semicontinuos. T.F.A.E.:

(i) For all c 2 R, ↵�1((�1, c]) is a relatively weakly compactsubset of M ⇤

(⌦,F ,P).(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X ) = supY2M ⇤

{EP[�XY ]� ↵(Y )}

is attained.(iii) ⇢ is sequentially order continuous

J. Orihuela Compacidad, Optimización y Riesgo

Page 114: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)Let ⇢(X ) = supY2M ⇤{EP[�XY ]� ↵(Y )} be a finite convex riskmeasure on L with ↵ : (L (⌦,F ,P)⇤ ! (�1,+1] a penaltyfunction w⇤-lower semicontinuos. T.F.A.E.:

(i) For all c 2 R, ↵�1((�1, c]) is a relatively weakly compactsubset of M ⇤

(⌦,F ,P).(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X ) = supY2M ⇤

{EP[�XY ]� ↵(Y )}

is attained.(iii) ⇢ is sequentially order continuous

J. Orihuela Compacidad, Optimización y Riesgo

Page 115: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)Let ⇢(X ) = supY2M ⇤{EP[�XY ]� ↵(Y )} be a finite convex riskmeasure on L with ↵ : (L (⌦,F ,P)⇤ ! (�1,+1] a penaltyfunction w⇤-lower semicontinuos. T.F.A.E.:

(i) For all c 2 R, ↵�1((�1, c]) is a relatively weakly compactsubset of M ⇤

(⌦,F ,P).(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X ) = supY2M ⇤

{EP[�XY ]� ↵(Y )}

is attained.(iii) ⇢ is sequentially order continuous

J. Orihuela Compacidad, Optimización y Riesgo

Page 116: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)Let ⇢(X ) = supY2M ⇤{EP[�XY ]� ↵(Y )} be a finite convex riskmeasure on L with ↵ : (L (⌦,F ,P)⇤ ! (�1,+1] a penaltyfunction w⇤-lower semicontinuos. T.F.A.E.:

(i) For all c 2 R, ↵�1((�1, c]) is a relatively weakly compactsubset of M ⇤

(⌦,F ,P).(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X ) = supY2M ⇤

{EP[�XY ]� ↵(Y )}

is attained.(iii) ⇢ is sequentially order continuous

J. Orihuela Compacidad, Optimización y Riesgo

Page 117: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Nonlinear Variational Problems

Theorem (Reflexivity frame)Let E be a real Banach space and

↵ : E �! R [ {+1}

a coercive function such that dom(↵) has nonempty interior andfor all x⇤ 2 E⇤ there exists x0 2 E with

↵(x0) + x⇤(x0) = infx2E

{↵(x) + x⇤(x)}

Then E is reflexive.Moreover, if the dual ball BE⇤ is a w⇤- convex-block compact nocoercive assumption is needed for ↵

J. Orihuela Compacidad, Optimización y Riesgo

Page 118: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Nonlinear Variational Problems

Theorem (Reflexivity frame)Let E be a real Banach space and

↵ : E �! R [ {+1}

a coercive function such that dom(↵) has nonempty interior andfor all x⇤ 2 E⇤ there exists x0 2 E with

↵(x0) + x⇤(x0) = infx2E

{↵(x) + x⇤(x)}

Then E is reflexive.Moreover, if the dual ball BE⇤ is a w⇤- convex-block compact nocoercive assumption is needed for ↵

J. Orihuela Compacidad, Optimización y Riesgo

Page 119: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Nonlinear Variational Problems

Theorem (Reflexivity frame)Let E be a real Banach space and

↵ : E �! R [ {+1}

a coercive function such that dom(↵) has nonempty interior andfor all x⇤ 2 E⇤ there exists x0 2 E with

↵(x0) + x⇤(x0) = infx2E

{↵(x) + x⇤(x)}

Then E is reflexive.Moreover, if the dual ball BE⇤ is a w⇤- convex-block compact nocoercive assumption is needed for ↵

J. Orihuela Compacidad, Optimización y Riesgo

Page 120: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =S+1

p=1 B \ ↵�1((�1, p])�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])�(E ,E⇤)

has non void interior relative to BThere is G open in E such that; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])�(E ,E⇤)

weakly compact ) G contains anopen relatively weakly compact ballBE is weakly compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 121: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =S+1

p=1 B \ ↵�1((�1, p])�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])�(E ,E⇤)

has non void interior relative to BThere is G open in E such that; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])�(E ,E⇤)

weakly compact ) G contains anopen relatively weakly compact ballBE is weakly compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 122: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =S+1

p=1 B \ ↵�1((�1, p])�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])�(E ,E⇤)

has non void interior relative to BThere is G open in E such that; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])�(E ,E⇤)

weakly compact ) G contains anopen relatively weakly compact ballBE is weakly compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 123: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =S+1

p=1 B \ ↵�1((�1, p])�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])�(E ,E⇤)

has non void interior relative to BThere is G open in E such that; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])�(E ,E⇤)

weakly compact ) G contains anopen relatively weakly compact ballBE is weakly compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 124: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =S+1

p=1 B \ ↵�1((�1, p])�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])�(E ,E⇤)

has non void interior relative to BThere is G open in E such that; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])�(E ,E⇤)

weakly compact ) G contains anopen relatively weakly compact ballBE is weakly compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 125: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =S+1

p=1 B \ ↵�1((�1, p])�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])�(E ,E⇤)

has non void interior relative to BThere is G open in E such that; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])�(E ,E⇤)

weakly compact ) G contains anopen relatively weakly compact ballBE is weakly compact

