p-potencias y compacidad para operadores entre espacios de banach de funciones

31
p-potencias y compacidad para operadores entre espacios de Banach de funciones Enrique A. S´ anchez P´ erez I.U.M.P.A.-U. Polit´ ecnica de Valencia, Joint work with P. Rueda (Universidad de Valencia) Murcia 2012 E. S´ anchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 1/14

Upload: esasancpe

Post on 21-Feb-2017

171 views

Category:

Education


5 download

TRANSCRIPT

Page 1: p-potencias y compacidad para operadores entre espacios de Banach de funciones

p-potencias y compacidad para operadores entre espacios deBanach de funciones

Enrique A. Sanchez Perez

I.U.M.P.A.-U. Politecnica de Valencia,Joint work with P. Rueda (Universidad de Valencia)

Murcia 2012

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 1/14

Page 2: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Resumen: En general, la compacidad de un operador entre espacios de Banach defunciones y el hecho de que el conjunto de las imagenes de la funciones caracterısticasde conjuntos medibles sea relativamente compacto, son propiedades diferentes. Enesta charla explicaremos como se puede caracterizar la diferencia entre estaspropiedades en terminos de las p-potencias del espacio de Banach de funciones queconstituye el dominio del operador. Como aplicacion, veremos cuando se puedeextender un operador a un espacio L1 preservando la compacidad.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 2/14

Page 3: p-potencias y compacidad para operadores entre espacios de Banach de funciones

(Ω,Σ, µ) finite measure space.

X (µ) Banach function space over µ (Banach ideal of measurable functions).

T : X (µ)→ E linear and continuous operator, E Banach space.

The essential range of an operator T : X (µ)→ E is the set T (χA) : A ∈ Σ.

A continuous operator T : X (µ)→ E is said to be essentially compact if itsessential range is relatively compact in E .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 3/14

Page 4: p-potencias y compacidad para operadores entre espacios de Banach de funciones

(Ω,Σ, µ) finite measure space.

X (µ) Banach function space over µ (Banach ideal of measurable functions).

T : X (µ)→ E linear and continuous operator, E Banach space.

The essential range of an operator T : X (µ)→ E is the set T (χA) : A ∈ Σ.

A continuous operator T : X (µ)→ E is said to be essentially compact if itsessential range is relatively compact in E .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 3/14

Page 5: p-potencias y compacidad para operadores entre espacios de Banach de funciones

(Ω,Σ, µ) finite measure space.

X (µ) Banach function space over µ (Banach ideal of measurable functions).

T : X (µ)→ E linear and continuous operator, E Banach space.

The essential range of an operator T : X (µ)→ E is the set T (χA) : A ∈ Σ.

A continuous operator T : X (µ)→ E is said to be essentially compact if itsessential range is relatively compact in E .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 3/14

Page 6: p-potencias y compacidad para operadores entre espacios de Banach de funciones

(Ω,Σ, µ) finite measure space.

X (µ) Banach function space over µ (Banach ideal of measurable functions).

T : X (µ)→ E linear and continuous operator, E Banach space.

The essential range of an operator T : X (µ)→ E is the set T (χA) : A ∈ Σ.

A continuous operator T : X (µ)→ E is said to be essentially compact if itsessential range is relatively compact in E .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 3/14

Page 7: p-potencias y compacidad para operadores entre espacios de Banach de funciones

(Ω,Σ, µ) finite measure space.

X (µ) Banach function space over µ (Banach ideal of measurable functions).

T : X (µ)→ E linear and continuous operator, E Banach space.

The essential range of an operator T : X (µ)→ E is the set T (χA) : A ∈ Σ.

A continuous operator T : X (µ)→ E is said to be essentially compact if itsessential range is relatively compact in E .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 3/14

Page 8: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Let 0 < p <∞. If X (µ) is a Banach function space, the p-th power of X is defined as

X[p] := f ∈ L0(µ) : |f |1/p ∈ X.

It is a quasi-Banach function space over µ when endowed with the seminorm‖f ‖X[p]

:= ‖|f |1/p‖pX , f ∈ X[p].

