control charts for time-dependent categorical processes · consistingoffinitenumberm+ 1...

33
Control Charts for Time-Dependent Categorical Processes MATH STAT Christian H. Weiß Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

Upload: dotram

Post on 29-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Control Chartsfor Time-DependentCategorical Processes

MATH

STAT

Christian H. Weiß

Department of Mathematics & Statistics,

Helmut Schmidt University, Hamburg

Page 2: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

MATH

STAT

Monitoring ofCategorical Processes

Introduction

Page 3: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Monitoring of Categorical Processes MATH

STAT

Particular type of attributes data processes (Xt)N:

range of Xt of categorical nature, i. e., :

Xt has discrete and non-metric range (state space)

consisting of finite number m+1 of categories with m ∈ N.

Sometimes range exhibits natural ordering, then ordinal range.

Otherwise, without inherent order, nominal range.

Here, we assume that

Xt takes one of finite number of unordered categories.

To simplify notations:

range coded as S = {0, . . . ,m}, just lexicographic order.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 4: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Monitoring of Categorical Processes MATH

STAT

Quality-related applications:

Xt describes result of inspection of item,

leads to classification Xt = i for an i = 1, . . . ,m iff

tth item was non-conforming of type ‘i’,

or Xt = 0 for conforming item.

Examples:

• Mukhopadhyay (2008): non-conforming ceiling fan cover ac-

cording to most predominant paint defect,

e. g., ‘poor covering’ or ‘bubbles’.

• Ye et al. (2002): monitoring of network traffic data with

different types of audit events.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 5: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Monitoring of Categorical Processes MATH

STAT

During last few years, increasing research interest

in monitoring of categorical processes,

e. g., Chen et al. (2011), Ryan et al. (2011), Weiß (2012).

Restriction with these works:

underlying process assumed serially independent

in its in-control state, i. e., X1, X2, . . . i. i. d.

Researchers and practitioners often ill at ease when being

concerned with time-dependent categorical data:

concepts for categ. serial dependence not well communicated,

simple (ARMA-like) models not known to broader audience.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 6: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Monitoring of Categorical Processes MATH

STAT

Outline:

• Brief survey of approaches for

modeling and analyzing categorical processes.

Then two strategies for monitoring categorical process:

• If process evolves too fast to be monitored continuously, take

segments from process at selected times,

plot sample statistic on control chart.

Here, carefully consider serial dependence within sample.

• If possible to continuously monitor the process, then serial

dependence taken into account between plotted statistics.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 7: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

MATH

STAT

Modeling and AnalyzingCategorical Processes

Survey

Page 8: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

• Stationary real-valued time series:

huge toolbox for analyzing and modeling such time series

readily available and well-known to broad audience.

E. g., time series

visualized by simply plotting observations against time,

marginal location/dispersion by mean/variance,

serial dependence quantified in terms of autocorrelation.

Enumerable models, basic ARMA or extensions.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 9: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

• Categorical but ordinal time series:

time series plot still feasible by arranging

possible outcomes in natural ordering along Y axis,

location could be measured by median.

• Nominal time series: tailor-made solutions required.

Notations concerning (Xt)Z with range S = {0, . . . ,m}, m > 1:

time-invariant marginal probabilities π := (π0, . . . , πm)>

with πi := P (Xt = i) ∈ (0; 1) and π0 = 1− π1 − . . .− πm.

Sample counterpart: π̂ with relative frequencies from X1, . . . , XT .

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 10: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

• Visual analysis: few proposals (Weiß, 2008),

reasonable substitute of time series plot still missing.

• Location: (empirical) mode.

• Dispersion: two possible extremes,

one-point distribution (no dispersion) and

uniform distribution (maximal dispersion).

Several measures available (Weiß & Göb, 2008),

recommendation: (empirical) Gini index,

νG = m+1m (1−∑mj=0 π

2j ) and ν̂G = m+1

mT

T−1 (1−∑mj=0 π̂2j ).

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 11: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

(Empirical) Gini index,

νG = m+1m (1−∑m

j=0 π2j ) and ν̂G = m+1

mT

T−1 (1−∑mj=0 π̂

2j ).

Theoretical Gini index νG has range [0; 1],

where increasing values indicate increasing dispersion,

with extremes νG = 0 iff Xt has one-point distribution,

and νG = 1 iff Xt has uniform distribution.

