computation of the eigenvalues of 3d “charged” integral...

21
Journal of Applied Mathematics and Physics, 2017, 5, 2051-2071 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 DOI: 10.4236/jamp.2017.510171 Oct. 31, 2017 2051 Journal of Applied Mathematics and Physics Computation of the Eigenvalues of 3D “Charged” Integral Equations Diego Caratelli 1,2 , Pierpaolo Natalini 3 , Paolo E. Ricci 4 1 The Antenna Company, High Tech Campus, Eindhoven, the Netherlands 2 Tomsk Polytechnic University, Tomsk, Russia 3 Università degli Studi Roma Tre, Largo San Leonardo Murialdo, Roma, Italia 4 International Telematic University UniNettuno, Corso Vittorio Emanuele II, Roma, Italia Abstract The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures. Some ap- plications are shown, relevant to the problem of computing the eigenvalues of a body charged by a finite number of masses concentrated on points, curves or surfaces lying in. Keywords 3D Fredholm-Stieltjes Integral Equations, Eigenvalues, Rayleigh-Ritz Method, Inverse Iteration Method 1. Introduction The theory of Fredholm integral equations is strictly connected with the birth of functional analysis. A background of this theory can be found in classical books (see e.g. [1] [2]). For recent developments relevant to numerical computation of solutions, see [3]. In [4] [5], the Author shows that the Fredholm theory still holds considering the so called charged Fredholm integral equations, i.e. Fredholm equations with respect to a Stieltjes measure obtained by adding to the ordinary Lebesgue measure a finite combination of positive masses concentrated in arbitrary points of the considered interval. A topic which at present is included, as a particular case, in the theory of strictly positive compact operators. In the one-dimensional case, the mechanical interpretation of these equations How to cite this paper: Caratelli, D., Na- talini, P. and Ricci, P.E. (2017) Computa- tion of the Eigenvalues of 3D “Charged” Integral Equations. Journal of Applied Mathematics and Physics, 5, 2051-2071. https://doi.org/10.4236/jamp.2017.510171 Received: October 7, 2017 Accepted: October 28, 2017 Published: October 31, 2017 Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access

Upload: dinhdung

Post on 03-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Journal of Applied Mathematics and Physics, 2017, 5, 2051-2071 http://www.scirp.org/journal/jamp

ISSN Online: 2327-4379 ISSN Print: 2327-4352

DOI: 10.4236/jamp.2017.510171 Oct. 31, 2017 2051 Journal of Applied Mathematics and Physics

Computation of the Eigenvalues of 3D “Charged” Integral Equations

Diego Caratelli1,2, Pierpaolo Natalini3, Paolo E. Ricci4

1The Antenna Company, High Tech Campus, Eindhoven, the Netherlands 2Tomsk Polytechnic University, Tomsk, Russia 3Università degli Studi Roma Tre, Largo San Leonardo Murialdo, Roma, Italia 4International Telematic University UniNettuno, Corso Vittorio Emanuele II, Roma, Italia

Abstract The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures. Some ap-plications are shown, relevant to the problem of computing the eigenvalues of a body charged by a finite number of masses concentrated on points, curves or surfaces lying in.

Keywords 3D Fredholm-Stieltjes Integral Equations, Eigenvalues, Rayleigh-Ritz Method, Inverse Iteration Method

1. Introduction

The theory of Fredholm integral equations is strictly connected with the birth of functional analysis. A background of this theory can be found in classical books (see e.g. [1] [2]). For recent developments relevant to numerical computation of solutions, see [3].

In [4] [5], the Author shows that the Fredholm theory still holds considering the so called charged Fredholm integral equations, i.e. Fredholm equations with respect to a Stieltjes measure obtained by adding to the ordinary Lebesgue measure a finite combination of positive masses concentrated in arbitrary points of the considered interval. A topic which at present is included, as a particular case, in the theory of strictly positive compact operators.

