conjugate unscented transformation “o q · 2012. 4. 23. · approximate calculation of multiple...

47
C ONJUGATE UNSCENTED T RANSFORMATION “OPTIMAL QUADRATURE Nagavenkat Adurthi, Puneet Singla, Tarunraj Singh Department of Mechanical & Aerospace Engineering University at Buffalo, Buffalo, NY-14260 SIAM Conference on Uncertainty Quantification April 2–April 5, 2012 Collaborators: M. Bursik, M. Jones, A. Patra, E. B. Pitman, P. Scott, T. Singh H. Bjornsson, S. Carn, K. Dean, M. Pavolonis, M. Ripepe, P. Webley

Upload: others

Post on 19-Dec-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • CONJUGATE UNSCENTED TRANSFORMATION –“OPTIMAL QUADRATURE”

    Nagavenkat Adurthi, Puneet Singla, Tarunraj SinghDepartment of Mechanical & Aerospace Engineering

    University at Buffalo, Buffalo, NY-14260

    SIAM Conference on Uncertainty Quantification

    April 2–April 5, 2012

    Collaborators: M. Bursik, M. Jones, A. Patra, E. B. Pitman, P. Scott, T. SinghH. Bjornsson, S. Carn, K. Dean, M. Pavolonis, M. Ripepe, P. Webley

  • INTRODUCTIONPROBLEM STATEMENT

    Stochastic System: ẋ = f (Θ ,x)+g(Θ ,x)η(t)Source of Uncertainties: system parameters, initial conditions,input to the system, modeling error.

    Robust modeling of the propagation of these uncertainties isimportant to accurately quantify the uncertainty in the solution atany future time.

    X3

    f(X2 η2 θ)ηi

    X

    X1

    X2f(X0,η0,θ)

    f(X1,η1,θ)f(X2,η2,θ)ηi

    (X t θ)X0 p(X3,t3,θ)

    p(X1,t1,θ)

    p(X2,t2,θ)

    p(X0,t0,θ)

    p( 2, 2, )

    Figure: State and pdf transition.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 2 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONMOTIVATION

    (a) (b)Approximate Solution to exact problem: Kolmogorov Equation,Monte Carlo Methods, generalized Polynomial Chaos (gPC).Exact solution to approximate problem: Gaussian Closure,Equivalent Linearization, and Stochastic Averaging.All these methods involves the evaluation of expectationintegrals:

    E[ f (x)] =∫ ∫

    · · ·∫

    w(x) f (x)dx≈n

    ∑i=1

    wi f (xi)

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 3 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONMOTIVATION

    (c) (d)Approximate Solution to exact problem: Kolmogorov Equation,Monte Carlo Methods, generalized Polynomial Chaos (gPC).Exact solution to approximate problem: Gaussian Closure,Equivalent Linearization, and Stochastic Averaging.All these methods involves the evaluation of expectationintegrals:

    E[ f (x)] =∫ ∫

    · · ·∫

    w(x) f (x)dx≈n

    ∑i=1

    wi f (xi)

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 3 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF QUADRATURE RULES

    METHODSMonte Carlo Methods

    Gaussian Quadrature

    Sparse Grid Quadrature

    Unscented Transform

    Minimal Cubature rules

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 4 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF QUADRATURE RULES

    METHODSMonte Carlo Methods

    Gaussian Quadrature

    Sparse Grid Quadrature

    Unscented Transform

    Minimal Cubature rules

    E[ f (x)] =1n

    n

    ∑i=1

    f (xi)

    Involves the random sampling of the pdfw(x).Error decrease as a factor of 1√n .

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 4 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF QUADRATURE RULES

    METHODSMonte Carlo Methods

    Gaussian Quadrature

    Sparse Grid Quadrature

    Unscented Transform

    Minimal Cubature rules

    E[ f (x)] =n

    ∑i=1

    wi f (xi)

    The weights wi and points xi aredeterministic.

    1-D integrals: m quadrature points arerequired to reproduce the expectationintegrals involving 2m−1 degreepolynomial functions.

    N-D integrals: Tensor product leads toexponential growth of points (mN).