It is a Banach space and the above expression defines a norm if and only if X isp-convex with p-convexity constant 1. X[1/p] is sometimes called the p-convexificationof X .

For instance, Lp [0, 1][p] = L1[0, 1] and L1[0, 1][1/p] = Lp [0, 1] isometrically.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 4/14

Page 9: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Let 0 < p <∞. If X (µ) is a Banach function space, the p-th power of X is defined as

X[p] := f ∈ L0(µ) : |f |1/p ∈ X.

It is a quasi-Banach function space over µ when endowed with the seminorm‖f ‖X[p]

:= ‖|f |1/p‖pX , f ∈ X[p].

It is a Banach space and the above expression defines a norm if and only if X isp-convex with p-convexity constant 1. X[1/p] is sometimes called the p-convexificationof X .

For instance, Lp [0, 1][p] = L1[0, 1] and L1[0, 1][1/p] = Lp [0, 1] isometrically.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 4/14

Page 10: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Let 0 < p <∞. If X (µ) is a Banach function space, the p-th power of X is defined as

X[p] := f ∈ L0(µ) : |f |1/p ∈ X.

It is a quasi-Banach function space over µ when endowed with the seminorm‖f ‖X[p]

:= ‖|f |1/p‖pX , f ∈ X[p].

It is a Banach space and the above expression defines a norm if and only if X isp-convex with p-convexity constant 1. X[1/p] is sometimes called the p-convexificationof X .

For instance, Lp [0, 1][p] = L1[0, 1] and L1[0, 1][1/p] = Lp [0, 1] isometrically.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 4/14

Page 11: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Let 0 < p <∞. If X (µ) is a Banach function space, the p-th power of X is defined as

X[p] := f ∈ L0(µ) : |f |1/p ∈ X.

It is a quasi-Banach function space over µ when endowed with the seminorm‖f ‖X[p]

:= ‖|f |1/p‖pX , f ∈ X[p].

It is a Banach space and the above expression defines a norm if and only if X isp-convex with p-convexity constant 1. X[1/p] is sometimes called the p-convexificationof X .

For instance, Lp [0, 1][p] = L1[0, 1] and L1[0, 1][1/p] = Lp [0, 1] isometrically.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 4/14

Page 12: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Compactness and essential compactness are not equivalent properties for operators inBanach function spaces.

Example: Volterra operator. Let 1 < r <∞. Consider the Volterra operatorVr : Lr [0, 1]→ Lr [0, 1] given by Vr (f )(x) :=

∫ x0 f (t)dt, x ∈ [0, 1], f ∈ Lr [0, 1]. It is

compact.

The integration map Iνr : L1(νr )→ Lr [0, 1] associated to the Volterra measureνr : B([0, 1])→ Lr [0, 1], νr (A) := Vr (χA), A ∈ B([0, 1]), is not compact.

BUT: it is essentially compact as a consequence of Vr being compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 5/14

Page 13: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Compactness and essential compactness are not equivalent properties for operators inBanach function spaces.

Example: Volterra operator. Let 1 < r <∞. Consider the Volterra operatorVr : Lr [0, 1]→ Lr [0, 1] given by Vr (f )(x) :=

∫ x0 f (t)dt, x ∈ [0, 1], f ∈ Lr [0, 1]. It is

compact.

The integration map Iνr : L1(νr )→ Lr [0, 1] associated to the Volterra measureνr : B([0, 1])→ Lr [0, 1], νr (A) := Vr (χA), A ∈ B([0, 1]), is not compact.

BUT: it is essentially compact as a consequence of Vr being compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 5/14

Page 14: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Compactness and essential compactness are not equivalent properties for operators inBanach function spaces.

Example: Volterra operator. Let 1 < r <∞. Consider the Volterra operatorVr : Lr [0, 1]→ Lr [0, 1] given by Vr (f )(x) :=

∫ x0 f (t)dt, x ∈ [0, 1], f ∈ Lr [0, 1]. It is

compact.