J. Orihuela Compacidad, Optimización y Riesgo

Page 126: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 127: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Nonlinear variational problems

Corollary

A real Banach space E is reflexive, provided there exists amonotone, coercive, symmetric and surjective operator� : E �! E⇤

A real Banach space with dual ball w⇤-convex-blockcompact is reflexive whenever there exists a monotone,symmetric and surjective operator � : E �! E⇤

QuestionLet E be a real Banach space and � : E ! 2E⇤ a monotonemultivalued map with non void interior domain.

[�(E) = E⇤] ) E = E⇤⇤?

J. Orihuela Compacidad, Optimización y Riesgo

Page 128: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Nonlinear variational problems

Corollary

A real Banach space E is reflexive, provided there exists amonotone, coercive, symmetric and surjective operator� : E �! E⇤

A real Banach space with dual ball w⇤-convex-blockcompact is reflexive whenever there exists a monotone,symmetric and surjective operator � : E �! E⇤

QuestionLet E be a real Banach space and � : E ! 2E⇤ a monotonemultivalued map with non void interior domain.

[�(E) = E⇤] ) E = E⇤⇤?

J. Orihuela Compacidad, Optimización y Riesgo

Page 129: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

Nonlinear variational problems

Corollary

A real Banach space E is reflexive, provided there exists amonotone, coercive, symmetric and surjective operator� : E �! E⇤

A real Banach space with dual ball w⇤-convex-blockcompact is reflexive whenever there exists a monotone,symmetric and surjective operator � : E �! E⇤

QuestionLet E be a real Banach space and � : E ! 2E⇤ a monotonemultivalued map with non void interior domain.

[�(E) = E⇤] ) E = E⇤⇤?

J. Orihuela Compacidad, Optimización y Riesgo

Page 130: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 131: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 132: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 133: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Teorema fundamental de los mercados financieros

Theorem (Harrison, Pliska, Kreps, Delbaen, Schachermayer)Los siguientes enunciados son equivalentes para un modelo

(St

) de mercado financiero sobre (⌦,F ,P)1 (S

t

) no admite posibilidad de arbitraje

2Existe una medida de probabilidad Q equivalente a P bajo

la cual el proceso (St

) se convierte en una martingala

Teoría de ProbabilidadEcuaciones diferenciales estocásticasOptimizaciónAnálisis Funcional

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 134: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Teorema fundamental de los mercados financieros

Theorem (Harrison, Pliska, Kreps, Delbaen, Schachermayer)Los siguientes enunciados son equivalentes para un modelo

(St

) de mercado financiero sobre (⌦,F ,P)1 (S

t

) no admite posibilidad de arbitraje

2Existe una medida de probabilidad Q equivalente a P bajo

la cual el proceso (St

) se convierte en una martingala

Teoría de ProbabilidadEcuaciones diferenciales estocásticasOptimizaciónAnálisis Funcional

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 135: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Teorema fundamental de los mercados financieros

Theorem (Harrison, Pliska, Kreps, Delbaen, Schachermayer)Los siguientes enunciados son equivalentes para un modelo

(St

) de mercado financiero sobre (⌦,F ,P)1 (S

t

) no admite posibilidad de arbitraje

2Existe una medida de probabilidad Q equivalente a P bajo

la cual el proceso (St

) se convierte en una martingala

Teoría de ProbabilidadEcuaciones diferenciales estocásticasOptimizaciónAnálisis Funcional

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 136: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Teorema fundamental de los mercados financieros

Theorem (Harrison, Pliska, Kreps, Delbaen, Schachermayer)Los siguientes enunciados son equivalentes para un modelo

(St

) de mercado financiero sobre (⌦,F ,P)1 (S

t

) no admite posibilidad de arbitraje

2Existe una medida de probabilidad Q equivalente a P bajo

la cual el proceso (St

) se convierte en una martingala

Teoría de ProbabilidadEcuaciones diferenciales estocásticasOptimizaciónAnálisis Funcional

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 137: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Teorema fundamental de los mercados financieros

Theorem (Harrison, Pliska, Kreps, Delbaen, Schachermayer)Los siguientes enunciados son equivalentes para un modelo

(St

) de mercado financiero sobre (⌦,F ,P)1 (S

t

) no admite posibilidad de arbitraje

2Existe una medida de probabilidad Q equivalente a P bajo

la cual el proceso (St

) se convierte en una martingala

Teoría de ProbabilidadEcuaciones diferenciales estocásticasOptimizaciónAnálisis Funcional