    Nested quadratures: Clenshaw-Curtis.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 4 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF QUADRATURE RULES

    METHODSMonte Carlo Methods

    Gaussian Quadrature

    Sparse Grid Quadrature

    Unscented Transform

    Minimal Cubature rules

    E[ f (x)] =n

    ∑i=1

    wi f (xi)

    The weights wi and points xi aredeterministic.

    The curse of dimensionality involved inGaussian Quadratures is avoided byconsidering a sparse tensor product of1-Dimensional quadrature rules.

    Example: Smolyak Quadratures.

    Some weights can be negative.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 4 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF QUADRATURE RULES

    METHODSMonte Carlo Methods

    Gaussian Quadrature

    Sparse Grid Quadrature

    Unscented Transform

    Minimal Cubature rules

    E[ f (x)] =n

    ∑i=1

    wi f (xi)

    The weights wi and points xi aredeterministic.1

    2N +1 points are required to integrateall polynomials up to degree 3.

    GH2

    SmolyakGH

    UT23

    45

    6

    0

    10

    20

    30

    40

    50

    60

    70

    Method

    Dimension

    Nu

    mb

    er o

    f p

    oin

    ts

    Figure: Comparison of 3rd degree rules

    1S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. “A New Method for the Nonlinear Transformation of Means andCovariances in Filters and Estimators”. In: IEEE Transactions on Automatic Control 45.3 (2000), pages 477–482.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 4 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF QUADRATURE RULES

    METHODSMonte Carlo Methods

    Gaussian Quadrature

    Sparse Grid Quadrature

    Unscented Transform

    Minimal Cubature rules

    E[ f (x)] =n

    ∑i=1

    wi f (xi)

    The weights wi and points xi aredeterministic.

    Minimum cubature rules try to evaluatethe expectation integrals with as fewpoints as possible.

    A extensive work was carried out byStroud1, where a number of minimalcubature rules of various order anddimension are documented.

    1A. H. Stroud. Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice Hall, 1971.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 4 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONREVIEW OF FEW POPULAR METHODS

    TABLE: Minimal Cubature Rules for Gaussian Integralsa

    Degree Points Valid for All positive weights3 2N all dimensions Yes3 2N all dimensions Yes5 N2 +N +2 2≤ N ≤ 7b Yes5 2N +2N all dimensions Yes5 2N2 +1 all dimensions Only for N ≤ 37 2N +2N2 +1 N = 3,4,6,7c Only for N 6= 77 (4N3 +8N +3)/3 N = 3,4,5,6 No9 (2N4−4N3 +22N2−8N +3)/3 N = 3,4,5,6 No

    N→ is the dimension of the integralaA. H. Stroud. Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice Hall, 1971.bNo solution exists for other dimensionscNo solution/Imaginary solution for other dimensions

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 5 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONOBJECTIVE

    CUBATURE RULE: E[ f (x)] =∫ ∫· · ·∫

    w(x) f (x)dx≈ ∑ni=1 wi f (xi)Most of the non-product cubature rule possess certainsimilarities:

    exploit the symmetry of the pdf, assume a structure for thecubature points, solve a system of nonlinear equations.

    Drawbacks: inconsistency of the set of nonlinear equations, thepresence of negative weights/complex roots and the inability toprovide a generalized solution that works for any dimension.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 6 / 28

    http://lairs.eng.buffalo.edu

  • INTRODUCTIONOBJECTIVE

    CUBATURE RULE: E[ f (x)] =∫ ∫· · ·∫

    w(x) f (x)dx≈ ∑ni=1 wi f (xi)Most of the non-product cubature rule possess certainsimilarities:

    exploit the symmetry of the pdf, assume a structure for thecubature points, solve a system of nonlinear equations.

    Drawbacks: inconsistency of the set of nonlinear equations, thepresence of negative weights/complex roots and the inability toprovide a generalized solution that works for any dimension.

    PRIMARY OBJECTIVETo find a fully symmetric reduced sigma/cubature point set withall positive weights that sum up to one and that is equivalent tothe Gaussian quadrature product rule of same order.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 6 / 28

    http://lairs.eng.buffalo.edu

  • THE UNSCENTED TRANSFORMATION

    3rd order rule with 2N +1 points.

    Can integrate all odd degreemonomials due to symmetry of thepoints chosen.

    This rule cannot be extended tohigher degree since pointsconstrained to lie on principal axescannot capture any cross moment.

