coupled hctm phenomena - netl.doe.gov · kick-off meeting 1/2010 . contact grain-grain dissolution...

56
Coupled HCTM Phenomena From Pore-scale Processes to Macroscale Implications DE-FE0001826 J. Carlos Santamarina Georgia Institute of Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012

Upload: others

Post on 21-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Coupled HCTM Phenomena From Pore-scale Processes to Macroscale Implications

DE-FE0001826

J. Carlos Santamarina Georgia Institute of Technology

U.S. Department of Energy

National Energy Technology Laboratory

Carbon Storage R&D Project Review Meeting

Developing the Technologies and Building the

Infrastructure for CO2 Storage

August 21-23, 2012

Page 2: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Presentation Outline

Project Overview: The Proposal

Accomplishments: HTCM Coupled Processes

Appendices: Contact Information

Schedule

Bibliography

Page 3: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Presentation Outline

Project Overview: The Proposal

Accomplishments: HTCM Coupled Processes

Appendices: Contact Information

Schedule

Bibliography

Page 4: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Relevance

"Faustian bargain"?

long-term CO2 geo-storage needed (C-economy + climate change)

but, it must be reliable in the long time scales

High early probability of failure

new engineering solutions: high initial Pf (emergence phenomena)

Main concerns

complex geo-plumbing

unanticipated coupled hydro-chemo-thermo-mechanical processes

unrecognized emergent phenomena (including positive feedbacks)

Without paralyzing critically needed CCS, make all efforts to

anticipate potential challenges

develop proper engineering solutions

This has been the purpose of this research

Page 5: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Project Objectives / Goals

To reach this goal, we will:

better understanding of fundamental processes and couplings that may

either hinder or enhance the long-term C-geological storage

• explore the geomechanical consequences of HCTM on geo-storage of CO2

• identify emergent phenomena

• bound the parameter-domain for efficient injection and safe long-term storage

• fundamental pore and particle-scale experimental studies

• upscaling numerical simulations

• macroscale numerical modeling

Approach combines:

kick-off meeting 1/2010

Page 6: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Contact

grain-grain

dissolution

Droplet

surface tension

contact angle

solubility

2D Cell

2D observations

2D invasion

transients

1D 2D 3D - σ’

FEM: Code-bright Network Model DEM - PFC

m

g g g gS . ~ ft

q

Analytical

Short

Capillary

Interface

diffusion

Sediment

sediment

fracture

Long

Capillary

mixed fluid

Page 7: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Project Team

ES Bang (KIGAM)

Monitoring

M.S. Cha

Dissolution - DEM

H.S. Shin (Ulsan U)

Dissolution DEM

N Espinoza (ENPC)

Ts CO2-CH4 Clays

J.W. Jung (LSU)

CO2-CH4

SH Kim

HC coupling - NM

J. Jang (WSU)

Network Models

A. Sivaran

leaks - cements

Page 8: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Presentation Outline

Project Overview: The Proposal

Accomplishments: HTCM Coupled Processes

Appendices: Contact Information

Schedule

Bibliography

Page 9: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

preliminary analyses

Page 10: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Reservoir - Zones

Caprock

Two phase flow: CO2 & brine

Single phase reactive flow CO2 dissolved brine

Q

CO2(aq) H+

CO2 Brine

buoyancy

capillarity

M

CO2

M

B

Page 11: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Reservoir - Zones

diffusion

Q

capillarity

pH dissolution contraction ko shear CO2 Brine

buoyancy

advection convection

capillarity

HR

tensile fracture

-fingering

HCO2

M

CO2

M

B

Caprock

Page 12: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

0

5

10

15

10 100 1000

Permeability [md]

Th

ick

ne

ss

of

CO

2 p

lum

e [

m]

Mt.

