constrained near-optimal control using a numerical kinetic solver alan l. jennings & ra úl...

15
Constrained Near-Optim al Control Using a Num erical Kinetic Solver Alan L. Jennings & Raúl Ordóñez, ajennings1 , [email protected] Electrical and Computer Engineering, University of Dayton Frederick G. Harmon, [email protected] Dept. of Aeronautic and Astronautics, Air Force Institute of Technology The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U. S. Government. Tuesday, Nov 2, 2010 IASTED Robotics and Applications: 706-21

Upload: jason-ward

Post on 17-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Raúl Ordóñez,

ajennings1, [email protected] and Computer Engineering, University of Dayton

Frederick G. Harmon, [email protected] Dept. of Aeronautic and Astronautics, Air Force Institute of Technology

The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U. S. Government.

Tuesday, Nov 2, 2010 IASTED Robotics and Applications: 706-21

Page 2: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 2 of 15

The Challenge

•Multiple coordinate system transforms and degrees of freedom make robotic control via equations confusing and error prone.

•Optimal control equations are difficult to solve due to boundary conditions.

•Desire higher energy efficiency.

Tuesday, Nov 2, 2010

Page 3: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 3 of 15

The Method

1. Draw solid model describing the object.

2. Import into a kinetic model and verify.

3. Add outputs and inputs to interface to kinetic model.

4. Compose optimal control problem.

5. Run optimization.6. Inspect results.

• Optima

l Control

• Dynamics

• Mass &

joints

• Set up DIDO

• Draft project

• Set up Simulin

k

• What

does it look

like

• What are the controls

• What is

trying to be done

Tuesday, Nov 2, 2010

x(t), u(t) → g(t)

ψo

ϕ

J ψf

xo

xf

Xf

Xo

Page 4: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 4 of 15

The Solid Model

• Draft pieces• As complex as desired• Assemble linkages• Scale density to match total weight, if individual inertia is not available• Provides visualization

Tuesday, Nov 2, 2010

2) Face constraintCo-axial constraint

Rotary joint

1) Draw parts

3) Repeat as needed

Page 5: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 5 of 15

The Kinetic Model

• Generated from solid model assembly• Each rigid body has

MassMoment of inertia matrixRigid coordinate systems

• Joint relate adjacent CS’sRotary -> anglePrismatic ->

translationHybrid -> relation

• Sensors measure States or derivativesForces

• Actuators driveStates Forces

Tuesday, Nov 2, 2010

Added from importing

Add input and output sensors

Moving Link

Rotary Joint

Base

Animation of solid model

Many extra blocks available

Page 6: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 6 of 15

Problem Scope

• Free initial & final states• Path constraints• Bolza problem• Rigid body linkages• Optimal solution exists

Limitations• Known system• Nonsingular• Only simple joints tested

Tuesday, Nov 2, 2010

x(t), u(t) → g(t)

ψo

ϕ

J ψf

xo

xf

Xf

Xo

General Optimal Control Problem

Rigid Body DynamicsSingular Example

Page 7: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 7 of 15

0 0.5 10

2

4

u

u

u+ u

0 0.5 10

2

4

u

u

0 0.5 10

2

4

u

u

u+ u

0 0.5 10

2

4

u

u

0 0.5 10

2

4

u

0 0.5 10

2

4

u

Numeric Optimal Control

Tuesday, Nov 2, 2010

the addition results in a higher cost.

The field of Calculus of variations

The Hamiltonian

Optimality conditions

States Co-States Control

For any function,

and any other function,

Discretize for:Numeric, Constrained Nonlinear Optimization

The Link:

Page 8: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 8 of 15

Verify Results

• Should make senseExploit some system aspectVerify it is not maximum

• Not violate constraints• Check for constraints that should be added or cost function revised• Discretization and numeric error should be reasonable

Propagate results and check deviationAdd more nodes orrescale problem

Tuesday, Nov 2, 2010

Page 9: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 9 of 15

Example: Pendulum

• Suspended or inverted• Move from initial angle to equilibrium in fixed time• Minimum energy problem

Tuesday, Nov 2, 2010

www.mathworks.com/matlabcentral/fileexchange/28597

Equations of Motion

Cost function

The Truth

LQ Path controller

LQR Feedback controller

Page 10: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 10 of 15

Example: Pendulum

• DIDO has lowest cost• Suspended was harder for LQR• LQR can fail to reach final state

Tuesday, Nov 2, 2010

www.mathworks.com/matlabcentral/fileexchange/28597

Page 11: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 11 of 15

Example: Pendulum

Tuesday, Nov 2, 2010

www.mathworks.com/matlabcentral/fileexchange/28597

• DIDO has lowest cost• Suspended was harder for LQR• LQR can fail to reach final state

Page 12: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 12 of 15

Example: Pendulum

Tuesday, Nov 2, 2010

www.mathworks.com/matlabcentral/fileexchange/28597

• DIDO has lowest cost• Suspended was harder for LQR• LQR can fail to reach final state

Page 13: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 13 of 15

Example: 4 DOF Arm

• Based on Motoman SIA-20D• Traditional Method: Ramp to constant velocity• Optimized Path: Move to low gravity, low inertia pose Use low torque maneuvers Much more complex

Tuesday, Nov 2, 2010

http://www.mathworks.com/matlabcentral/fileexchange/28596Initial Pose

FinalPose

_√J from 45.7 Nm to 19.5 Nm,

57% reduction

Page 14: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications 14 of 15

Example: 4 DOF Arm

•Optimized Path: Lower gravity -> U Low inertia -> B Combining Torque -> R, θ Much more complex

Tuesday, Nov 2, 2010

http://www.mathworks.com/matlabcentral/fileexchange/28596

Page 15: Constrained Near-Optimal Control Using a Numerical Kinetic Solver Alan L. Jennings & Ra úl Ordóñez, ajennings1, raul.ordonez@notes.udayton.edu ajennings1raul.ordonez@notes.udayton.edu

IASTED Robotics and Applications

Thank you for your Attention!

Optimized paths without specific robotic analysis or optimal control specialty

______________________ ______________________

Able to handle nonlinearities and stable or unstable systems

______________________ ______________________

Offers improvement over path, feedback and another traditional controller

Tuesday, Nov 2, 2010 15 of 15