confinement-induced vortex phases in superconductors

42
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6, Paris, FRANCE Dimitri RODITCHEV with: Tristan Cren (researcher) Lise Serrier-Garcia (PhD) François Debontridder (Eng.)

Upload: amity

Post on 14-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Confinement-Induced Vortex Phases in Superconductors. Dimitri RODITCHEV with: Tristan Cren (researcher) Lise Serrier-Garcia (PhD) François Debontridder (Eng.). Institut des Nanosciences de Paris INSP , CNRS, Université Pierre et Marie Curie Paris 6, Paris, FRANCE. OUTLINE. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Confinement-Induced Vortex Phases in Superconductors

Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6, Paris, FRANCE

Dimitri RODITCHEVwith:

Tristan Cren (researcher)Lise Serrier-Garcia (PhD) François Debontridder (Eng.)

Page 2: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex: An Universal Property of Quantum Condensates

Scanning Tunneling Spectroscopy of Vortices

Confinement-induced vortex configurations- Ultra-dense vortex lattice- Giant Vortex

OUTLINE

ConclusionT. Cren et al. Phys. Rev. Lett. 102, 127005 (2009),T. Cren et al. Phys. Rev. Lett. 107, 097202 (2011)

Page 3: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex: An Universal Property of Quantum Condensates

Scanning Tunneling Spectroscopy of Vortices

Confinement-induced vortex configurations- Ultra-dense vortex lattice- Giant Vortex

OUTLINE

Conclusion

Page 4: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

First image of Vortex, 1967

Vortex Physics in Rotating Quantum Condensates

Vortex in ultracold condensate of atoms Vortex in superfluid He

Superconductors (BCS) Cold atoms (BEC) Quantum liquids

3 vortices in SC nano-islandSTM/STS, INSP, 2009

100nm

Page 5: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Boundary condition at the sample edge:

Superconducting phase is described by macroscopic wave function:

Two equations:

(1)

(2)

where

Page 6: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Fluxoid quantification:

Integrating the 2nd G-L equation over an area S:

where , Φ being the magnetic flux crossing S

where Φ0 is the flux quantum:

Condition on the phase φ (since ψ is a single-valued function):

Page 7: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

B > 0

Page 8: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Φ = nΦ0

vs=0B > 0

Page 9: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Φ = nΦ0

vs=0B > 0

Page 10: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Two characteristic scales: coherence length ξ(T) and penetration depth λ(T)

Influence of electron scattering:

Additionally, in thin films (h<<λ):

Mean free path l : l = τ vF

G-L parameter separates the superconductors of type-I (k<1) from type-II (k>1)

Dirty limit : (l<<ξ)

Page 11: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Φ = nΦ0

vs=0B > 0

In type II superconductors (k>1) the Abrikosov vortex lattice forms, each vortex containing the flux quantum Φ0

Page 12: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Superconductivity: Ginzburg-Landau Approach

Individual Vortex Structure

Page 13: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

D ~ ξ, ξ << λ

Our motivation:Phase Diagram of Confined Superconductors

- tiny magnetic response, - variations at nanometer scale

D << λ

Page 14: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

V. Schweigert et al., Phys. Rev. Lett. 81, 2783 (1998)B. Baelus and F. Peeters, Phys. Rev. B 65, 104515 (2002)

Superconducting nano-islands having a size of ~ξ should have peculiar properties due to the lateral confinement.

Phase Diagram of Confined Superconductors

Confined Vortex Configurations: Our Motivations

Page 15: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Phase Diagram of Confined Superconductors

Confined Vortex Configurations: Our Motivations

Page 16: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex: An Universal Property of Quantum Condensates

Scanning Tunneling Spectroscopy of Vortices

Confinement-induced vortex configurations- Ultra-dense vortex lattice- Giant Vortex

OUTLINE

Conclusion

Page 17: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Scanning Tunneling Spectroscopy of Superconductors

S

N

T = 4.2 K

B = 1.0 T

400

nm

2H-NbSe2

T. Cren, H. Brune et al. (2001)EPFL de Lauzanne, Suisse

dVVdI )(

Negative Positive0

Sample Bias

1

T. Cren, H. Brune et al. (2001)EPFL de Lauzanne, Suisse

dVVdI )(

Negative Positive0

Sample Bias

1

dVVdI )(

Negative Positive0

Sample Bias

1

Vortex imaging in bulk superconductors by STS

NB: The relation between the gap in the LDOS and Ψ(r) (GL) is not simple!