Sim

on

Mo

nta

na

Weyb

urn

Citro

ne

lle

Fort

Nels

on

CO2 plume thickness (without a trap)

2COwpore

s2CO

R

T2H

-

for: Ts=50mN/m γw-γCO2=4kN/m3

HCO2

HCO2

2

poreperm

m

R2

md

kafter Bachu and Bennion (2008)

2COw2COw2CO Hpp -

pore

sw2CO

R

T2pp

Page 13: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

water + CO2

Page 14: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

CO2 Dissolution and H2O Acidification

10 mm

Page 15: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

CO2 Solubility in Water

0

1

2

0 20 40 60 80 100

T=30(°C)

T=60(°C)

T=90(°C)

T=120(°C)

Pressure [MPa]

So

lub

ilit

y o

f C

O2 [

mo

le/ kg

wate

r]

Sleipner

Frio

Weyburn

Duan and Sun (2003)

T [ C]

30

60

90

120

(in 1M NaCl solution)

Page 16: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Surface Tension and Contact Angle

Hold Test in Liquid CO2: Water diffusion

Page 17: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

0

20

40

60

80

100

0 5 10 15 20Pressure [MPa]

Inte

rfacia

l T

ensio

n

[m

N/m

] H2O - PTFE

H2O - PTFE

Brine - PTFE

Brine - PTFE

H2O - oil-wet quartz

H2O - oil-wet quartz

H2O - oil-wet quartz

Fitted data (a)

Exp. data points (b)

Exp. data points (c)

Exp. data points (d)

22

25

CO2 saturation pressure

at 298°Kat 295°K

Gaseous

CO2

Liquid CO2

a (Massoudi and King, 1974), b (Chun and Wilkinson, 1995), c (Kvamme et al., 2007), d (Sutjiadi-Sia et al., 2007)

Surface Tension

Page 18: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

0

20

40

60

80

100

120

140

160

0 5 10 15 20

Pressure [MPa]

Co

nta

ct A

ng

le

[°]

4/18/2008 CO2-H2O-PTFE 5/12/2008 CO2-SalineH2O-PTFE7/7/2008 CO2-H2O-OilCtSiO2 7/10/2008 CO2-H2O-OilCtSiO2Series1 Series24/2/2008 CO2-H2O-PTFE 09/10/2008 CO2-H2O-PTFE09/16/2008 CO2-Saline H2O-PTFE 10/29/2008 CO2-oil.coat.SiO2-H2O09/11/2008 CO2-CaCO3-H2O 09/09/2008 CO2-SiO2-H2O5/7/2008 CO2-SalineH2O-CaCO3 09/15/2008 CO2-SiO2-SalineH2OSeries15 Series16

Calcite

Quartz

CO2 saturation pressure

at 298°Kat 295°K

Gaseous

CO2

Liquid CO2

CO2-wet

substrates

H2O-wet

substrates

PTFE

Oil-wet

quartzCO2

H2O

Oil-wet SiO2

CO2

H2O + NaCl

CaCO3

CO2

PTFE

H2O + NaCl

Contact Angle

Page 19: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Invasion = Viscosity + Capillarity

10+4 10-4 10+8 10-8

(Modified from Lenormand et al 1988)

viscous

fingering

capillary

fingering

stable

displacement

w

2COM

cosT

vC

s

2CO

10-4

10+4

10+8

10-8

Page 20: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Surfactant Surfonic POA-25R2

Q. Zhao

CO2

water+surfactant water

3.2 mm

CO2

0

20

40

60

80

100

0 2 4 6 8 10 12

Inte

rfacia

l te

nsio

n [m

N/m

]

Pressure [MPa]

CO2-water

CO2-brine

CO2-water-surfactant

at 295 KGaseous CO2

at 298 KLiquid CO2

CO2 L-V boundary

Page 21: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Engineered Injection

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80

Sw

ee

p E

ffic

ien

cy

E [

%]

Interfacial tension [mN/m]

CO2(g) + water (w/ surfactant)

CO2(g) + water

CO2(l) + water

CO2(l) + water (w/ surfactant)

Interfacial tension Ts [mN/m]

Sw

eep

eff

icie

ncy

Page 22: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Q

CO2 Brine

(CO2 + H2O) + Mineral

acidification convection

Page 23: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

1mm

1mm1mm

100 m

1 m

Droplet

zone

Calcite substrate

Water in CO2

acidification dissolution drying precipitation

Page 24: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Mass Balance Analyses

M

B (W+S+M)

CO2 VCO2<1>

VB<1>

VM<1>

Volume

VT<1>

1

11

21

T

BCO

V

VV

11

2

1

BCO

BB

VV

VS BCO SS 12

M

B (W+S+M+CO2)

CO2 (+W)

S

At equilibrium:

),,(2 TPCfCCO

W

),,(2 TPCfC B

CO

),,( TPCfC B

M

Concentration

),,(2

2 TPCfCO

),,(2 TPCfB

),,(2 TPCfM

Density Initial porosity:

Saturation:

Mass balance:

1

2

111

2 )1( COTBCO VSM

1111

BTBB VSM

11111111 1 BTBMMTM VSCVM

11111

BTBSS VSCM

B

CO

CO

CO

T

CO MMM 2

2

22

2CO

W

B

B

T

B MMM

B

M

M

M

T

M MMM

B

S

S

S

T

S MMM

2

2

2

22

2

CO

COCO

MV

2

22

B

BB

MV

2

22

M

MM

MV

CO2:

Brine:

Mineral:

Salt:

Final volume

Page 25: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Normalized change

in mineral volume

0.2%

Increase in

brine density

1.2%

-0.003

-0.002

-0.001

0

0 1 2 3 4 5 6

Salinity [mol/kg water]

∆V

M /

VM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

Salinity [mol/kg water]

Bri

ne

de

ns

ity i

nc

rea

se

[%

]

Mineral Dissolution

Page 26: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

k

Ht R

convConvection time

Case: k= 200 md HR=10 m tconv ≈ 9years

Convection

1 2 3

4 5 6

Page 27: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Bending Failure in Caprock

)2(6

)(6

4

13

323

2

32221

y

maxt

zc

Hc

Lfree

Ec

kr

Yield strength: σy

4

cc

r

IE4

k

y

cc1

z

c

free2

H

L

c3 H

Maximum tensile stress σtmax:

0

1

2

0 0.1 0.2 0.3 0.4 0.5

Frio project : π1=7.36, π3=2.55

π2 = Lfree/HC

π4 =

σtm

ax/σ

y

Caprock

where:

Page 28: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Mineral Dissolution - Implications

0.3

0.4

0.5

0.6

0.7

0 1000 2000

Time (sec)

Late

ral s

tre

ss c

oef

fici

en

t, k

0.00

0.02

0.04 Ve

rtic

al s

trai

n

90% glass bead + 10% NaCl

Page 29: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

0.25

0.30

0.35

0.40

0.45

0.50

0.0 0.5 1.0 1.5

Vertical strain, εz (%)

Late

ral

str

ess c

oeff

icie

nt,

K a

b

c

DEM Simulation 2D - diameter gradually reduced - 20% of particles

Page 30: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Shear load

-0.04

-0.02

0

0.02

0.04

0.06

No

rm.

ve

rt.

dis

pla

ce

me

nt

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4

Vo

id r

ati

o

Shear strain [radian]

0

10

20

30

40

50

Sh

ea

r s

tre

ss

[k

Pa

]

5

2

10

0(a)

(b)

(c)

5

2

10

0

5

2

10

0

SF% dissolved

SF% dissolved

SF% dissolved

1

2

3

Page 31: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Emergent: Shear Localization (b) Displacement vectors(a) Contact force chains

dR/dt = α·FN

& HR=80%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(c) Strain field

dR/dt = α·FN2

& HR=0%

dR/dt =α·FN

& HR=0%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PFC2D 3.10Step 29981100 16:37:55 Mon Jul 09 2012

View Size: X: -1.200e-002 <=> 1.100e-001 Y: -2.136e-002 <=> 1.194e-001

CForce ChainsCompressionTension

Maximum = 3.551e+002 Scale to Max = 5.000e+002

Wall

PFC2D 3.10Step 16219400 16:39:25 Mon Jul 09 2012

View Size: X: -1.200e-002 <=> 1.100e-001 Y: -2.136e-002 <=> 1.194e-001

CForce ChainsCompressionTension

Maximum = 2.935e+002 Scale to Max = 5.000e+002

Wall

PFC2D 3.10Step 31469200 16:39:57 Mon Jul 09 2012

View Size: X: -1.200e-002 <=> 1.100e-001 Y: -2.136e-002 <=> 1.194e-001

CForce ChainsCompressionTension

Maximum = 3.383e+002 Scale to Max = 5.000e+002

Wall 1km

250m

seabed

Contact Force Chains Displacement vectors Strain field

Cartwright (2005)