In the one-dimensional case, the mechanical interpretation of these equations

How to cite this paper: Caratelli, D., Na-talini, P. and Ricci, P.E. (2017) Computa-tion of the Eigenvalues of 3D “Charged” Integral Equations. Journal of Applied Mathematics and Physics, 5, 2051-2071. https://doi.org/10.4236/jamp.2017.510171 Received: October 7, 2017 Accepted: October 28, 2017 Published: October 31, 2017 Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2052 Journal of Applied Mathematics and Physics

is connected with the problem of the free vibrations of a string charged by a finite number of cursors, and is related to an extension of the classical orthogonality property of eigensolutions, called the “Sobolev-type” orthogonality (see e.g. [6] [7]).

In preceding articles [8] [9] [10], the problem of numerical computation of the above mentioned eigenvalue problems was solved, by using the so called inverse iteration method, showing applications in one and two-dimensional cases.

In this article, after briefly recalling the main results about the theory of eigenvalues for charged Fredholm integral equations, we mention how to obtain (in the particular case of a symmetric and strictly positive operator), the lower and upper approximations of these eigenvalues by means of the Rayleigh-Ritz method [1], [11] and the Fichera orthogonal invariants method [11] [12] respectively. Then we conclude by showing that, even in the three-dimensional case, the lower approximations of the eigenvalues obtained by means of the Rayleigh-Ritz method can be improved by applying the inverse iteration method [13]. Numerical computations relevant to the considered case are developed in the concluding section.

2. Lebesgue-Stieltjes Measures in a 3D Interval

Consider the interval and the Hilbert space ( )2 2dM dML L≡ equipped with

the scalar product

[ ] ( ) ( ) ( ) ( ) ( ), : , , , ,r n mP dPdMU V U V U V U V U V

ρ γ Σ∆ ∆ ∆= + + + (1)

where [ ] ( ) 2, ,dMLdMU V U V≡ and the subscripts “ ( )dP Pρ ”, “ r∆ ”, “ nγ∆ ”, “

mΣ∆ ”

refer to the following definitions:

( ) ( ) ( ) ( ) ( ), : dP dPU V U P V P P Pρ

ρ= ∫ (2)

( ) ( ) ( )1

, :r

r

h h hh

U V m U A V A∆

=

= ∑ (3)

( ) ( )( ) ( )( ) ( )( )1

, : dn k

n

kk

U V P s U P s V P s sγ γσ

∆=

= ∑∫ (4)

and

( ) ( )( ) ( )( ) ( )( )1

, : , , , dm

mU V P u v U P u v V P u vτ σ

Σ∆ Σ=

= ∑∫

, (5)

(obviously 2d : d dEG F u vσ = − ), so that the Stieltjes measure is the sum of the ordinary Lebesgue measure plus a finite sum of charges hm concentrated on points hA ⊂ , ( )1,2, ,h r= , plus a finite sum of continuous charges belonging to the curves Σ ⊂

, with densities ( )kσ ⋅ , ( )1,2, ,k n= , plus a finite sum of continuous charges belonging to the surfaces Σ ⊂

, with densities ( )kτ ⋅ , ( )1,2, , m= .

It is worth noting that ( )2dML is constituted by functions of the ordinary

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2053 Journal of Applied Mathematics and Physics

space ( )2L , a (complete) Hilbert space, which does not have singularities (i.e. discontinuities) at points hA , ( )1, 2, ,h r= , at curves kγ , ( )1, 2, ,k n= , and surfaces Σ

, ( )1,2, , m= , according to the usual condition for existence of the relevant Stieltjes integrals (see e.g. [14]).

Let us consider, for example, the computation of integrals with respect to the above Dirac-type measures:

( ) ( ) ( ) ( ) ( ), ,h h h h hK P Q Q m A m K P A Aϕ δ ϕ=∫

( ) ( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

, d

, dk

k

kK P Q Q Q s Q s s

K P Q s Q s Q s sγ

γ

ϕ σ δ

ϕ τ=

∫ ∫∫

( ) ( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

, , , d

, , , , d

K P Q Q Q u v Q u v

K P Q u v Q u v Q u v

ϕ τ δ σ

ϕ τ σΣ

Σ=

∫ ∫∫

These formulas will be useful in the following.

