convergent aeronautics solutions (cas) project … aeronautics solutions (cas) project overview...

16
Convergent Aeronautics Solutions (CAS) Project Overview Isaac López NASA Glenn Research Center CAS Project Manager AIAA Aviation Conference 2017 June 8, 2017 www.nasa.gov https://ntrs.nasa.gov/search.jsp?R=20170006909 2018-07-01T19:01:48+00:00Z

Upload: dodan

Post on 27-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Convergent Aeronautics Solutions (CAS) Project Overview

Isaac LópezNASA Glenn Research Center

CAS Project Manager

AIAA Aviation Conference 2017June 8, 2017

www.nasa.gov

https://ntrs.nasa.gov/search.jsp?R=20170006909 2018-07-01T19:01:48+00:00Z

2

AOSSoftwareDevelopmentKit(SDK)enablescost-effectivedevelopmentofverifiedandcertifiableUAVSoftware

Fail-Operational/Fail-SafeUAVAutonomy

AOSistheiOSforsmartandreliableUAVcontrolapps

Pilot-in-a-Box

GEN

Motor

Motor

TurbineEngine

Cross-strappedPower

Cross-strappedPower

Cross-strappedPower

Fuel

DELIVER

M-SHELLS

LearntoFly

AOS4UAV

DigitalTwin

MADCAT

HVHEP

Convergent– Cross-Discipline, Cross-Center, Diverse Sources

Feasibility Assessment Focused… Technology Evaluation

Targeted

Transformative• CompetitivelySelected• LightProjectManagement 3

The CAS Vision: Transformative Concepts that are –

CASActivity

Rapidly Executed

What’s a Feasibility Assessment and how is it different than a technology demonstration effort?

• Feasibility Assessment is Technology Evaluationbased on extensive investigation and research to support the process of decision making. Short Term (0.5-2.5 yrs), rapid “build-measure-learn” - assess feasibility and move on

– Understand where the concept works and where it does not

– Understand the concept’s broader applicability

– Push the boundaries of concept effectiveness (even taking the concept to failure)Such as determine: When, How, and To What Extent, … to Use the Concept

– Consider important real-world “ilities” – e.g. Maintainability, Community Acceptability, Fly-ability, Cost, Interoperability, etc.

– Not to suggest that all “ilities” will be considered, but identify the most importantchallenges and have them inform the feasibility approach

• A successful feasibility assessment may determine that the concept doesn’t work

CAS is Focused on Rapid Feasibility Assessment

4

Convergent– Cross-Discipline, Cross-Center, Diverse Sources

Feasibility Assessment Focused… Technology Evaluation

Targeted

Transformative• CompetitivelySelected• LightProjectManagement 5

The CAS Vision: Transformative Concepts that are –

CASActivity

Rapidly Executed

FY comparison of CAS proposals

0

5

10

15

20

25

30

35

40

IdeaExchange ARDCaucus CASTInG

FY16 FY17 FY18

6

Projected CAS FY18 Project PortfolioQuartersinExecution Thrusts/Outcomes Participating Centers

FY17Q1

FY17Q2

FY17Q3

FY17Q4

FY18Q1

FY18Q2

FY18Q3

FY18Q4

FY19Q1

FY19Q2

FY19Q3

FY19Q4

FY20Q1

FY20Q2

FY20Q3

FY20Q4 1 2 3 4 5 6 ARC AFRC GRC LARC

FY18(Round 3)NewStartSub-ProjectsATTRACTOR F F M,F x x X

AAAVA N,F N,F x XQT M M M X x

FY17(Round2)Sub-ProjectsLION A A X x xSAW A A X x x

FUELEAP A A x x XCAMIEM A M,F x X xCLAS-ACT M,F M,F F x x X x

FY16(Round1)Sub-ProjectsLearn2Fly F F F x x XDigitalTwin M N,M x XMADCAT F X xAOS4UAV F X xM-SHELLS M,F M,F x X xHVHEP M,F M,F x X x

