compressible flow - wordpress.com · compressible flow: through nozzles and diffusers aerospace...

19
Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January – May, 2014) Jeerasak Pitakarnnop , Ph.D. [email protected] [email protected] March 22, 2014 Aerodynamics II 1

Upload: trankhuong

Post on 23-Apr-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Compressible Flow: Through Nozzles and Diffusers

Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January – May, 2014)

 Jeerasak Pitakarnnop , Ph.D.

[email protected] [email protected]

   

March  22,  2014   Aerodynamics  II   1  

Page 2: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Exhaust  Nozzle  

Shock  Diamond  

Mach  diamonds  from    an  F-­‐16  taking  off  with  a7erburner  

CFD  simula>on  of  a  shock  wave  inside  an  Exhaust  Nozzle    

March  22,  2014   Aerodynamics  II   2  

Separated  Flow  

Viscous  Model  

Inviscid  Model  

Page 3: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Supersonic  Diffuser  a)  External  Compression  b)  Internal  Compression  c)  Combine  Compression  

March  22,  2014   Aerodynamics  II   3  

Scramjet  Engine  

Page 4: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Quasi-­‐One-­‐Dimensional  Flow  

ρ1u1A1 = ρ2u2A2

p1A1 + ρ1u12A1 + pdA

A1

A2∫ = p2 + ρ2u22

h1 +u12

2

= h2 +u22

2

h = cpT p = ρRT

ConKnuity:        Momentum:        Energy:        Enthalpy  &  Eq.  of  state:  

March  22,  2014   Aerodynamics  II   4  

Page 5: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Governing  EquaKon  for    Quasi-­‐One-­‐Dimensional  Flow  

dAA+dρρ+duu= 0

ρudu = −dp

dht = dh+udu = 0dpp=dρρ+dTT

p = ρa2

γMarch  22,  2014   Aerodynamics  II   5  

Page 6: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Compressible  Flow  in    Converging  and  Diverging  Duct  

•  0  ≤  M  <  1  (subsonic  flow):    Area  decrease  à  Vel.  increase  

•  M  >  1  (supersonic  flow):  Area  decrease  à  Vel.  decrease  

•  M  =  1  (sonic  flow),  dA  =  0:  local  maximum   or   minimum   area  distribuKon.  

dAA= M 2 −1( ) duu

March  22,  2014   Aerodynamics  II   6  

Page 7: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Supersonic  Nozzle  and  Diffuser  

March  22,  2014   Aerodynamics  II   7  

Page 8: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Nozzle  Flows:  Area-­‐Mach  RelaKon  •  Mach   n o .   a t   a n y  locaKon  is  a  funcKon  of  the   local   to   the   sonic  throat  area.  

•  A   <  A*   is   impossible   in  an  isentropic  flow.  

AA*!

"#

$

%&2

=1M 2

2γ +1

1+ γ −12

M 2!

"#

$

%&

(

)*

+

,-

γ+1( )γ−1( )

March  22,  2014   Aerodynamics  II   8  

Page 9: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Isentropic  Supersonic  Nozzle  Flow  

AA*!

"#

$

%&2

=1M 2

2γ +1

1+ γ −12

M 2!

"#

$

%&

(

)*

+

,-

γ+1( )γ−1( )

March  22,  2014   Aerodynamics  II   9  

Calculated from equation below

Page 10: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Isentropic  Subsonic  Nozzle  Flow  1)  Low  Speed  Subsonic  Flow:              

pe  is  slightly  less  than  p0            Athroat  is  more  than  A*      

2)  Moderate  Speed  Subsonic  Flow:  sKll  subsonic  flow  at  throat  

3)   Supersonic  Flow  at  Throat  

March  22,  2014   Aerodynamics  II   10  

Infinite  no.  of  possible  isentropic  subsonic  soluKons  where    

p0  ≥  pe  ≥  pe,3  

Page 11: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Choked  Flow  

March  22,  2014   Aerodynamics  II   11  

Once  the  flow  becomes  sonic  at  the  throat,  the  upstream  is  frozen.  

Downstream  disturbance  can  no  longer  communicate  with  upstream,  

the  change  in  exit  pressure  could  not  be  detected.      

Page 12: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Supersonic  Nozzle  with  Internal  Shock  

March  22,  2014   Aerodynamics  II   12  

Page 13: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Normal  Shock  At  The  Exit  

March  22,  2014   Aerodynamics  II   13  

Page 14: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Supersonic  Nozzle  with  External  Shock    

Overexpanded    Nozzle  

Back  Pressure  =  Exit  Pressure  

Underexpanded    Nozzle  

March  22,  2014   Aerodynamics  II   14  

Page 15: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Flow  through  Exhaust  Nozzle  1.  pe   =  pa:   Subsonic   Flow  

Th rough   ou t   t he  nozzle.  

2.  pe   =  pa:   Subsonic   Flow  Th rough   ou t   t he  nozzle  but  Mthroat  =1.  

3.  pe   =  pa:   Subsonic   Flow  in   the   converging  secKon   &   Supersonic  Flow   in   the   diverging  secKon.    –  MAXIMUM  THRUST  –  Design  CondiKon   for  

the  ideal  case  

March  22,  2014   Aerodynamics  II   15  

pi   pe   pa  

Page 16: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Flow  through  Exhaust  Nozzle  4.  pe  <  pa:  Overexpand  

5.  pe  >  pa:  Underexpand  

March  22,  2014   Aerodynamics  II   16  

pi   pe   pa  

Page 17: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Flow  through  Exhaust  Nozzle  6.  pe   <   pa:   Overexpand   +  

No rma l   Shock   @  diverging  secKon.    

7.  pe   <   pa:   Overexpand   +  Normal   Shock   @   exit  plane.    

March  22,  2014   Aerodynamics  II   17  

pi   pe   pa  

Page 18: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

Supersonic  Diffuser  

March  22,  2014   Aerodynamics  II   18  

Page 19: Compressible Flow - WordPress.com · Compressible Flow: Through Nozzles and Diffusers Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January

EX:  Flow  through  Nozzle  •  Consider   the   isentropic   flow   through   a  convergent-­‐divergent   nozzle   with   an   exit-­‐to-­‐throat  area  raKo  of  2.  The  reservoir  pressure  and  temperature   are   1   atm   and   288   K,   respecKvely.  Calculate   the   Mach   no.,   pressure,   and  temperature   at   both   the   throat   and   the   exit   for  the  cases  where:  a)  The  flow  is  supersonic  at  the  exit.  b)  The   flow   is   subsonic   throughout   the   enKre   nozzle  

except  at  throat,  where  M  =  1  c)  If   the   exit   pressure   is   0.973   atm   (Determine   only  

Mach  no.)  

March  22,  2014   Aerodynamics  II   19