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 138: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 139: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 140: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 141: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 142: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques
Page 143: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Martingalas

Sea Ft

la �-algebra generada por {W

s

: s t}. El movimientoBrowniano (W

t

) verifica:1

W

t

� W

s

es independiente de Fs

si 0 s < t

2 E(Wt

|Fs

) = W

s

siempre que 0 s t

L

2(⌦,Fs

,P) ⇢ L

2(⌦,Ft

,P) ⇢ L

2(⌦,F ,P)

y tendremos operadores proyección ortogonal entre estosespacios de Hilbert.E(·,F

s

) coincide con la proyección ortogonal sobre L

2(⌦,Fs

,P)Un proceso (S

t

) adaptado a la filtración anterior se dice que esuna martingala si

E(St

|Fs

) = S

s

siempre que 0 s t , esto es siempre que S

t

� S

s

seaortogonal a L

2(⌦,Fs

,P) cuando 0 s < t

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 144: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Martingalas

Sea Ft

la �-algebra generada por {W

s

: s t}. El movimientoBrowniano (W

t

) verifica:1

W

t

� W

s

es independiente de Fs

si 0 s < t

2 E(Wt

|Fs

) = W

s

siempre que 0 s t

L

2(⌦,Fs

,P) ⇢ L

2(⌦,Ft

,P) ⇢ L

2(⌦,F ,P)

y tendremos operadores proyección ortogonal entre estosespacios de Hilbert.E(·,F

s

) coincide con la proyección ortogonal sobre L

2(⌦,Fs

,P)Un proceso (S

t

) adaptado a la filtración anterior se dice que esuna martingala si

E(St

|Fs

) = S

s

siempre que 0 s t , esto es siempre que S

t

� S

s

seaortogonal a L

2(⌦,Fs

,P) cuando 0 s < t

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 145: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Martingalas

Sea Ft

la �-algebra generada por {W

s

: s t}. El movimientoBrowniano (W

t

) verifica:1

W

t

� W

s

es independiente de Fs

si 0 s < t

2 E(Wt

|Fs

) = W

s

siempre que 0 s t

L

2(⌦,Fs

,P) ⇢ L

2(⌦,Ft

,P) ⇢ L

2(⌦,F ,P)

y tendremos operadores proyección ortogonal entre estosespacios de Hilbert.E(·,F

s

) coincide con la proyección ortogonal sobre L

2(⌦,Fs

,P)Un proceso (S

t

) adaptado a la filtración anterior se dice que esuna martingala si

E(St

|Fs

) = S

s

siempre que 0 s t , esto es siempre que S

t

� S

s

seaortogonal a L

2(⌦,Fs

,P) cuando 0 s < t

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 146: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Martingalas

Sea Ft

la �-algebra generada por {W

s

: s t}. El movimientoBrowniano (W

t

) verifica:1

W

t

� W

s

es independiente de Fs

si 0 s < t

2 E(Wt

|Fs

) = W

s

siempre que 0 s t

L

2(⌦,Fs

,P) ⇢ L

2(⌦,Ft

,P) ⇢ L

2(⌦,F ,P)

y tendremos operadores proyección ortogonal entre estosespacios de Hilbert.E(·,F

s

) coincide con la proyección ortogonal sobre L

2(⌦,Fs

,P)Un proceso (S

t

) adaptado a la filtración anterior se dice que esuna martingala si

E(St

|Fs

) = S

s

siempre que 0 s t , esto es siempre que S

t

� S

s

seaortogonal a L

2(⌦,Fs

,P) cuando 0 s < t

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 147: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Martingalas

Sea Ft

la �-algebra generada por {W

s

: s t}. El movimientoBrowniano (W

t

) verifica:1

W

t

� W

s

es independiente de Fs

si 0 s < t

2 E(Wt

|Fs

) = W

s

siempre que 0 s t

L

2(⌦,Fs

,P) ⇢ L

2(⌦,Ft

,P) ⇢ L

2(⌦,F ,P)

y tendremos operadores proyección ortogonal entre estosespacios de Hilbert.E(·,F

s

) coincide con la proyección ortogonal sobre L

2(⌦,Fs

,P)Un proceso (S

t

) adaptado a la filtración anterior se dice que esuna martingala si

E(St

|Fs

) = S

s

siempre que 0 s t , esto es siempre que S

t

� S

s

seaortogonal a L

2(⌦,Fs

,P) cuando 0 s < t

J. Orihuela Mestizaje entre el Análisis Funcional y las Finanzas

Page 148: Compacidad, Optimización y Riesgowebs.um.es/joseori/documentos/charlas/CharlaAlmeria2013.pdfE. Zeidler Nonlinear Functional Analysis and its Applications J. Borwein and Q. Zhu Techniques

Compactness and OptimizationCompactness, Convex Analysis and Risk

Risk Measures in Orlicz spacesVariational problems and reflexivity

MUCHAS GRACIAS POR VUESTRA ATENCIÓN!!!!

J. Orihuela Compacidad, Optimización y Riesgo