Pre-Selected(Round0)Sub-ProjectsDELIVER N M X x x

10 7 9 12

HomeCenterofPrincipalInnovatorPartneringCenter

Xx

quartersinexecutionquartersintransition/closeout

transitionfromCAStoMissionProjects

PrimaryThrust

SecondaryThrustPs

OutcomesN:NearTerm(2015-2025)M:Mid-Term(2025-2035)F:Far-Term(>2035) A:AllOutcomes

Incubation Execution Transition&Closeout

ARM

D D

ec

isio

n G

ate

: C

AS

Tea

ms

Inve

stm

ent

Ga

tew

ay

(CA

STIn

G)

Fea

sib

ility

De

term

ina

tion

and

Ass

ess

me

nt

CA

S Sp

ons

ors

hip

End

s

Managed by Phases

8

Transition

Notional CAS Year

Oct Nov Dec Jan Feb Mar Jun Jul Aug SepMayApr

IncubationCASTInG

ExecutionShowcase

Close-OutQtr.

ActivityExecutionEnds

9

ActivityExecutionEnds

Majorevents

ARDCaucusIdeaExchange

SelectionsAnnounced

StartofNewActivities

FeasibilityDeterminations

CAS Activities coming after this presentation

ActivityRound 1(2016) DigitalTwinRound 1(2016) Learn toFly(L2F)Round 1(2016) AutonomyOperatingSystemforUAVs(AOS4UAV)Round 1(2016) HighVoltageHybridElectricPropulsion(HVHEP)Round 1(2016) MultifunctionalStructuresforHighEnergyLightweightLoad-

bearingStorage(M-SHELLS)Round 1(2016) MissionAdaptiveDigitalCompositeAerostructure Technologies

(MADCAT)

10

CAS Activities

11

DELIVER – DesignEnvironmentforNovelVerticalLiftVehicles,PI:ColinTheodore(ARC):ThekeyfocusofDELIVERistodemonstratethefeasibilityofapplyingcurrentconceptualdesigntoolstosmallandnovelverticalliftvehicleconfigurations,andtoaugmentthesetoolswiththemostcompellingtechnologiesforusability,operability,andcommunityacceptanceofthesenovelvehicles.ThecompellingtechnologiesexaminedinDELIVERarenoise,autonomy/automation,andhybrid-electricpropulsionsystems.

CAS Activities (continued)

12

FUELEAP – (FosteringUltraEfficientLow- EmittingAviationPower),PI:NicholasBorer(LaRC):Thisconceptleveragestechnologyconvergenceinhigh-efficiencySolidOxideFuelCells(SOFC),high- yieldfuelreformers,andhybrid-electricaircraftarchitecturestodeveloptightlyintegratedpower

SAW – (Spanwise AdaptiveWing)PI:MatthewMoholt (AFRC)andCo-PI:Dr.OthmaneBenafan (GRC):EnablingreconfigurableaircraftthroughTheSpanwise AdaptiveWing(SAW)Concept.IncreasingaircraftefficiencybyreducingtherudderthroughtheincorporationofSAW.ArticulatingtheoutboardportionsofthewingviaShapeMemoryactuation.Lateral-directionalstabilityandcontrolaugmentation.Supersonic-Increasedcompressionliftandreducedwavedragforsupersonicflyingwingdesign.

systemthatproduceselectricityfromtraditionalhydrocarbonfuelsat~2xtypicalcombustionefficiencies.Theabilitytouseexistinginfrastructure,alongwithcompellingperformance,willenablenear-termadoptionofelectricpropulsionforaircraft.Thisprojectistoestablishthefeasibilityofanintegratedheavyfuelhybrid-electricSOFCpowersystemthroughsafety-focuseddesignandselectedcomponenttechnologymaturation,usingtheX-57“Maxwell”Mod2andMod4configurationsasintegrationbaselines.