Page 18: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Scanning Tunneling Spectroscopy of Superconductors

S

N

Local Tunneling Spectra contain two important informations:

Scale of ξ: Gap in dI/dV(V) Scale of λ: Effects of currents

A. Anthore et al. PRL 90, 127001 (2003)

A. Kohen et al. PRL 97, 027001 (2006)

H. F. Hess et al. PRL 64, 2711 (1990)

Page 19: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

STM/STS in Paris(3rd generation)

UHV : p < 5x10-11 mbar

In-situ growth @ p < 3x10-10 mbar

Base T°: 0.285 mK

Magn. Field: 0 –10 T

Page 20: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Scanning Tunneling Spectroscopy of Superconductors

S

N

T = 4.2 K

B = 1.0 T

STS: Vortex CORES

(scale of ξ )Field-sensitive methods:

(scale of λ)

400

nm

Page 21: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex: An Universal Property of Quantum Condensates

Scanning Tunneling Spectroscopy of Vortices

Confinement-induced vortex configurations- Ultra-dense vortex lattice- Giant Vortex

OUTLINE

Conclusion

Page 22: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

100nm

Response of Confined Superconducting Condensate to an External Magnetic Field

Samples: in-situ grown Pb-islands on 7x7 reconstructed Si(111)

Si (111) + Pb-wetting layer (1-2 ML)

Pb-nanocrystals(3-15 ML)

Mono-atomic steps separating atomically

flat terraces

Page 23: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Samples: in-situ grown Pb-islands on 7x7 reconstructed Si(111)

Response of Confined Superconducting Condensate to an External Magnetic Field

NifNaf

Nouf

Page 24: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Nif(111)

Naf

Samples: in-situ grown Pb-islands on 7x7 reconstructed Si(111)

(111)

(111)Nif:D ≈ 140 nmh= 2.8nm – 10ML

Naf:D ≈ 80-140 nmh= 2.3nm – 8ML

Nouf:D ≈ 80 nmh= 2.3nm – 8ML

Nouf

Response of Confined Superconducting Condensate to an External Magnetic Field

Page 25: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Bulk Pb (ξ0 = 80nm, λ0 = 50nm) – Type I, no vortices

Our case: disordered Pb/Si interface limits the mean free path l:

l ≈2h=2x5.5nm = 11nm << ξ0 Dirty limit SC

Result: our Pb-island is the type II dirty limit SC;

Magn. Field fully penetrates (Λ >> D), flux is not quantized.

Additionally, in thin films (h<<λ):

l = τ vF

Dirty limit : (l<<ξ)

h

Response of Confined Superconducting Condensate to an External Magnetic Field

Page 26: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

ξEFF ≈ 20-25 nm

λEFF ≈ 170 nm ≈ D

Λ ≈ 12,000 nm >>D

κ ≈ λeff/ξeff ≈ 8Nif

(111)

Naf

(111)

(111)

Nouf

Response of Confined Superconducting Condensate to an External Magnetic Field

Result: our Pb-islands are the Type II dirty limit SCs;

Magn. Field fully penetrates (Λ >> D), flux is not quantized.

