connecting arithmetic to algebra

51
Connecting Arithmetic to Algebra An On-line Course for Teachers Virginia Bastable Deborah Schifter TDG 2011 Susan Jo Russell

Upload: arion

Post on 30-Jan-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Connecting Arithmetic to Algebra. An On-line Course for Teachers Virginia Bastable Deborah Schifter TDG 2011 Susan Jo Russell. Foundations of Algebra project. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Connecting Arithmetic to Algebra

Connecting Arithmetic to Algebra

An On-line Course for Teachers

Virginia Bastable

Deborah Schifter TDG 2011

Susan Jo Russell

Page 2: Connecting Arithmetic to Algebra

Foundations of Algebra project

A collaboration of the Education Research Collaborative at TERC, the Education Development Center (EDC), and SummerMath for Teachers (Mt. Holyoke College), and 25 teachers

Funded in part by the National Science Foundation

5-year project

Page 3: Connecting Arithmetic to Algebra

Connecting Arithmetic and Algebra

Today’s Session

Goals and structure of the on-line course What do CAA participants do? What do CAA course facilitators do? What are we learning from this experience?

Page 4: Connecting Arithmetic to Algebra

Integrating algebraic thinking into arithmetic instruction involves:

Investigating, describing, and justifying general claims about how an operation behaves

A shift in focus from solving individual problems to looking for regularities and patterns across problems

Representations of the operations as the basis for proof

The operations themselves become objects of study

Page 5: Connecting Arithmetic to Algebra

What do teachers need to learn?

the mathematics content how to recognize opportunities instructional strategies how a range of students can engage with

this content

Page 6: Connecting Arithmetic to Algebra

Key Structures of CAA A year-long course in three 6-week parts Every participant is part of a local team; each

section includes approximately 20 participants Assignments are posted on a course web board;

participants respond to one another’s postings Each 6-week part includes two 2-hour webinars

to allow for “live” discussions and interactions Each 6-week part includes 3 Student Thinking

assignments; participants receive personal responses from facilitators on these.

Page 7: Connecting Arithmetic to Algebra

CAA Book Chapters and Course Sections

Part One

1. Generalizing in arithmetic--noticing

2. Generalizing in arithmetic, getting started

3. Generalizing in Arithmetic with the range of learners

4. Articulating general claims

Part Two

5. Developing Mathematical Arguments Part I

6. Focus on the Range of Learners

7. Learning Algebraic notation

Part Three

8. Developing Mathematical Arguments Part II

9. Looking ahead to middle grades

10. Building across the school year

Page 8: Connecting Arithmetic to Algebra

What participants do: Read and respond to each chapter of the

course text Respond to each other on the web board Do math activities with their team Carry out lessons with their class and write

about them (“student thinking assignments”) Participate in 6 2-hour webinars

Page 9: Connecting Arithmetic to Algebra

Focus Questions Reading One

Identify passages that help you make connections to your own students.

Identify passages that illustrate a specific question or action of the teacher that interests you. What was the impact of this teacher move on the students’ thinking?

Page 10: Connecting Arithmetic to Algebra

What facilitators do: Read and take notes on web board responses Adapt webinar plans to react to participants’

postings Co-teach the webinars Respond to participants’ student thinking

assignments individually

Page 11: Connecting Arithmetic to Algebra

Focus Questions Reading Two

What do you learn about the participants by reading their responses?

What ideas might you want to bring out at the next webinar as a result?

Page 12: Connecting Arithmetic to Algebra

Is this number sentence true?

35 + 19 = 34 + 20

Explain how you know it is true or not

without calculating

Page 13: Connecting Arithmetic to Algebra

Is this number sentence true?

35 - 19 = 34 - 20

Page 14: Connecting Arithmetic to Algebra

What general claim is suggested by this set of equations?

6 x 8 = 12 x 4 150 x 64 = 300 x 32 35 x 8 = 70 x 4

Develop at least two representations (story situations, diagrams, etc.) to illustrate this claim.

Can you use your representations to talk about the claim without referring to specific numbers.

Page 15: Connecting Arithmetic to Algebra

Analyzing Web board Math Responses

Read the two responses to this assignment (Reading Three)

•What do you learn about the math understandings of the participants?

•What else do you want them to learn?

.

Page 16: Connecting Arithmetic to Algebra

Examples of student arguments to justify this claim

1. What does each argument show that the student understands about proving the general claim?

2. What more would the student need to do to move towards proving this claim?

Page 17: Connecting Arithmetic to Algebra

Student argument #1

I figured out that 2 times 6 equals 4 times 3, and also 8 times 10 equals 4 times 20. So it works.