CAS Activities (continued)

13

CAMIEM – (CompactAdditivelyManufacturedInnovativeElectricMotor),MichaelC.Halbig (PIGRC),PeterKascak (Co-PIGRC):Newmanufacturingmethodareneededtoobtaininnovativeelectricmotordesignsthathavemuchhigherpowerdensitiesand/orefficienciescomparedtothecurrentstate-of- the-art.Additivemanufacturingoffersthepotentialtoradicallychangethemotordesignssothattheyhavecompactdesigns,multi-materialcomponents,innovativecooling,andoptimallydesignedandmanufacturedcomponents.Anewmotor,whichutilizesadditivemanufacturingwillbebuiltandtestedandperformancegainswillbeevaluated.

CLAS-ACT – (ConformalLightweightAntennaStructuresforAeronauticalCommunicationTech- nologies),PI:MaryAnnMeador(GRC)andRobertKerczewski (Co-Pi):Developlightweightconformalantennaswhichenablebeyondlineofsight(BLOS)commandandcontrolforUAVsandothervehicles.Antennaswillbemadeusingpolyimideaerogelsasthelowdielectricsubstratetoreduceweightandimprovedperformance,willtakeadvantageofnewlyassignedprovisionalKu-bandstoenableUAVcommunicationanduseuniqueantennadesignstoavoidinterferencewithground.

CAS Activities (continued)

14

LION– (IntegratedComputational-ExperimentalDevelopmentofLithium-AirBatteriesforElectricAircraft)PI:JohnLawson(ARC),andPI:VadimLvovich (GRC):TheprimaryobstacletoenableNASA’svisionofGreenAviationistheextraordinaryenergystoragerequirementsforelectricaircraft.Lithium-Airbatterieshavethehighesttheoreticalenergystoragecapacityofanybatterytechnologyandifrealizedwilltransformtheglobaltransportationsystem.Lithium-Airbatteriesareeffectively“breathingbatteries”.Duringdischarge,OxygenispulledintothebatterytoreactwithLithiumionsandwhenthebatteryischarged,Oxygenisexpelledfromthebattery.AsignificantproblemforcurrentLithium-Airbatteriesislargescaledecompositionofthebatteryelectrolyteduringoperationleadingto

batteryfailureafterahandfulofcharge/dischargecycles. Therefore,developmentoflargescale,ultra-highenergy,recharge- able,andsafeLithium-Airbatteriesrequirehighlystableelectrolytesthatareresistanttodecom- positionunderoperatingconditions.ANASAled“dreamteam”ofhigh-poweredexpertsfromNASA,academia,theDepartmentofEnergyandindustrywillintegratesupercomputermodeling,fundamentalchemistryanalysis,advancedmaterialscience,andbatterycelldevelopmenttotacklethisverychallenging,multidisciplinaryproblem.Theultimategoalfortheteamistodiscoverthe“designrules”forultra-stableelectrolytesforLithium-Airbatteries.ThedevelopedLithium-AirbatterywillbedemonstratedinanUAVflight.ThesehighenergybatterieshavethepotentialtomeettheenergystoragechallengesofcurrentandfutureNASAaeronauticsandspacemissionsinadditiontomanyterrestrialtransportationapplications.

CAS Project Organization [FY17]

Execution Manager: Debbie MartínezTransition Manager: Peggy Cornell

Business Lead: Christina MorrisScheduler: Donna Gilchrist

SCEPTOR

Center Liaisons: Starr Ginn (AFRC), Dr. Greg Dorais (ARC), Dr. Jerry Welch (GRC), Dr. Pete Lillehei (LaRC)

Incubation Execution

NextFY18Concepts

M-SHELLS

DELIVER* MADCAT*

Digital Twin*

L2F*

HVHEP

PM: Isaac LópezDPM: Marty Waszak

Transition&CloseOut

AOS4UAV*

AATC

Execution Manager Transition ManagerCenter Liaisons

PRO

JECT

LEV

ELManager

Round1(FY16-18)

CAMEIM

LION

SAW

FUELEAP

Round2(FY17-19)

X-Plane

CLAS-ACT

Phase

*Executionactivitiesending4QFY17

16