The Eigenvalue Problem for 3D “Charged” Operators

Consider in ( )2dML the eigenvalue problem

ϕ µϕ= (6)

( ) ( ) ( ): , d QK Q Q Mϕ ϕ⋅ = ⋅∫ (7)

where ( ),K P Q is a symmetric kernel, and

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )1 1

1

d d d

, , d

k

r n

Q h h kh k

m

M Q Q m A Q s Q s s

Q u v Q u v

γρ δ σ δ

τ δ σ

= =

Σ=

= + +

+

∑ ∑∫

∑∫

(8)

(δ denoting the usual Dirac-Delta function). According to the above positions, we have

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

1

1

1

, d ,

, d

, , , d

, , , ,

, , , ,

k

r

n m

r

h h hh

n

kkm

Q dQ Q

Q Q

P K P Q Q Q Q m K P A A

K P Q Q s Q s Q s s

K P Q Q s Q u v Q u v

K P Q Q K P Q Q

K P Q Q K P Q Q

γ

ρ

γ

ϕ ϕ ρ ϕ

ϕ σ δ

ϕ τ δ σ

ϕ ϕ

ϕ ϕΣ

=

=

Σ=

∆ ∆

= +

+

+

= +

+ +

∑∫

∑∫ ∫

∑∫ ∫

(9)

so that

[ ] ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

, , ,

,r

n

dM P dP P

P

U V U P V P U P V P

U P V Pγ

ρ ∆

= +

+

i.e., by using scalar products, with respect to the relevant measures:

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2054 Journal of Applied Mathematics and Physics

[ ]

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

r

n m

rr r

n mr r

dM

Q dQ QP dP P dP

Q QP dP P dP

Q dQ QP P

Q QP P

U V

K P Q U Q V P K P Q U Q V P

K P Q U Q V P K P Q U Q V P

K P Q U Q V P K P Q U Q V P

K P Q U Q V P K P Q U Q V P

ρ ρ ρ

γ ρ ρ

ρ

γ

Σ

Σ

∆ ∆

∆∆ ∆

∆ ∆∆ ∆

= +

+ +

+ +

+ +

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

rn n

n mn n

rm m

n mm m

Q dQ QP P

Q QP P

Q dQ QP P

Q QP P

K P Q U Q V P K P Q U Q V P

K P Q U Q V P K P Q U Q V P

K P Q U Q V P K P Q U Q V P

K P Q U Q V P K P Q U Q V P

ρ γ γ

γ γ γ

ρ

γ

Σ

Σ Σ

ΣΣ Σ

∆∆ ∆

∆ ∆∆ ∆

∆∆ ∆

∆ ∆∆ ∆

+ +

+ +

+ +

+ +

Furthermore

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( )

, , ,

, d d

Q dQ P dPK P Q U Q V P

K P Q U Q V P P Q P Q

ρ ρ

ρ ρ×

= ∫∫

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( )1

, , ,

, d

r Q P dP

r

h h hh

K P Q U Q V P

m U A K P A V P P P

ρ

ρ

=

= ∑ ∫

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( )1

, , ,

, d

rQ dQ P

r

h h hh

K P Q U Q V P

m V A K P A U P P P

ρ

ρ

=

= ∑ ∫

where we used the symmetry of the kernel,

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( ) ( ) ( )1

, , ,

, d d

n

k

Q P dP

n

k

K P Q U Q V P

K P Q s U Q s Q s V P P s P

γ ρ

γτ ρ

=

= ∑∫ ∫

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( ) ( ) ( )1

, , ,

, d d

n

k

Q dQ P

n

kk

K P Q U Q V P

K P Q s V Q s Q s U P P s P

ρ γ

γσ ρ

=

= ∑∫ ∫

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )1 1

1 2

, , , , , , ,

, , , d d

jmm

m m

Q P jK P Q U Q V P K P t w Q u v U Q u v

V P t w Q u v P t wτ τ σ σ

ΣΣ

∆ Σ Σ∆ = =

=

×

∑∑∫ ∫

where we used the symmetry of the kernel,

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2055 Journal of Applied Mathematics and Physics