    The method provides the insight: ‘Tochoose additional axes that are ableto capture higher order moments’

    UNSCENTED TRANSFORM 2

    X0 = (0, · · · ,0) W0 = κ/(N +κ)

    Xi =√(N +κ)Ii Wi = 1/[2(N +κ)]

    Xi+N =−√(N +κ)Ii Wi+N = 1/[2(N +κ)]

    Figure: Selection of points in 2D

    2Julier, Uhlmann, and Durrant-Whyte, “A New Method for the Nonlinear Transformation of Means and Covariancesin Filters and Estimators”.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 7 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONDEFINITIONS

    MOMENT CONSTRAINT EQUATIONS(MCEs):

    n

    ∑i=1

    wi{x(i,1)n1x(i,2)n2 · · ·x(i,N)nN}= E[xn11 xn22 · · ·x

    nNN ]

    A FULLY SYMMETRIC SETA set of points is called fully symmetric if it is closed under allcoordinate and sign permutations.

    For example consider the set X = {x1,x2, · · ·} to be a fullysymmetric set and if xi = [a,b]T ∈ X, then{[b,a]T , [−a,b]T , [a,−b]T ,[−a,−b]T , [−b,a]T , [b,−a]T , [−b,−a]T} ∈ X.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 8 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONDEFINITIONS

    σ : Represents the Principal axes (or orthogonal axis) in the cartesiancoordinate space. Each point on the principal axis is denoted as σi

    TABLE: Fully Symmetric set of pointsType Sample Point No. of points

    σ (1,0,0, · · · ,0) 2N

    cM (1,1, · · · ,1︸ ︷︷ ︸M

    ,0,0, · · · ,0︸ ︷︷ ︸N−M

    ) 2M(

    NM

    )sN (h) (h,1,1, · · · ,1) N2N

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 9 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONDEFINITIONS

    cM: Represents the Mth Conjugate axes (fully symmetric set) and thecorresponding points are enumerated as cMi

    TABLE: Fully Symmetric set of pointsType Sample Point No. of points

    σ (1,0,0, · · · ,0) 2N

    cM (1,1, · · · ,1︸ ︷︷ ︸M

    ,0,0, · · · ,0︸ ︷︷ ︸N−M

    ) 2M(

    NM

    )sN (h) (h,1,1, · · · ,1) N2N

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 9 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONDEFINITIONS

    sN(h): Represents the Scaled Conjugate axes and the points aredenoted as sNi (h). The parameter h is a scaling factor.

    TABLE: Fully Symmetric set of pointsType Sample Point No. of points

    σ (1,0,0, · · · ,0) 2N

    cM (1,1, · · · ,1︸ ︷︷ ︸M

    ,0,0, · · · ,0︸ ︷︷ ︸N−M

    ) 2M(

    NM

    )sN (h) (h,1,1, · · · ,1) N2N

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 9 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONGRAPHICAL VISUALIZATION OF THE POINTS/AXES

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 10 / 28

    3Dpoints1.aviMedia File (video/avi)

    2Dpoints.aviMedia File (video/avi)

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONCUBATURE POINTS OF 2nd /3rd ORDER

    GAUSSIAN PDFThe moments up to 2nd order are:

    n

    ∑i=1

    wi = 1, E[x2i ] = 1

    Select a set of points on σ at a distance of r1 andweight w1 .

    MCEs are:

    2Nw1 = 1, 2r21w1 = 1

    The solution is:

    w1 =1

    2N, r1 =

    √N

    Choosing r1 = N +κ gives the UT

    UNIFORM PDFThe moments up to 2nd order are:

    n

    ∑i=1

    wi = 1, E[x2i ] = 1/3

    Select a set of points on σ at a distance of r1 andweight w1 .

    The solution is:

    w1 =1

    2N, r1 =

    √N3

    Above dimension 3, the points go out of the supportΩ = [−1,1]Alternatively, choose cN instead of σ for which thesolution of MCEs are:

    w1 =1

    2N, r1 =

    1√3

    2A. Nagavenkat, P. Singla, and T. Singh. “The Conjugate Unscented Transform-An Approach to EvaluateMulti-Dimensional Expectation Integrals”. In: American Control Conference, Montreal, Canada (2012).