The integration map Iνr : L1(νr )→ Lr [0, 1] associated to the Volterra measureνr : B([0, 1])→ Lr [0, 1], νr (A) := Vr (χA), A ∈ B([0, 1]), is not compact.

BUT: it is essentially compact as a consequence of Vr being compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 5/14

Page 15: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Compactness and essential compactness are not equivalent properties for operators inBanach function spaces.

Example: Volterra operator. Let 1 < r <∞. Consider the Volterra operatorVr : Lr [0, 1]→ Lr [0, 1] given by Vr (f )(x) :=

∫ x0 f (t)dt, x ∈ [0, 1], f ∈ Lr [0, 1]. It is

compact.

The integration map Iνr : L1(νr )→ Lr [0, 1] associated to the Volterra measureνr : B([0, 1])→ Lr [0, 1], νr (A) := Vr (χA), A ∈ B([0, 1]), is not compact.

BUT: it is essentially compact as a consequence of Vr being compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 5/14

Page 16: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Theorem: Let 1 ≤ p <∞. Let T : X → (E , τ) be a continuous operator and let U bea basis of absolutely convex open neighborhoods of 0 in (E , τ). Consider the followingassertions:

(a) The operator T : X → (E , τ) is compact.

(b) For each g ∈ BX[1/p′ ]the image T (gBX[1/p]

) is relatively τ -compact in E and for

every U ∈ U there exists gU ∈ X[1/p′] such that T (BX ) ⊂ T (gUBX[1/p]) + U.

(c) For each g ∈ BX[1/p′ ]the image T (gBX[1/p]

) is relatively τ -compact in E and for

every U ∈ U there exists KU > 0 such that T (BX ) ⊂ T (KUBX[1/p]) + U.

Then (a) implies (b) and (c). If besides τ is metrizable then (b) or (c) implies (a).

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 6/14

Page 17: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Lemma: Let 1 < p <∞. Let X (µ) be an order continuous Banach function spaceand E be a Banach space. A continuous operator T : X (µ)→ E is essentiallycompact if and only if for every h ∈ X[1/p′] the map Th : X[1/p] → E given byTh(·) := T (h ·), is compact.

Corollary: Let 1 < p <∞. Let X (µ) be an order continuous Banach function spaceand E be a Banach space. If T : X (µ)→ E is a continuous essentially compactoperator then the restriction T |X[1/p]

: X[1/p] → E is compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 7/14

Page 18: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Lemma: Let 1 < p <∞. Let X (µ) be an order continuous Banach function spaceand E be a Banach space. A continuous operator T : X (µ)→ E is essentiallycompact if and only if for every h ∈ X[1/p′] the map Th : X[1/p] → E given byTh(·) := T (h ·), is compact.

Corollary: Let 1 < p <∞. Let X (µ) be an order continuous Banach function spaceand E be a Banach space. If T : X (µ)→ E is a continuous essentially compactoperator then the restriction T |X[1/p]

: X[1/p] → E is compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 7/14

Page 19: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Theorem: Let 1 ≤ p <∞ and let X (µ) be an order continuous Banach functionspace. The following statements for a continuous operator T : X → E are equivalent:

(i) T is compact.

(ii) T is essentially compact and for every ε > 0 there exists hε ∈ X[1/p′] such thatT (BX ) ⊂ T (hεBX[1/p]

) + εBE .

(iii) T is essentially compact and for every ε > 0 there exists Kε > 0 such thatT (BX ) ⊂ T (KεBX[1/p]

) + εBE .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 8/14

Page 20: p-potencias y compacidad para operadores entre espacios de Banach de funciones

KERNEL OPERATORS

Corollary:Let X (µ), F and T as above. Suppose also that T is essentially compact.Then

limK→∞

supf∈BX

∥∥T (f χ|f |>K)‖ = 0

implies that T is compact.

Let Tk be a positive kernel operator given by

(Tk f )(y) :=

∫[0,1]

f (x)k(y , x) dx .