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( ) ( ) ( )1

, , ,

, , , , d d

m QP dP

m

K P Q U Q V P

K P Q u v U Q u v Q u v V P P P

ρ

τ ρ σ

Σ∆

Σ=

= ∑∫ ∫

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( ) ( ) ( )1

, , ,

, , , , d d

mQ dQ P

m

K P Q U Q V P

K P Q u v V Q u v Q u v U P P P

ρ

τ ρ σ

Σ∆

Σ=

= ∑∫ ∫

where we used the symmetry of the kernel,

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )1 1

, , ,

,

r rQ P

r r

h j h j h jh j

K P Q U Q V P

m m K A A U A V A

∆ ∆

= =

= ∑∑

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, d

n r

k

QP

r n

h h h kh k

K P Q U Q V P

m V A K A Q s U Q s Q s s

γ

γσ

∆∆

= =

= ∑ ∑∫

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, d

rn

k

Q P

r n

h h h kh k

K P Q U Q V P

m U A K A Q s V Q s Q s s

γ

γσ

∆ ∆

= =

= ∑ ∑∫

where we used the symmetry of the kernel,

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, , , , d

m rQ

P

r m

h h hh

K P Q U Q V P

m V A K A Q u v U Q u v Q u vτ σ

Σ∆ ∆

Σ= =

= ∑ ∑∫

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, , , , d

rm

Q P

r m

h h hh

K P Q U Q V P

m U A K A Q u v V Q u v Q u vτ σ

Σ∆ ∆

Σ= =

= ∑ ∑∫

where we used the symmetry of the kernel,

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, , , , d d

mn

QP

n m

kk

K P Q U Q V P

V P s P s K P s Q u v U Q u v Q u v s

γ

σ τ σ

Σ∆ ∆

Σ= =

= ∑ ∑∫

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, , , , d d

nm

Q P

n m

kk

K P Q U Q V P

U P s P s K P s Q u v V Q u v Q u v s

γ

σ τ σ

Σ∆ ∆

Σ= =

= ∑ ∑∫

where we used the symmetry of the kernel, and lastly

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2056 Journal of Applied Mathematics and Physics

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 1

, , ,

, d d

n n

k

Q P

n n

kk

K P Q U Q V P

K P Q s U Q s V P Q s P s

γ γ

γ γσ σ σ σ σ σ

∆ ∆

= =

= ∑∑∫ ∫

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )1 1

1 2

, , ,

, , , ,

, , , d d

mm

j

QP

m m

j

K P Q U Q V P

K P t w Q u v U Q u v

V P t w Q u v P t wτ τ σ σ

ΣΣ

∆∆

Σ Σ= =

=

×

∑∑∫ ∫

3. Computation of the Eigenvalues for Charged Integral Equations

The computation of the eigenvalues of second kind Fredholm integral equations is usually performed by using the Rayleig-Ritz method [1] [11] for lower bounds, and the Fichera orthogonal invariants method [11] [12] for upper bounds. An alternative procedure, called the inverse iteration method, can be used to improve the lower approximations previously obtained by means of the Rayleigh-Ritz method. This approach was already considered in [13], and will be applied even in the present case.

We will not describe herewith the three above mentioned methods, because they are essentially independent of the dimension of the considered vibrating item (string, membrane or body). We refer for shortness to the above mentioned articles [8] [9] [11] [12].