Page 27: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

0.3K (T/Tc=1/20)0.8T : 10 times Hc(bulk Pb)

Response of Confined Superconducting Condensate to an External Magnetic Field

Page 28: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Response of Confined Superconducting Condensate to an External Magnetic Field

0.3K (T/Tc=1/20)0.8T : 10 times Hc(bulk Pb)STS: G.A. maps

Page 29: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

a) b)

c) d)

Model: A SC box with a Single Vortex inside (2/2)

Page 30: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Response of Confined Superconducting Condensate to an External Magnetic Field

Page 31: Confinement-Induced Vortex Phases in Superconductors

ECRYS 20110 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

M agn etic F ield m TG

apFi

lling

normaliz

ed

Zer

oB

ias

Con

duct

ance

normaliz

ed

Zero Bias Gapped Area

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

M agn etic F ield m T

Gap

Filli

ngnormal

ized

Zer

oB

ias

Con

duct

ance

normaliz

ed

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

M a g n e t i c F i e l d m T

Gap

Filli

ngnormal

ized

Zer

oB

ias

Con

duct

ance

normaliz

ed

At the border

Nif Naf

Nouf

Nif

Naf

Nouf

Page 32: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Response of Confined Superconducting Condensate to an External Magnetic Field:

Giant Vortex States

Page 33: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

In bulk superconductors at B=BC2:Nif Naf

Nouf

In our confined case (L=2):

!!

Page 34: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Extras

1 – Vortex Pool: Playing with vortex core size and shape

2 – Quantum Well states and Superconductivity in Pb-Si system

Page 35: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex Pool

Pb-Island on Si(111): Topographic STM Iimage

T. Cren et al., to be published

160nm

h=8.3nm

h=2.6nm

Page 36: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex Pool

Pb-Island on Si(111):

T. Cren et al., to be published

Sample Bias, mVdI

/dV

, a

rb.

units

B=0T=0.3K

BCS Fit:Δ=1.12meVTeff=0.39KГ=0

Topographic STM Iimage Local SIN Tunneling Spectrum

Page 37: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex Pool

0.1T – 3 Vortex

T. Cren et al., to be published

ZBC STS (T=0.3K):

Lower ZBC – SC stateHigher ZBC – vortex or normal state

Page 38: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex Pool

0.1T – 3 Vortex

T. Cren et al., to be published

ZBC STS (T=0.3K):

Lower ZBC – SC stateHigher ZBC – vortex or normal state

Page 39: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

A closer view..

Lower ZBC – SC stateHigher ZBC – vortex or normal state

3x2 vortices !

ZBC STS images (T=0.3K):

Vortex Pool

0.2T (6 vortex)0.1T (3 vortex)

T. Cren et al., to be published

Core Deformation !

Page 40: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

0.5T (≈15 Φ0)

Lower ZBC – SC stateHigher ZBC – vortex or normal state

3x2 vortices !

ZBC STS images (T=0.3K):

Vortex Pool

0.2T (6 vortex)0.1T (3 vortex)

T. Cren et al., to be published

Page 41: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

Vortex phases in strongly confining geometries: Individual and atomically perfect samples are now experimentally accessible

Coherence length and penetration depth are strongly affected by geometry

Vortex Box: Vortex  looses its “Flux Quantum” meaning: Only “Phase” and “Currents” remain relevant. Magnetic energy is not relevant anymore: Superconductors start behaving as other (neutral) quantum condensates (cold atoms, quantum liquids, polaritons etc.)

Multi-Vortex Configurations: Confinement results in super-dense vortex configurations: The vortex-vortex distance observed up to 3 times shorter than at BC2 in the bulk! At higher confinement Giant Vortex phase appears

Confinement effects in “Vortex Pool”: Vortex core deformation, Vortex molecule formation, unexpected phase near BC

Emerging of a New challenging field: Surface/Interface Superconductivity

Conclusions

T. Cren et al. Phys. Rev. Lett. 102, 127005 (2009),T. Cren et al. Phys. Rev. Lett. 107, 097202 (2011)

Page 42: Confinement-Induced Vortex Phases in Superconductors

ECRYS 2011

STM/STS team at the Institute for Nano-Science of Paris

http://www.insp.jussieu.fr/-Dispositifs-quantiques-controles-.html