Corollary: Let T be an essentially compact (positive) kernel operatorT : X (µ)→ Y (ν) such that the kernel k satisfies that

limµ(A)→0

∥∥∥‖χAk(x , y)‖X ′ (y)∥∥∥Y

= 0.

Then T is compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 9/14

Page 21: p-potencias y compacidad para operadores entre espacios de Banach de funciones

KERNEL OPERATORS

Corollary:Let X (µ), F and T as above. Suppose also that T is essentially compact.Then

limK→∞

supf∈BX

∥∥T (f χ|f |>K)‖ = 0

implies that T is compact.

Let Tk be a positive kernel operator given by

(Tk f )(y) :=

∫[0,1]

f (x)k(y , x) dx .

Corollary: Let T be an essentially compact (positive) kernel operatorT : X (µ)→ Y (ν) such that the kernel k satisfies that

limµ(A)→0

∥∥∥‖χAk(x , y)‖X ′ (y)∥∥∥Y

= 0.

Then T is compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 9/14

Page 22: p-potencias y compacidad para operadores entre espacios de Banach de funciones

KERNEL OPERATORS

Corollary:Let X (µ), F and T as above. Suppose also that T is essentially compact.Then

limK→∞

supf∈BX

∥∥T (f χ|f |>K)‖ = 0

implies that T is compact.

Let Tk be a positive kernel operator given by

(Tk f )(y) :=

∫[0,1]

f (x)k(y , x) dx .

Corollary: Let T be an essentially compact (positive) kernel operatorT : X (µ)→ Y (ν) such that the kernel k satisfies that

limµ(A)→0

∥∥∥‖χAk(x , y)‖X ′ (y)∥∥∥Y

= 0.

Then T is compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 9/14

Page 23: p-potencias y compacidad para operadores entre espacios de Banach de funciones

KERNEL OPERATORS

Corollary:Let X (µ), F and T as above. Suppose also that T is essentially compact.Then

limK→∞

supf∈BX

∥∥T (f χ|f |>K)‖ = 0

implies that T is compact.

Let Tk be a positive kernel operator given by

(Tk f )(y) :=

∫[0,1]

f (x)k(y , x) dx .

Corollary: Let T be an essentially compact (positive) kernel operatorT : X (µ)→ Y (ν) such that the kernel k satisfies that

limµ(A)→0

∥∥∥‖χAk(x , y)‖X ′ (y)∥∥∥Y

= 0.

Then T is compact.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 9/14

Page 24: p-potencias y compacidad para operadores entre espacios de Banach de funciones

COMPACT OPTIMAL DOMAINS FOR ESSENTIALLY COMPACT OPERATORS

Characterize when the optimal domain of an operator is an L1-space. Consider avector measure m : Σ→ E and let Im : L1(m)→ E be the integration operatorIm(f ) =

∫Ω fd m, f ∈ L1(m).

Proposition:Let 1 ≤ p <∞. The following are equivalent:

(a) The integration operator Im : L1(m)→ (E , ‖ ‖E ) is compact.

(b) R(m) is relatively compact and for every ε > 0 there exists gε ∈ Lp′(m) such

that Im(BL1(m)) ⊂ Im(gεBLp(m)) + εBE .

(c) R(m) is relatively compact and for every ε > 0 there exists Kε > 0 such thatIm(BL1(m)) ⊂ Im(KεBLp(m)) + εBE .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 10/14

Page 25: p-potencias y compacidad para operadores entre espacios de Banach de funciones

COMPACT OPTIMAL DOMAINS FOR ESSENTIALLY COMPACT OPERATORS

Characterize when the optimal domain of an operator is an L1-space. Consider avector measure m : Σ→ E and let Im : L1(m)→ E be the integration operatorIm(f ) =

∫Ω fd m, f ∈ L1(m).

Proposition:Let 1 ≤ p <∞. The following are equivalent:

(a) The integration operator Im : L1(m)→ (E , ‖ ‖E ) is compact.

(b) R(m) is relatively compact and for every ε > 0 there exists gε ∈ Lp′(m) such

that Im(BL1(m)) ⊂ Im(gεBLp(m)) + εBE .