4. Applications

Let [ ] [ ] [ ]0, 0, 0,a b c≡ × × , ( ) ( )0,0,0 , , ,O U a b c≡ ≡ ,

( ) ( ) ( ) ( ), , , , , , , , , , ,P P P Q Q Q P P Q P Q QP x y z Q x y z R x y z S x y z≡ ≡ ≡ ≡

( ) ( ) ( ) ( ), , , , , , , , , , ,Q P P Q Q P P Q P Q P QT x y z L x y z M x y z N x y z≡ ≡ ≡ ≡

0 , 0 , 0P P Px a y b z c≤ ≤ ≤ ≤ ≤ ≤

0 , 0 , 0Q Q Qx a y b z c≤ ≤ ≤ ≤ ≤ ≤

( )

, if , , ,

, if , , ,

, if , , ,

, if , , ,,

, if , , ,

, if , , ,

, if , , ,

, if

P Q P Q P Q

P Q P Q P Q

P Q P Q P Q

P Q P Q P Q

P Q P Q P Q

P Q P Q P Q

P Q P Q P Q

P Q

OP UQ x x y y z z

OQ UP x x y y z z

OR UL x x y y z z

OS UT x x y y z zK P Q

OT US x x y y z z

OL UR x x y y z z

OM UN x x y y z z

ON UM x x

⋅ ≤ ≤ ≤

⋅ ≥ ≥ ≥

⋅ ≤ ≤ ≥

⋅ ≤ ≥ ≥=

⋅ ≥ ≤ ≤

⋅ ≥ ≥ ≤

⋅ ≤ ≥ ≤

⋅ ≥ , , ,P Q P Qy y z z

≤ ≥

(1)

i.e.

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2057 Journal of Applied Mathematics and Physics

( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 22 2 2

2 2 22 2 2

2 2 22 2 2

2 2 22 2 2

, if , , ,

, if , , ,

, if , , ,

, if , ,,

P P P Q Q Q P Q P Q P Q

Q Q Q P P P P Q P Q P Q

P P Q Q Q P P Q P Q P Q

P Q Q Q P P P Q P Q P Q

x y z a x b y c z x x y y z z

x y z a x b y c z x x y y z z

x y z a x b y c z x x y y z z

x y z a x b y c z x x y y z zK P Q

+ + − + − + − ≤ ≤ ≤

+ + − + − + − ≥ ≥ ≥

+ + − + − + − ≤ ≤ ≥

+ + − + − + − ≤ ≥ ≥=

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 222 2 2

22 22 2 2

2 222 2 2

22 22 2 2

,

, if , , ,

, if , , ,

, if , , ,

, if , , .

Q P P P Q Q P Q P Q P Q

Q Q P P P Q P Q P Q P Q

P Q P Q P Q P Q P Q P Q

Q P Q P Q P P Q P Q P Q

x y z a x b y c z x x y y z z

x y z a x b y c z x x y y z z

x y z a x b y c z x x y y z z

x y z a x b y c z x x y y z z

+ + − + − + − ≥ ≤ ≤

+ + − + − + − ≥ ≥ ≤

+ + − + − + − ≤ ≥ ≤

+ + − + − + − ≥ ≤ ≥

Obviously ( ) ( ), ,K P Q K Q P= , i.e. the kernel is symmetric, and even positive definite, since ( ), 0K P Q > , ( ),P Q∀ ∈ .

Consider in ( )2dML the eigenvalue problem

ϕ µϕ= (2)

( ) ( ): , d QK Q Q Mϕ ϕ= ⋅∫ (3)

where

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )1 1

1

d d d

, , d

k

r n

Q h h kh k

m

M Q Q m A Q s Q s s

Q u v Q u v

γρ δ σ δ

τ δ σ

= =

Σ=

= + +

+

∑ ∑∫

∑∫

(δ denoting the usual Dirac-Delta function). The considered operator is compact and strictly positive, since it is connected

with free vibrations of a body charged by a finite number of masses concentrated on points, curves, or surfaces contained in .

Numerical Example 1 Let 1a b c= = = , and ( )d , , d d dM x y z x y zρ= with ( ), , 1 2 3 4x y z x y zρ = + + + (see Figure 1). Under this assumption, the

apprpximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 1, whereas the relevant eigenfunctions are shown in Figure 2.

Numerical Example 2 Let 1a b c= = = , and ( )d , , d d dM x y z x y zρ= with ( ) ( ) ( )

23, , 8π e sin πx y zx y z xyzρ − + += (see Figure 3). Under this assumption, the approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 2, whereas the relevant eigenfunctions are shown in Figure 4.