Page 18: Connecting Arithmetic to Algebra

Student arguments #2 and #3

Argument #2.

I did a story context. I have 2 stacks of books, and each one has 6 books. That’s 12 books. Then I have 4 stacks of books, and each one only has 3 books. That’s 12, too. So they’re the same.

Argument #3. I have 2 stacks of books, and each one has 6 books. But the stacks were too heavy to carry, so I put each stack in half. Now there are 4 stacks and each has 3 books. So when I doubled the number of stacks, there was only half of the books in a stack than there was before.

Page 19: Connecting Arithmetic to Algebra

Student arguments #4 and #5

See this is a 2 by 6, and this is a 4 by 3, and they both have 12.

I cut the 2 by 6 in half, and I put one piece underneath. It’s half across the top, but now it’s twice as long. It’s all the same stuff I started with, like if this was a carpet and I cut it and moved it around.

Argument #4: Argument #5:

Page 20: Connecting Arithmetic to Algebra

Representation-based proof• The meaning of the operation(s) involved in the

claim is represented in diagrams, manipulatives, or story contexts.

• The representation can accommodate a class of instances (for example, all whole numbers).

• The conclusion of the claim follows from the structure of the representation; that is, the representation shows why the statement must be true.

Page 21: Connecting Arithmetic to Algebra

Would any of these arguments hold if the numbers under consideration were not whole?

Page 22: Connecting Arithmetic to Algebra

What participants do: Read and respond to each chapter of the

course text Respond to each other on the web board Do math activities with their team Carry out lessons with their class and write

about them (“student thinking assignments”) Participate in 6 2-hour webinars

Page 23: Connecting Arithmetic to Algebra

What facilitators do: Read and take notes on web board responses Adapt webinar plans to react to participants’

postings Teach the webinars Respond to participants’ student thinking

assignments individually

Page 24: Connecting Arithmetic to Algebra

Early algebra

Notice a regularity about an operation

Articulate the generalization Prove why the claim is true

Page 25: Connecting Arithmetic to Algebra

What we are finding

Elementary grade students are interested in examining generalizations about the behavior of the operations.

Such discussions engage a range of students and support the development of computational fluency.

Visual representations and story contexts provide a mechanism for proof accessible to elementary grade students.

Page 26: Connecting Arithmetic to Algebra

Implications

Elementary school: Studying the behavior of the operations supports the development of computational fluency.

Middle school: “The kids who have the deepest trouble with middle school math are those without a clear and rich set of models for what multiplication is and how it is different from addition.” 

Page 27: Connecting Arithmetic to Algebra

Summary On-line/off line Asynchronous/synchronous interaction Individual/team/webinar groupings Responses from

individuals/teams/facilitators Alternate course work focused on their

own math and implementation with students

Page 28: Connecting Arithmetic to Algebra

What’s happened so far Participants are actively engaged in the

mathematics content (in teams, on web board) Tape recording and analyzing class sessions is

powerful (student thinking assignments) A focus on general claims is being integrated

into instruction Students are engaged in significant

mathematical thinking

Page 29: Connecting Arithmetic to Algebra

Data we’re collecting:

Teacher assessments

Teacher evaluations

Student assessments

Page 30: Connecting Arithmetic to Algebra

To receive information regarding CAA options for 2011-2012 school year:

email [email protected]

Include CAAFall11 in the subject line

Page 31: Connecting Arithmetic to Algebra
Page 32: Connecting Arithmetic to Algebra
Page 33: Connecting Arithmetic to Algebra

Working on math in teams

Adding 1 to a factor in a multiplication expression

“I found that after writing the story and drawing the boxes of erasers, how helpful the story context could be for some of my students. The story context may make the statement easier to relate to for the children that struggle with relating to numbers.”

Page 34: Connecting Arithmetic to Algebra

Working on math in teams

Adding 1 to a factor in a multiplication expression

“Each time we solve a problem or examine a statement as a group, I am amazed at the different ways we all think about the problem. I always solve the problem and think about it before meeting with our group and then I always walk away with a new way of thinking about solving or representing the problem. It reminds me how important it is to have my students share their different strategies with their peers.”

Page 35: Connecting Arithmetic to Algebra

Working on math in teams

Adding 1 to a factor in a multiplication expression

General claim #1: If you add n to factor b in a multiplication expression a x b, you add a x n to the result. I have 3 baskets with 4 apples in each basket. If I add an apple to each basket I added 3 more apples, one for each basket.

General claim #2: If you add n to factor a in a multiplication expression a x b, you add b x n to the result. I have 3 baskets with 4 apples in each basket. If I fill another basket with the same number of apples, I have added 4 more apples.