Empirical Gini index ν̂G unbiased in i. i. d. case (Weiß, 2013).

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 12: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

• Serial dependence:

several measures available (Weiß & Göb, 2008; Weiß, 2013),

relying on lagged

bivariate probabilites, pij(k) := P (Xt = i,Xt−k = j),

with empirical counterpart p̂ij(k) being relative

frequency of (i, j) within pairs (Xk+1, X1), . . . , (XT , XT−k).

Recommendation: (empirical) Cohen’s κ,

κ(k) =

∑mj=0

(pjj(k)− π2j

)1− ∑m

j=0 π2j

, κ̂(k) :=1

T+

∑mj=0

(p̂jj(k)− π̂2j

)1− ∑m

j=0 π̂2j

.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 13: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

(Empirical) Cohen’s κ,

κ(k) =

∑mj=0

(pjj(k)− π2j

)1− ∑m

j=0 π2j

, κ̂(k) :=1

T+

∑mj=0

(p̂jj(k)− π̂2j

)1− ∑m

j=0 π̂2j

.

Theoretical κ(k) has range [−∑mj=0 π

2j

1−∑mj=0 π

2j; 1],

where 0 corresponds to serial independence.

Signed serial dependence: (Weiß & Göb, 2008)

• perfect (unsigned) serial dependence at lag k ∈ N

iff for any j, p·|j(k) one-point distribution,

• perfect positive (negative) dependence

iff all pi|i(k) = 1 (all pi|i(k) = 0).

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 14: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

(Empirical) Cohen’s κ,

κ(k) =

∑mj=0

(pjj(k)− π2j

)1− ∑m

j=0 π2j

, κ̂(k) :=1

T+

∑mj=0

(p̂jj(k)− π̂2j

)1− ∑m

j=0 π̂2j

.

Empirical κ̂(k) nearly unbiased in i. i. d. case,

distribution well approximated by normal distribution N(0, σ2)

with (Weiß, 2011)

T σ2 = 1−1+ 2

∑mj=0 π

3j − 3

∑mj=0 π

2j(

1− ∑mj=0 π

2j

)2 .

⇒ testing for significant serial dependence in categorical t. s.,

serial dependence plot.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 15: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

(Non-industrial) Example for serial dependence plot:

morning twilight song of Wood Pewee,

composed of three different phrases, length T = 1327:

0 5 10 15 20 25 30

−1.

0−

0.5

0.0

0.5

1.0

k

Coh

en's

κ(k

)

k

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 16: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

Several models for categorical processes, e. g.,

(Hidden) Markov models, regression models, . . . , here:

NDARMA(p, q) model by Jacobs & Lewis (1983).

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 17: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

(Xt)Z, (εt)Z: categorical processes with state space S;

(εt)Z: i. i. d. with marginal π, εt independent of (Xs)s<t.

For ϕq > 0, with φp > 0 if p ≥ 1, let

Dt = (αt,1, . . . , αt,p, βt,0, . . . , βt,q) ∼MULT (1;φ1, . . . , φp, ϕ0, . . . , ϕq)

be i. i. d. and independent of (εt)Z, (Xs)s<t.

(Xt)Z is NDARMA(p, q) process if

Xt = αt,1 ·Xt−1 + . . .+ αt,p ·Xt−p + βt,0 · εt+ . . .+ βt,q · εt−q.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 18: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Modeling and Analyzing Categorical Processes MATH

STAT

Properties of NDARMA processes: (Weiß & Göb, 2008)

• Marginal distribution P (Xt = j) = πj;

• κ(k) ≥ 0, equality κ(k) = v(k);

• Yule-Walker-type equations

κ(k) =p∑

j=1φj · κ(|k − j|) +

q−k∑i=0

ϕi+k · r(i) for k ≥ 1,

where r(i) = 0 for i < 0, r(0) = ϕ0, and

r(i) =∑i−1j=max {0,i−p} φi−j ·r(j) +

∑qj=0 δij ·ϕj for i > 0.

⇒ Model identification as in ARMA case!

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 19: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

MATH

STAT

Sample-based Monitoring ofCategorical Processes

Some Results

Page 20: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

Take (non-overlapping) segments of length n > 1

at times t1, t2, . . . with tk − tk−1 > n sufficiently large,

i. e., samples Xtk, . . . , Xtk+n−1.

Proceedings paper: detailed survey about

• Sample-based monitoring for binary case,

• and for categorical but i. i. d. case.