Numerical Example 3 Let 1a b c= = = , and

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2058 Journal of Applied Mathematics and Physics

Figure 1. Spatial distribution of the volume density function ( ), ,x y zρ relevant to the

numerical Example 1.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 1.

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2059 Journal of Applied Mathematics and Physics

Figure 3. Spatial distribution of the volume density function ( ), ,x y zρ relevant to the

numerical Example 2.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 2.

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2060 Journal of Applied Mathematics and Physics

Table 1. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 1, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 2.30919 2.30934

2 0.584150 0.584855

3 0.580232 0.580932

4 0.144731 0.145178

5 0.136953 0.137599

6 0.135077 0.135689

Table 2. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 2, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 1.97474 1.97528

2 0.396395 0.396914

3 0.396395 0.396914

4 0.0957090 0.0960668

5 0.0912646 0.0917548

6 0.0912646 0.0917548

( ) 1 1 1d , , d d d d d d2 2 2

M x y z x y z x y z x y zρ δ δ δ = + − − −

with ( ), , e x y zx y zρ − − −= (see Figure 5). Under this assumption, the approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 3, whereas the relevant eigenfunctions are shown in Figure 6.

Numerical Example 4 Let 1a b c= = = , and

( ) ( ) ( ) ( )d , , d d d d d dh h h hhM x y z x y z m x x y y z z x y zρ δ δ δ= + − − −∑ with ( ) ( )( )( ), , 2 log 1 1 1x y z z y xρ = + + + , and ( )1h h h hm x y z= + + ,

1 12h h hx y z h

H = = = −

for 1,2,3h H= = (see Figure 7). Under this assump-

tion, the approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 4, whereas the relevant eigenfunctions are shown in Figure 8.

Numerical Example 5 Let 1a b c= = = , and

( ) ( ) ( ) ( )d , , d d d d d dh h h hhM x y z x y z m x x y y z z x y zρ δ δ δ= + − − −∑ with

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2061 Journal of Applied Mathematics and Physics

(a) (b)

Figure 5. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 3.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 3.

( ) ( )π, , 1 cos 1 2 3 42

x y z x y zρ = + − − − , and 3 2h h h hm x y z= + + ,

1 2 5 6 1 3 5 7 1 2 3 414

x x x x y y y y z z z z= = = = = = = = = = = = ,

3 4 7 8 2 4 6 8 5 6 7 834

x x x x y y y y z z z z= = = = = = = = = = = = for 1, 2, ,8h H= =

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2062 Journal of Applied Mathematics and Physics

(a) (b)

Figure 7. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 4.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 4. (see Figure 9). Under this assumption, the approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 5, whereas the relevant eigenfunctions are shown in Figure 10.

Numerical Example 6

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2063 Journal of Applied Mathematics and Physics

(a) (b)

Figure 9. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 5. Table 3. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 3, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 0.827191 0.827079

2 0.0286952 0.0287715

3 0.0258541 0.0258874

4 0.0258541 0.0258874

5 0.0071926 0.00721217

6 0.00628217 0.00631337

Table 4. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 2, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 1.37202 1.38514

2 0.461313 0.439849

3 0.150812 0.148043

4 0.122611 0.121926

5 0.115747 0.115269

6 0.0456381 0.0440725

Table 5. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 5, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 11.6841 12.0167

2 3.25662 3.10980

3 3.18704 3.04593

4 1.27341 1.30780

5 0.211891 0.195245

6 0.147751 0.125519

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2064 Journal of Applied Mathematics and Physics

(a) (b)

(c) (d)

(e) (f)

Figure 10. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 5.

Let 1a b c= = = , and ( ) ( ) ( )

( ) ( ) ( )d , , d d d , , d d d

d d ds

h h hh

M x y z x y z x y z z x y z

x x y y z z x y z

ρ σ δ ζ

δ δ δ

= + −

+ − − −∑

with ( ) ( ) ( ) ( ), , cosh 2 sin 2 1 ex yx y z y x x yρ += − + − + , ( ) 2 3 4, , e x y zx y zσ − − += ,

14sζ = , and 1 11

2h hx y hH = − = −

, 45hz = for 1,2h H= = (see Figure 11).