Page 36: Connecting Arithmetic to Algebra

Working on math in teams

Adding 1 to a factor in a multiplication expression

“What was so interesting was that my partner changed the first factor in the expression and I changed the second factor in the expression. This is how we discovered that we needed to have two general claims that could explain both situations.”

Page 37: Connecting Arithmetic to Algebra

What’s happened so far Participants are actively engaged in the

mathematics content (in teams, on web board) Tape recording and analyzing class sessions is

powerful (student thinking assignments) A focus on general claims is being integrated

into instruction Students are engaged in significant

mathematical thinking

Page 38: Connecting Arithmetic to Algebra

Grade 1

Is this number sentence true?

3 + 7 = 7 + 3

Page 39: Connecting Arithmetic to Algebra

Grade 1

Are these the same amount?

3 + 7 7 + 3

Page 40: Connecting Arithmetic to Algebra

Grade 1

My class and I continue to become more and more comfortable with asking “why”, using models to represent ideas, and pushing for articulation. These are connected processes that are hard to look at separately. It is helpful to analyze transcripts of classroom conversation to practice understanding students’ ideas and how to respond to them. . . .

Page 41: Connecting Arithmetic to Algebra

Grade 1

As we move forward with the version of this routine, “Are These the Same Amount?”, I will be interested in hearing more about what it sounds like for first graders to articulate generalizations and what it sounds like if and when teachers press them to leave the specific numbers behind. Perhaps we can also revisit “Is this Number Sentence True?” and check for development in students’ ideas about the meaning of the equal sign.

Page 42: Connecting Arithmetic to Algebra

What’s happened so far

• Participants are actively engaged in the mathematics content (in teams, on web board)

• Tape recording and analyzing class sessions is powerful (student thinking assignments)

• A focus on general claims is being integrated into instruction

• Students are engaged in significant mathematical thinking

Page 43: Connecting Arithmetic to Algebra

Grade 3

6 x 2 = 3 x 4

Page 44: Connecting Arithmetic to Algebra

6 x 2 = 3 x 4

Thad: I have 6 apples and my mom gave me 2 more. My sister had 3 apples and my mom gave her 4 more. We have the same amount of apples.

Teacher: So, Thad, I have 6 apples and I got 2 more, how many do I have?

Thad: 8

Teacher: And if sister has 3 and gets 4 more how many does she have?

Thad: 7. Oh I didn’t do it right. I was adding.

Page 45: Connecting Arithmetic to Algebra

6 x 2 = 3 x 4

Teacher: And where is this story problem showing that doubling or halving that we really wanted to model?

Thad: It doesn’t.

Teacher: So let’s see if we can change your story to show both multiplication and the doubling and halving. We can start with the same 6 apples. But how can we show 6 x 2?

Martin (Thad’s partner who is listening in): Each apple has two worms!

Page 46: Connecting Arithmetic to Algebra

6 x 2 = 3 x 4

I have 6 apples with 2 worms in each apple.

If my sister only has 3 apples and the worms crawl over to her apples, they will have to double up, so there will be 4 worms in each apple.

Page 47: Connecting Arithmetic to Algebra

The teacher reflects:

I walked away from this class session knowing so much about what my students were thinking. I saw a common mistake when writing story problems for multiplication as Thad wrote an addition problem. I think this could be a great story to return to later when I want to compare the behavior of addition and multiplication.

Page 48: Connecting Arithmetic to Algebra

Grade 4

Write a word problem, draw a picture, or another kind of representation to convince or prove to another class of fourth graders that

237 + 195 = 232 + 200

Page 49: Connecting Arithmetic to Algebra

Prove that 237 + 195 = 232 + 200

Two cookie jars

237 cookies 195 cookies

Page 50: Connecting Arithmetic to Algebra

Prove that 237 + 195 = 232 + 200

237 cookies 195 cookies232 200

move 5 cookies

Page 51: Connecting Arithmetic to Algebra

Sam: If you have a cake and you cut it into two pieces even if one of the pieces is bigger than the other and then you put the two pieces together you still have one cake.

Teacher: Oh, what happens if one person gives some of their piece to the other person?

Sam: Then you are just taking a little bit away from one and giving it to the other but you still have one whole cake.

Keith: It’s like x + y - y = x.

Derrick: I don’t understand.

Teacher: Can you help Derrick understand by explaining what you said in numbers and words?

Keith: If you have any number plus any number, to make an equivalent expression you add an amount to the first any number, then you need to take that same amount away from the second any number so they stay the same.