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 11 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONCUBATURE POINTS FOR 4th /5th AND 6th /7th DEGREE

    TABLE: CUT4Position Weights

    1≤ i≤ 2N Xi = r1σi Wi = w11≤ i≤ 2N Xi+2N = r2cNi Wi+2N = w2

    Central weight X0 = 0 W0 = w0n = 2N +2N (+1)

    GH3

    SmolyakGH

    CUT42

    3

    4

    5

    6

    0

    100

    200

    300

    400

    500

    600

    700

    800

    Method

    Dimension

    Num

    ber o

    f poi

    nts

    TABLE: CUT6, (N ≤ 6)Position Weights

    1≤ i≤ 2N Xi = r1σi Wi = w11≤ i≤ 2N Xi+2N = r2cNi Wi+2N = w2

    1≤ i≤ 2N(N−1) Xi+2N+2N = r3c2i Wi+2N+2N = w3

    Central weight X0 = 0 W0 = w0n = 2N2 +2N +1

    GH4

    SmolyakGH

    CUT62

    3

    4

    5

    6

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    Method

    Dimension

    Num

    ber o

    f poi

    nts

    2Nagavenkat, Singla, and Singh, “The Conjugate Unscented Transform-An Approach to Evaluate Multi-DimensionalExpectation Integrals”.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 12 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONCUBATURE POINTS FOR 8th /9th DEGREE

    TABLE: Sigma Points for CUT8, (2≤ N ≤ 6)Position Weights

    1≤ i≤ 2N Xi = r1σi Wi = w11≤ i≤ 2N Xi+2N = r2cNi Wi+2N = w2

    1≤ i≤ 2N(N−1) Xi+2N+2N = r3c2i Wi+2N+2N = w3

    1≤ i≤ 2N Xi+2N+2N+2N(N−1) = r4cNi Wi+2N+2N+2N(N−1) = w4

    1≤ i≤ N1 Xi+2N+2N+2N(N−1)+2N = r5c3i Wi+2N+2N+2N(N−1)+2N = w5

    1≤ i≤ N2N Xi+2N+2N+2N(N−1)+2N+N1= r6sNi Wi+2N+2N+2N(N−1)+2N+N1

    = w6

    Central weight X0 = 0 W0 = w0n = 2N +2N +2N(N−1)+N1 +2N +N2N +1 , {N1 = 4N(N−1)(N−2)/3}

    GH5SmolyakGH

    CUT823

    45

    6

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    Method

    Dimension

    Nu

    mb

    er o

    f p

    oin

    ts

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 13 / 28

    http://lairs.eng.buffalo.edu

  • CONJUGATE UNSCENTED TRANSFORMATIONCOMPARISON OF CUBATURE RULE

    MINIMAL RULES FOR GAUSSIAN INTEGRALSDegree Points Valid for All positive weights

    3 2N all dimensions Yes3 2N all dimensions Yes5 N2 +N +2 2≤ N ≤ 7a Yes5 2N +2N all dimensions Yes5 2N2 +1 all dimensions Only for N ≤ 37 2N +2N2 +1 N = 3,4,6,7b Only for N 6= 77 (4N3 +8N +3)/3 N = 3,4,5,6 No9 (2N4−4N3 +22N2−8N +3)/3 N = 3,4,5,6 No

    aNo solution exists for other dimensionsbNo solution/Imaginary solution for other dimensions

    THE CONJUGATE UNSCENTED TRANSFORMDegree Points Valid for All positive weights

    5 2N +2N all dimensions Yes7 2N2 +2N +1 N ≤ 6 Yes7 2N +2N +N1 +1 7≤ N ≤ 9 Yes7 2N +2N +N1 +1 10≤ N ≤ 13 No9 2N2 +2N +2N(N−1)+N1 +2N +N2N +1 N ≤ 10 Yes

    N1 = 4N(N−1)(N−2)/3

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 14 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSEXAMPLE: E[(

    √1+xT x)α ] =

    ∫(√

    1+xT x)α N (x : 0,0.1I)dx

    100 101 102 103 104 105 1060

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    No. of points (log−scale)

    % re

    lativ

    e er

    ror

    2D3D4D5D6D

    (a) Gauss-Hermite Convergence

    100 101 102 1030

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    2.25

    2.5

    No. of points (log−scale)