Under this assumption, the approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 6, whereas the relevant eigenfunctions are shown in Figure 12.

Numerical Example 7

Let 1a b c= = = , and ( ) ( ) ( )

( ) ( ) ( )d , , d d d , , d d d

d d ds

h h h hh

M x y z x y z x y z x x y z

m x x y y z z x y z

ρ σ δ ξ

δ δ δ

= + −

+ − − −∑

with ( ) ( ) ( ) ( )1 22 2 2, , sech 4 1 2 1 2 1 2x y z x y zρ = − + − + −

,

( ) ( ) ( ), , 5 sin 2 cos 3x y z x y zσ = + , 15sξ = , and h h hm y z= + , 3

4hx = ,

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2065 Journal of Applied Mathematics and Physics

(a) (b)

Figure 11. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 6.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 6.

1 1

2h hy z hH = = −

for 1,2,3h H= = (see Figure 13). Under this assumption,

the approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 7, whereas the relevant eigenfunctions are shown in Figure 14.

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2066 Journal of Applied Mathematics and Physics

(a) (b)

Figure 13. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 7.

(a) (b)

(c) (d)

(e) (f)

Figure 14. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 7.

Numerical Example 8 Let 1a b c= = = , and

( ) ( ) ( )( )

(

d , , d d d , , d d d

3 3 3 d d d4 4 4

sM x y z x y z x y z x y x y z

x y z x y z

ρ σ δ ζ

δ δ δ

= + −

+ − − −

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2067 Journal of Applied Mathematics and Physics

Table 6. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 6, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 1.46677 1.48646

2 0.636561 0.607952

3 0.142093 0.142025

4 0.0434152 0.0451649

5 0.0287695 0.0298745

6 0.0179072 0.0179560

Table 7. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 7, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 1.71928 1.75065

2 0.404514 0.391333

3 0.327108 0.328006

4 0.155119 0.152451

5 0.133601 0.132340

6 0.0390550 0.0389560

with ( ) ( ) ( ) ( ), , 3 2cos sin 1 2 3 4x y z xz yz x y zρ = + + + + + , and

( ) ( ) ( ) ( ), 1 2 3 7 cos 6 sin 5x y x y y xσ = + + + + ,

( ) ( ) ( )1, 1 cos sin 32s x y x yζ = + − (see Figure 15). Under this assumption, the

approximate eigenvalues evaluated by using the Rayleigh-Ritz and inverse iteration methods are listed in Table 8, whereas the relevant eigenfunctions are shown in Figure 16.

Numerical Example 9 Let 1a b c= = = , and

( ) ( ) ( )( )( ) ( )( ) ( ( ))

( ) ( ) ( )

d , , d d d , , d d d

d d d

d d d

s

l l

h h h hh

M x y z x y z x y z x y x y z

z x z y z x y z

m x x y y z z x y z

ρ σ δ ζ

τ δ ξ δ η

δ δ δ

= + −

+ − −

+ − − −∑

with ( ) ( ) ( ) ( ), , 4 3cos 3 2sin 2 tanx y z x y zρ = + + + , ( ) ( ), 2 log 1x y y xyσ = + + ,

( ) ( )1, 1 24s x y x yζ = − + , ( ) 2z zτ = , ( ) ( ) 4 3l lz z zξ η= = − , and

h h h hm x y z= + + , 1 2 1 314

x x y y= = = = , 3 4 2 434

x x y y= = = = , 23hz = f o r

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2068 Journal of Applied Mathematics and Physics

(a) (b)

Figure 15. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 8.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 8.

1,2,3,4h H= = (see Figure 17). Under this assumption, the approximate eigenvalues are evaluated as in Table 9, whereas the relevant eigenfunctions are shown in Figure 18.