(c) R(m) is relatively compact and for every ε > 0 there exists Kε > 0 such thatIm(BL1(m)) ⊂ Im(KεBLp(m)) + εBE .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 10/14

Page 26: p-potencias y compacidad para operadores entre espacios de Banach de funciones

COMPACT OPTIMAL DOMAINS FOR ESSENTIALLY COMPACT OPERATORS

Characterize when the optimal domain of an operator is an L1-space. Consider avector measure m : Σ→ E and let Im : L1(m)→ E be the integration operatorIm(f ) =

∫Ω fd m, f ∈ L1(m).

Proposition:Let 1 ≤ p <∞. The following are equivalent:

(a) The integration operator Im : L1(m)→ (E , ‖ ‖E ) is compact.

(b) R(m) is relatively compact and for every ε > 0 there exists gε ∈ Lp′(m) such

that Im(BL1(m)) ⊂ Im(gεBLp(m)) + εBE .

(c) R(m) is relatively compact and for every ε > 0 there exists Kε > 0 such thatIm(BL1(m)) ⊂ Im(KεBLp(m)) + εBE .

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 10/14

Page 27: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Corollary:Let m : Σ→ E be a vector measure with relatively compact range. Supposethat the integration map Im : L1(m)→ E satisfies an 1/p-th power approximation.Then L1(m) = L1(|m|).

When an operator T has optimal extensions that satisfy 1/p-th power approximations?

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 11/14

Page 28: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Corollary:Let m : Σ→ E be a vector measure with relatively compact range. Supposethat the integration map Im : L1(m)→ E satisfies an 1/p-th power approximation.Then L1(m) = L1(|m|).

When an operator T has optimal extensions that satisfy 1/p-th power approximations?

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 11/14

Page 29: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Theorem: Let 1 < p <∞, let X (µ) be an order continuous Banach function space, Ea Banach space and T : X (µ)→ E a continuous operator. The following statementsare equivalent for T .

(i) T is essentially compact, and for each ε > 0 there is hε ∈ X[1/p′] such that

supf∈B

L1(mT )∩X (µ)

(inf

g∈BLp (mT )∩X[1/p]

(∥∥T (f − hεg)∥∥E

))< ε.

(ii) T is essentially compact, and for each ε > 0 there is a constant Kε > 0 such that

supf∈B

L1(mT )∩X (µ)

(inf

g∈BLp (mT )∩X[1/p]

(∥∥T (f − Kεg)∥∥E

))< ε.

(iii) The optimal domain of T is L1(|mT |) and the extension ImT is compact, i.e. Tfactorizes compactly as

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 12/14

Page 30: p-potencias y compacidad para operadores entre espacios de Banach de funciones

Corollary: Let 1 < p <∞, let X (µ) be an order continuous Banach function space, Ea Banach space and T : X (µ)→ E a µ-determined essentially compact continuousoperator. The following statements are equivalent.

(i) Each extension of T to an order continuous Banach function space satisfies a1/p-th power approximation.

(ii) ImT satisfies a 1/p-th power approximation.

(iii) T admits a maximal extension that satisfies a 1/p-th power approximation.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 13/14

Page 31: p-potencias y compacidad para operadores entre espacios de Banach de funciones

J. M. Calabuig, O. Delgado and E. A. Sanchez Perez, Factorizing operators onBanach function spaces through spaces of multiplication operators, J. Math.Anal. Appl. 364 (2010), 88-103.

I. Ferrando and J. Rodrıguez, The weak topology on Lp of a vector measure,Topology Appl. 155(13) (2008) , 1439–1444.

S. Okada, Does a compact operator admit a maximal domain for its compactlinear extension?, in: Operator Theory: Advances and Applications, 201.Birkhauser Verlag, Basel, 2009, 313–322.

A. R. Schep, When is the optimal domain of a positive linear operator a weightedL1-space?, in: Operator Theory: Advances and Applications, 201. BirkhauserVerlag, Basel, 2009, 361-369.

E. Sanchez — p-potencias y compacidad para operadores entre espacios de Banach de funciones 14/14