    % re

    lativ

    e er

    ror

    2D3D4D5D6D

    (b) CUT Convergence

    GH4

    CUT823

    45

    6

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    MethodDimension

    Num

    ber o

    f poi

    nts

    (c) Number of points required to achieve 0.5% Rel. error

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 15 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSRE-ENTRY VEHICLE DYNAMICS

    RE-ENTRY VEHICLEDYNAMICS 3

    ẋ1(t) = x3(t)

    ẋ2(t) = x4(t)

    ẋ3(t) = D(t)x3(t)+G(t)x1(t)+ν1(t)ẋ4(t) = D(t)x4(t)+G(t)x2(t)+ν2(t)ẋ5(t) = ν3(t)

    D(t) =−β (t)exp{ [R0−R(t)]H0

    }V (t)

    G(t) =− Gm0R3(t)

    β (t) = β0exp(x5(t))

    R(t) =√

    x21(t)+ x22(t)

    V (t) =√

    x23(t)+ x24(t)

    µ0 =

    6500.4349.14−1.8093−6.79670.6932

    ,P0 =

    0.1 0 0 0 00 0.1 0 0 00 0 0.1 0 00 0 0 0.1 00 0 0 0 1

    6340 6360 6380 6400 6420 6440 6460 6480 6500 65200

    50

    100

    150

    200

    250

    300

    350

    400

    450

    xy

    Earth

    Vehicle Trajectory

    Figure: Typical Trajectory

    3Julier, Uhlmann, and Durrant-Whyte, “A New Method for the Nonlinear Transformation of Means and Covariancesin Filters and Estimators”.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 16 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSRE-ENTRY VEHICLE DYNAMICS

    0 5 10 15

    x 104

    0

    0.5

    1

    1.5

    2

    2.5x 10

    −3

    number of samples

    supr

    emum

    of %

    rel

    ativ

    e er

    ror

    in 2

    −no

    rm o

    f mea

    ns

    Figure: Convergence of MC Mean

    0 5 10 15

    x 104

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    number of samples

    supr

    emum

    of %

    rel

    ativ

    e er

    ror

    in fr

    oben

    ius−

    norm

    of C

    OV

    mat

    rix

    Figure: Convergence of MC Cov

    0 20 40 60 80 100 120 140 160 180 2000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1x 10

    −3

    t(s)

    % e

    rror

    in m

    ean

    of x

    1

    ckfutcut4cut6cut8gh

    Figure: % error in the mean of x1

    0 20 40 60 80 100 120 140 160 180 2000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    t(s)

    % e

    rror

    in m

    ean

    of x

    3

    ckfutcut4cut6cut8gh

    Figure: % error in the mean of x3

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 17 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSRE-ENTRY VEHICLE DYNAMICS

    0 20 40 60 80 100 120 140 160 180 2000

    1

    2

    3

    4

    5

    6

    t(s)

    % e

    rror

    in v

    aria

    nce

    of x

    1

    ckfutcut4cut6cut8gh

    Figure: % error in the var of x1

    0 20 40 60 80 100 120 140 160 180 2000

    5

    10

    15

    20

    25

    t(s)

    % e

    rror

    in v

    aria

    nce

    of x

    3

    ckfutcut4cut6cut8gh

    Figure: % error in the var of x3

    TABLE: % Maximum Rel. error in Frobenius norms of Cov matrix

    method CKF UT CUT4 CUT6 CUT8 GH5 MCNo. of points 10 11 42 83 355 3125 100000

    % error 11.5306 17.6092 1.9398 1.0396 0.9391 0.9369 0.2019

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 18 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    The BENT integral eruption column model was used to produceeruption column parameters (mass loading, column height, grainsize distribution) given a specific atmospheric sounding andsource conditions.

    BENT takes into consideration atmospheric (wind) conditions asgiven by atmospheric sounding data.Plume rise height is given as a function of volcanic source andenvironmental conditions.

    The PUFF Lagrangian model was used to propagate ash parcelsin a given wind field (NCEP Reanalysis).

    PUFF takes into account dry deposition as well as dispersion andadvection.

    Polynomial chaos quadrature (PCQ) was used to select samplepoints and weights in the uncertain input space of vent radius,vent velocity, mean particle size and particle size variance.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 19 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    The BENT integral eruption column model was used to produceeruption column parameters (mass loading, column height, grainsize distribution) given a specific atmospheric sounding andsource conditions.