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2069 Journal of Applied Mathematics and Physics

(a) (b)

Figure 17. Spatial distribution of the volume density ( ), ,x y zρ (a) and concentrated

density functions (b) relevant to the numerical Example 9.

(a) (b)

(c) (d)

(e) (f)

Figure 18. Spatial distribution of the approximate eigenfunctions ( )ˆ , ,h x y zϕ ( 1, 2, , 6h = )

relevant to the numerical Example 9.

Acknowledgements

This study has been partly carried out in the framework of the research and

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2070 Journal of Applied Mathematics and Physics

Table 8. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 8, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 1.24996 1.28312

2 0.232580 0.236340

3 0.212298 0.213581

4 0.175619 0.177549

5 0.0535925 0.0541850

6 0.0451690 0.0465835

Table 9. Approximate eigenvalues hµ and ˆhµ ( 1, 2, , 6h = ) relevant to the numerical Example 9, as computed by means of the Rayleigh-Ritz and inverse iteration method, respectively.

h hµ ˆhµ

1 6.85505 6.97836

2 1.56685 1.51732

3 1.18747 1.16698

4 0.588232 0.594839

5 0.301015 0.320349

6 0.197606 0.200069

development program running at The Antenna Company, and is funded by the Competitiveness Enhancement Program grant at Tomsk Polytechnic University.

References [1] Mikhlin, S.G. (1964) Integral Equations and Their Applications. 2nd Edition, Per-

gamon Press, Oxford.

[2] Zaanen, A.C. (1953) Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations. Interscience Publ. Inc., New York, North Holland Publ. Co., Amsterdam, P. Noordhoff N.V., Groningen.

[3] Anselone, P.M. (1971) Collectively Compact Operator Approximation Theory and Application to Integral Equations. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs.

[4] Miranda, C. (1992) Opere Scelte. Cremonese, Roma.

[5] Miranda, C. (1938) Alcune generalizzazioni delle serie di funzioni ortogonali e loro applicazioni. [On Some Generalizations of Orthogonal Function Series Expansions and Relevant Applications.] Rend. Sem. Mat. Torino, 7, 5-17.

[6] Jung, I.H., Kwon, K.H., Lee, D.W. and Littlejohn, L.L. (1995) Sobolev Orthogonal Polynomials and Spectral Differential Equations. Transactions of the American Mathematical Society, 347, 3629-3643. https://doi.org/10.1090/S0002-9947-1995-1308015-9

D. Caratelli et al.

DOI: 10.4236/jamp.2017.510171 2071 Journal of Applied Mathematics and Physics

[7] Marcellán, F., Pérez, T.E., Piñar, M.A. and Ronveaux, A. (1996) General Sobolev Orthogonal Polynomials. Journal of Mathematical Analysis and Applications, 200, 614-634. https://doi.org/10.1006/jmaa.1996.0227

[8] Natalini, P. and Ricci, P.E. (2006) Computation of the Eigenvalues of Fred-holm-Stieltjes Integral Equations. Applicable Analysis, 85, 607-622. https://doi.org/10.1080/00036810500397039

[9] Natalini, P., Patrizi, R. and Ricci, P.E. (2006) Eigenfunctions of a Class of Fred-holm-Stieltjes Integral Equations via the Inverse Iteration Method. Journal of Ap-plied Functional Analysis, 1, 165-181.

[10] Caratelli, D., Natalini, P. and Ricci, P.E. (2017) Computation of the Eigenvalues of 2D “Charged” Integral Equations.

[11] Fichera, G. (1973) Abstract and Numerical Aspects of Eigenvalue Theory. Lecture Notes, The University of Alberta, Dept. of Math., Edmonton.

[12] Fichera, G. (1978) Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Pitman, Boston, London.

[13] Natalini, P., Noschese, S. and Ricci, P.E. (1999) An Iterative Method for Computing the Eigenvalues of Second Kind Fredholm Operators and Applications. Leganés, 9, 128-136.

[14] Widder, D.V. (1999) Advanced Calculus. 3rd Edition, Dover Publ. Inc., New York.