• Brief discussion about approaches for

ordinal data and compositional data.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 21: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

Let Nk(n) = (Nk; 0

(n), . . . , Nk;m(n))> with

Nk; i(n) being the absolute frequency of state ‘i’ in

sample Xtk, . . . , Xtk+n−1 such that Nk; 0(n)+ . . .+Nk;m(n) = n.

• If (Xt)N i. i. d., then Nk ∼i. i. d.

MULT(n; π0, . . . , πm)

with covariance matrix nΣ, where

Σ = (σij) is given by σij ={πi(1− πi) if i = j,−πiπj if i 6= j.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 22: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

Let Nk(n) = (Nk; 0

(n), . . . , Nk;m(n))> with

Nk; i(n) being the absolute frequency of state ‘i’ in

sample Xtk, . . . , Xtk+n−1 such that Nk; 0(n)+ . . .+Nk;m(n) = n.

• If (Xt)N DAR(1) process with autoregressive parameter ρ,

then κ(k) = ρk and

Nk ∼i. i. d.

MM(n; π0, . . . , πm; ρ) (Wang & Yang, 1995)

with asymptotic covariance matrix c · nΣ, where

c := 1+ 2 ·∞∑i=1

κ(i) =1+ ρ

1− ρ.

⇒ effect of serial dependence within sample.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 23: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

Sample statistics to be monitored:

• Pearson’s χ2-statistic (Duncan, 1950)

C(n)k =

m∑j=0

(Nk; j − nπ0; j)2

nπ0; j,

where π0 := (π0; 0, . . . , π0;m)> in-control categ. probabilities.

• Gini statistic (Weiß, 2012)

G(n)k =

1− n−2 ∑mj=0N

2k; j

1− ∑mj=0 π

20; j

,

motivated by conforming probability

π0; 0� π0; 1, . . . , π0;m (i. e., low categorical dispersion).

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 24: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

Proceedings paper: simulation study for diverse scenarios,

asymptotic distributions for C(n)k , G

(n)k

available for arbitrary NDARMA processes (Weiß, 2013),

but too imprecise for chart design.

Illustrative example: (Mukhopadhyay, 2008)

π0 = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)>

with Gini dispersion 0.463, sample size n = 150.

DAR(1) dependence, where ρ = 0 expresses i. i. d. case.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 25: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

n = 150, π0 = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)>:

In-control ARL performance if i. i. d. design, i. e.,

Pearson with uP = 22.41094, Gini with uG = 1.327252.

●●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6

010

020

030

040

0

ρ

AR

L

●●

●●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

n=150, i.i.d. design:

Pearson chartGini chart

ρ

⇒ Strong influence of serial dependence on chart design.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 26: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Sample-based Monitoring of Categorical Processes MATH

STAT

n = 150, π0 = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)>:

Out-of-control ARL performance

for π1; 0 = (1− shift)π0; 0, π1; k =1−shift·π0; 0

1−π0; 0 π0; k otherwise.

●●

●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00 0.05 0.10 0.15

010

020

030

040

0

shift

AR

L

●●

●●

●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●

●●

●●

●●

●●

● ●● ● ● ● ● ● ● ● ● ● ● ●

●●

●●

● ●

● ●●

●●

●●

●●

● ●●

● ●● ● ●

● ● ● ● ● ● ●

Pearson:

00.250.500.75

shift

●●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00 0.05 0.10 0.15

010

020

030

040

0shift

AR

L

●●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●

●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●

●●

●●

●●

● ●● ● ● ● ● ● ● ● ● ● ● ● ●

Gini:ρ=0ρ=0.25ρ=0.50ρ=0.75

shift

⇒ Decaying power with increasing serial dependence.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 27: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

MATH

STAT

Continuous Monitoring ofCategorical Processes

Some Results

Page 28: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Continuous Monitoring of Categorical Processes MATH

STAT

Log-likelihood ratio CUSUM constitutes feasible approach.

Ryan et al. (2011): i. i. d. case, where π1 denotes relevant out-

of-control distribution. Then

St = max {0, St−1 + Lt} with S0 := 0,

where Lt = ln(Pπ1(Xt)/Pπ0(Xt)

)with Pπ(Xt = i) = πi.