    BENT takes into consideration atmospheric (wind) conditions asgiven by atmospheric sounding data.Plume rise height is given as a function of volcanic source andenvironmental conditions.

    The PUFF Lagrangian model was used to propagate ash parcelsin a given wind field (NCEP Reanalysis).

    PUFF takes into account dry deposition as well as dispersion andadvection.

    Polynomial chaos quadrature (PCQ) was used to select samplepoints and weights in the uncertain input space of vent radius,vent velocity, mean particle size and particle size variance.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 19 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    The BENT integral eruption column model was used to produceeruption column parameters (mass loading, column height, grainsize distribution) given a specific atmospheric sounding andsource conditions.

    BENT takes into consideration atmospheric (wind) conditions asgiven by atmospheric sounding data.Plume rise height is given as a function of volcanic source andenvironmental conditions.

    The PUFF Lagrangian model was used to propagate ash parcelsin a given wind field (NCEP Reanalysis).

    PUFF takes into account dry deposition as well as dispersion andadvection.

    Polynomial chaos quadrature (PCQ) was used to select samplepoints and weights in the uncertain input space of vent radius,vent velocity, mean particle size and particle size variance.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 19 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    TABLE: Eruption source parameters based on observations of Eyjafjallajökull volcano andinformation from other similar eruptions.

    Parameter Value range PDF Comment

    Vent radius, b0 , m 65-150 Uniform Measured from radar image of summit ventsVent velocity, w0 ,m/s

    Range: 45-124 Uniform M. Ripepe, Geneva, Switzerland, 2010, pre-sentation

    Mean grain size,Mdϕ

    2 boxcars: 1.5-2and 3-5

    Multi-Modal Uni-form

    Woods and Bursik (1991), Table 1, vulcanianand phreatoplinian. A. Hoskuldsson, Icelandmeeting 2010, presentation

    σϕ 1.9±0.6 Uniform Woods and Bursik (1991), Table 1, vulcanianand phreatoplinian.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 20 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    105 106 1070

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Number of Particles

    % C

    hang

    e in

    Con

    cent

    ratio

    n

    Height = 0 2kmHeight = 2 4kmHeight = 4 6km

    Figure: Concentration (52N 13.5E) vs. Number of PUFF Particles

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 21 / 28

    http://lairs.eng.buffalo.edu

  • NUMERICAL EXPERIMENTSICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    nAsh 105 5×105 106 2×1064×106

    8×106 107

    Conc. 7.40×10−5 1.17×10−4 1.07×10−4 1.12×10−41.09×10−4

    1.15×10−4 1.10×10−4

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 21 / 28

    http://lairs.eng.buffalo.edu

  • MEAN ASH TOP HEIGHTICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    Figure: 94 Clenshaw Curtis Runs Figure: 161 CUT Runs

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 22 / 28

    meanmaxheightPCQ.aviMedia File (video/avi)

    meanmaxheightCUT.aviMedia File (video/avi)

    http://lairs.eng.buffalo.edu

  • STANDARD DEVIATION OF ASH TOP HEIGHTICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    Figure: 94 Clenshaw Curtis Runs Figure: 161 CUT Runs

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 23 / 28

    stdmaxheightPCQ.aviMedia File (video/avi)

    stdmaxheightCUT.aviMedia File (video/avi)

    http://lairs.eng.buffalo.edu

  • COMPARING CUT WITH CLENSHAW CURTISICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    Figure: Mean Figure: Standard Deviation

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 24 / 28

    meanmaxheightcutPCQ.aviMedia File (video/avi)

    stdmaxheightCUTpcq.aviMedia File (video/avi)

    http://lairs.eng.buffalo.edu

  • PROBABILITY OF ASH TOP HEIGHTICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    (A) 0041-04-16 00:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    Figure: Pr(Top Ash Height) ≥ 0km

    (A) 0041-04-16 00:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    Figure: Pr(Top Ash Height) ≥ 4km

    (A) 0041-04-16 00:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    Figure: Pr(Top Ash Height) ≥ 2km

    (A) 0041-04-16 00:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    Figure: Pr(Top Ash Height) ≥ 6km