Following Mousavi & Reynolds (2009) (→ binary Markov chain),

one may defineLt = ln

Pπ1(Xt|Xt−1, . . . , Xt−p)Pπ0(Xt|Xt−1, . . . , Xt−p)

for Markov-dependent categorical process.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 29: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Continuous Monitoring of Categorical Processes MATH

STAT

Illustrative example:

DAR(1) process (Xt)N with autoregressive parameter ρ.

Approaches for St = max {0, St−1 + Lt}:

• i. i. d.-CUSUM statistic

Lt = lnPπ1(Xt)

Pπ0(Xt)= ln

π1;Xtπ0;Xt

,

but with adjusted limits; or

• adjusted CUSUM statistic:

Lt = ln(1− ρ)π1;Xt + δXt,Xt−1 ρ

(1− ρ)π0;Xt + δXt,Xt−1 ρ.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 30: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Continuous Monitoring of Categorical Processes MATH

STAT

Proceedings paper: scenarios from Ryan et al. (2011), i. e.,

Case 1: π0 = (0.65,0.25,0.10)>, π1 = (0.4517,0.2999,0.2484)>;Case 2: π0 = (0.94,0.05,0.01)>, π1 = (0.8495,0.0992,0.0513)>;Case 3: π0 = (0.994,0.005,0.001)>, π1 = (0.9848,0.0099,0.0053)>;Case 4: π0 = (0.65,0.20,0.10,0.05)>, π1 = (0.3960,0.3283,0.1734,0.1023)>.

with dispersion νG ≈ 0.758,0.171,0.018 and 0.7.

Illustration:i. i. d.-CUSUM i. i. d.-CUSUM, adj. adj. CUSUM

Case ρ h ARL0 ARL1 h ARL0 ARL1 h ARL0 ARL12 0 2.8 501.8 36.3

0.25 2.8 245.7 37.2 3.85 509.8 52.4 2.55 503.4 45.60.5 2.8 170.8 39.3 5.2 500.2 72.6 2.25 508.4 58.80.75 2.8 155.2 48.3 7.6 500.7 107.8 1.7 514.7 86.0

⇒ adjusted CUSUM shows best power.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 31: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Conclusions and Future Research MATH

STAT

• Monitoring of serially dependent categorical processes:

Shewhart charts for sample-based monit. (Pearson, Gini),

LR-CUSUM for continuous monitoring; simulations required

for chart design and performance evaluation.

Future research:

• Sample-based CUSUM Lk = ln(Pπ1(Nk

(n))/Pπ0(Nk(n))

),

but distribution of Nk(n) difficult.

• Unique charts for categorical & compositional data.

• Phase I application of categorical control charts.

• Process capability indices for categorical data.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Page 32: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Thank You

for Your Interest!

MATH

STAT

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

[email protected]

Page 33: Control Charts for Time-Dependent Categorical Processes · consistingoffinitenumberm+ 1 ofcategorieswithm2N. Sometimesrangeexhibitsnaturalordering,thenordinal range. Otherwise,withoutinherentorder,nominal

Literature MATH

STAT

Chen et al. (2011) The application of multinomial . . . Int. J. Indust. Eng. 18, 244–253.

Duncan (1950) A chi-square chart for . . . Indust. Qual. Control 7, 11–15.

Jacobs & Lewis (1983) Stationary discrete autoregressive . . . J. Time Ser. Anal. 4, 19–36.

Mousavi & Reynolds (2009) A CUSUM chart for monitoring . . . JQT 41, 401–414.

Mukhopadhyay (2008) Multivariate attribute control . . . J. Appl. Statist. 35, 421–429.

Ryan et al. (2011) Methods for monitoring multiple proportions . . . JQT 43, 237–248.

Wang & Yang (1995) On a Markov multinomial distribution. Math. Scien. 20, 40–49.

Weiß (2008) Visual analysis of categorical time series. Stat. Meth. 5, 56–71.

Weiß (2011) Empirical measures of . . . J. Stat. Comp. Simul. 81, 411–429.

Weiß (2012) Continuously monitoring categorical processes. QTQM 9, 171–188.

Weiß (2013) Serial dependence of NDARMA . . . Comp. Stat. Data Anal. 68, 213–238.

Weiß & Göb (2008) Measuring serial dependence . . . Adv. Stat. Anal. 92, 71–89.

Ye et al. (2002) Multivariate statistical analysis . . . IEEE Trans. Computers 51, 810–820.

Christian H. Weiß — Helmut Schmidt University, Hamburg