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 25 / 28

    probabilityheightlevel1.aviMedia File (video/avi)

    probabilityheightlevel3.aviMedia File (video/avi)

    probabilityheightlevel2.aviMedia File (video/avi)

    probabilityheightlevel4.aviMedia File (video/avi)

    http://lairs.eng.buffalo.edu

  • PROBABILITY OF ASH TOP HEIGHTICELAND VOLCANO (EYJAFJALLAJÖKULL) ERUPTION

    (A) 0041-04-16 00:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    (a) 00 hrs

    (B) 0041-04-16 06:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    (b) 06 hrs

    (C) 0041-04-16 00:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    (c) 12 hrs

    (D) 0041-04-16 18:00:00Z

    Model: probability, outer contour 0.2, inner 0.7

    Data: ash top height, m

    (d) 18 hrs

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 26 / 28

    http://lairs.eng.buffalo.edu

  • CONCLUDING REMARKSWHAT NEEDS TO BE DONE

    Efficient quadrature scheme is developed for the accuratedetermination of high dimension expectation integrals involvingsymmetric pdfs.

    non-product cubature rule.generalization for any pdf.

    Numerical examples illustrates the effectiveness of the newquadrature scheme.

    We were able to predict ash footprint with good confidence eventhough source uncertainty is large.Convergence in concentration value is slow.Any other models for ash dispersion can be included in theuncertainty analysis.Effect of uncertainty in wind data still needs to be analyzed.

    Question arise: Can we estimate the distribution of sourceparameters using Satellite imagery or other sensory data?

    Likelihood functions: validating the sensor data.uniqueness of the parameters.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 27 / 28

    http://lairs.eng.buffalo.edu

  • CONCLUDING REMARKSWHAT NEEDS TO BE DONE

    Efficient quadrature scheme is developed for the accuratedetermination of high dimension expectation integrals involvingsymmetric pdfs.

    non-product cubature rule.generalization for any pdf.

    Numerical examples illustrates the effectiveness of the newquadrature scheme.

    We were able to predict ash footprint with good confidence eventhough source uncertainty is large.Convergence in concentration value is slow.Any other models for ash dispersion can be included in theuncertainty analysis.Effect of uncertainty in wind data still needs to be analyzed.

    Question arise: Can we estimate the distribution of sourceparameters using Satellite imagery or other sensory data?

    Likelihood functions: validating the sensor data.uniqueness of the parameters.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 27 / 28

    http://lairs.eng.buffalo.edu

  • CONCLUDING REMARKSWHAT NEEDS TO BE DONE

    Efficient quadrature scheme is developed for the accuratedetermination of high dimension expectation integrals involvingsymmetric pdfs.

    non-product cubature rule.generalization for any pdf.

    Numerical examples illustrates the effectiveness of the newquadrature scheme.

    We were able to predict ash footprint with good confidence eventhough source uncertainty is large.Convergence in concentration value is slow.Any other models for ash dispersion can be included in theuncertainty analysis.Effect of uncertainty in wind data still needs to be analyzed.

    Question arise: Can we estimate the distribution of sourceparameters using Satellite imagery or other sensory data?

    Likelihood functions: validating the sensor data.uniqueness of the parameters.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 27 / 28

    http://lairs.eng.buffalo.edu

  • ACKNOWLEDGEMENT

    This work is jointly supported through National Science Foundationunder Awards No. CMMI- 1054759, CMMI-1131074 and AFOSRFA9550-11-1-0336.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 28 / 28

    http://lairs.eng.buffalo.edu

  • AIR TRAFFIC SCENARIO

    PROCESS DYNAMICS AND SENSORMODEL4

    xk =

    1 sin(ΩT )Ω 0 −

    1−cos(ΩT )Ω 0

    0 cos(ΩT ) 0 −sin(ΩT ) 00 1−cos(ΩT )Ω 1

    sin(ΩT )Ω 0

    0 sin(ΩT ) 0 cos(ΩT ) 00 0 0 0 1

    xk−1 +νk−1[

    rkθk

    ]=

    [√(ξk)2 +(ηk)2

    tan−1(ηkξk

    )

    ]+ωk

    Where xk = [ξk, ξ̇k, ηk, η̇k, Ωk]T is the state vector,ξk and ηk are the x and y coordinates respectively.The process and measurement noise are modelled as

    νk−1 ∼N (νk−1 : 0,Qk−1)ωk ∼N (ωk : 0,Rk)

    Qk−1 = L1

    T 33

    T 22 0 0 0

    T 22 T 0 0 0

    0 0 T3

    3T 22 0

    0 0 T2

    2 T 00 0 0 0 L2L1

    T

    Rk =

    [σ2r 00 σ2θ

    ]

    −6000 −4000 −2000 0 2000 4000 6000 8000−12000

    −10000

    −8000

    −6000

    −4000

    −2000

    0

    2000

    xy

    Airplane TrajectoryRadar Location

    Position Measurment

    Figure: Typical Trajectory

    4I. Arasaratnam and S. Haykin. “Cubature Kalman Filter”. In: IEEE transactions on Automatic Control 54.6 (2009),pages 1254 –1269.

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 29 / 28

    http://lairs.eng.buffalo.edu

  • SIMULATION PARAMETERS

    FILTERS USEDCKF- with 10 points UKF - with 11 pointsCUT6- with 83 points Particle Filter (PF)- with 10000 samples

    The initial condition uncertainty is

    x0 =

    1000 m300 m/s1000 m0 m/s

    − 3π180 rad/s

    , P0/0 =

    100 m2 0 0 0 00 10 m2/s2 0 0 00 0 100 m2 0 00 0 0 10 m2/s2 00 0 0 0 100×10−6rad2/s2

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 30 / 28

    http://lairs.eng.buffalo.edu

  • % 2-NORM RMSEpos VS FREQ OF MEASUREMENT

    1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10

    12

    14x 10

    4

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 0.18119degrees

    ckfukfcut6PF−ModePF−Mean

    (a) Bearing std dev σθ = 0.1811o1 2 3 4 5 6 7 8 9 10

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5x 10

    5

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 0.54356degrees

    ckfukfcut6PF−ModePF−Mean

    (b) Bearing std dev σθ = 0.5435o

    1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 0.90593degrees

    ckfukfcut6PF−ModePF−Mean

    (c) Bearing std dev σθ = 0.90593o1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7x 10

    6

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 1.993degrees

    ckfukfcut6PF−ModePF−Mean

    (d) Bearing std dev σθ = 1.993o

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 31 / 28

    http://lairs.eng.buffalo.edu

  • % 2-NORM RMSEpos VS FREQ OF MEASUREMENT

    1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    2.5x 10

    6

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 1.2683degrees

    ckfukfcut6PF−ModePF−Mean

    (e) Bearing std dev σθ = 1.2683o1 2 3 4 5 6 7 8 9 10

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    6

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 1.6307degrees

    ckfukfcut6PF−ModePF−Mean

    (f) Bearing std dev σθ 1.6307o

    1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8

    9x 10

    6

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 2.3554degrees

    ckfukfcut6PF−ModePF−Mean

    (g) Bearing std dev σθ = 2.3554o1 2 3 4 5 6 7 8 9 10

    0

    2

    4

    6

    8

    10

    12x 10

    6

    Time gap between meas updates

    2−no

    rm o

    f the

    RM

    SE

    err

    or in

    pos

    Bearing std dev 2.7178degrees

    ckfukfcut6PF−ModePF−Mean

    (h) Bearing std dev σθ = 2.7178o

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 32 / 28

    http://lairs.eng.buffalo.edu

  • POLAR TO CARTESIAN

    POLAR TO CARTESIAN

    E[

    xy

    ]=∫ ∫ [

    rcos(θ)rsin(θ)

    ]N (

    [rθ

    ]:[

    µrµθ

    ],

    [σ2r 00 σ2θ

    ])drdθ

    −0.3 −0.2 −0.1 0 0.1 0.2 0.30.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    1.04

    x

    y

    MCUTCKFGH3GH4CUT4CUT6

    µr = 1m µθ = 90 degσr = 0.022m2 σθ = 152 deg2

    34 36 38 40 42 44 46 48 50 52 54−25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    x

    y

    MCUTCKFGH3GH4CUT4CUT6

    µr = 50m µθ = 0 degσr = 0.022m2 σθ = 302 deg2

    CONJUGATE UNSCENTED TRANSFORMATION LAIRS.ENG.BUFFALO.EDU 33 / 28

    http://lairs.eng.buffalo.edu

    introductionConcluding RemarksAppendix