Page 32: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Dissolution Rate

-16

-12

-8

-4

0

2 3 4 5 6 7pH

pH controlled CO2(aq) controlled

pH controlled

Re

ac

tio

n r

ate

, lo

g (

kd /

[mo

l/m

2/s

])

Calcite

Anorthite

Kaolinite

pH

Calcite: Fredd and Fogler, 1998 & Renard et al., 2005 Anorthite & Kaolinite: Li et al., 2006

][][ )(221 aqd COkHkk

33.0

2

5.1 ][][ OHkkHkk OHOHHd

3.04.0 ][][ OHkHkk OHHd

Calcite:

Anorthite:

Kaolinite:

Page 33: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Single Rock Joint / Pore Scale (FEM)

Pe

Da

10-4

fast reaction

slow seepage

slow reaction

fast seepage

ndissolutio

advection

t

t

advection

diffusion

t

t

0.48

1.0[H+]

Min: 0.01

Max: 1.0 [mol/m3]

0.99

1.0

0.77

1.0

10-8

10-1

10-4 10-1

Page 34: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

COV(R2)=0.49 COV(R

2)=1.26 COV(R

2)=1.95

Unco

rrel

ated

net

work

Isotr

opic

ally

corr

elat

ed

net

work

Network Simulation: Non-Reactive

Page 35: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Network Simulation: Storage Reservoir 0 10 20 30 40 50

0

10

20

30

40

50

Channel diameter distribution before dissolution

0 10 20 30 40 500

10

20

30

40

50

Channel diameter distribution after dissolution

0 10 20 30 40 500

10

20

30

40

50

Channel diameter differences

0 10 20 30 40 500

10

20

30

40

50

Channel diameter distribution before dissolution

0 10 20 30 40 500

10

20

30

40

50

Channel diameter distribution after dissolution

0 10 20 30 40 500

10

20

30

40

50

Channel diameter differences

0 10 20 30 40 500

10

20

30

40

50

Channel diameter distribution before dissolution

0 10 20 30 40 500

10

20

30

40

50

Channel diameter distribution after dissolution

0 10 20 30 40 500

10

20

30

40

50

Channel diameter differences

0 10 20 30 40 500

10

20

30

40

50

Normalized flow rate before dissolution

0 10 20 30 40 500

10

20

30

40

50

Normalized flow rate after dissolution

0 10 20 30 40 500

10

20

30

40

50

Flow rate differences

0 10 20 30 40 500

10

20

30

40

50

Normalized flow rate before dissolution

0 10 20 30 40 500

10

20

30

40

50

Normalized flow rate after dissolution

0 10 20 30 40 500

10

20

30

40

50

Flow rate differences

0 10 20 30 40 500

10

20

30

40

50

Normalized flow rate before dissolution

0 10 20 30 40 500

10

20

30

40

50

Normalized flow rate after dissolution

0 10 20 30 40 500

10

20

30

40

50

Flow rate differences

Normalized change in tube diameter ∆d/d0

Normalized change in flow rate ∆q/∆q0,max

(a) Da~10-3 (ih=10) (b) Da~10-4 (ih=100) (c) Da~10-5 (ih=1000)

Page 36: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Mean Pore Diameter and Flow Rate

1

1.1

1.2

1.3

1 1.01 1.02 1.03 1.04 1.05 1.06

No

rmali

zed

flo

w r

ate

, q

/q0

Normalized average diameter, d/d0

Da=10-3

Da=10-4

Da=10-5

Normalized mean tube diameter, d/d0

No

rma

lize

d f

low

ra

te, q

/q0

Qmax=1000 pore volumes

3

4

5

6

0 0.4 0.8 1.2 1.6

Ex

po

ne

nt fo

r d

iam

ete

r-fl

ow

ra

te

Coefficient of variation, COVCoefficient of variation, COV

E

xp

on

en

t

00 d

d

q

q

COV=0.4

Da≤10-4: several branches

of localized flow

Da>10-4: evolves towards

compact dissolution

Da=10-4

Page 37: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Reactive Fluid Transport

rateDiffusion

rateAdvection

D

dvPe

rate Advection

Reaction

v

lαDa

rate

diffusion

dominant

advection

dominant

low reaction rate

Fredd & Fogler 1988, 1998

Fredd & Miller’s 2000

Golfier et al. 2002

10-4 10-3 10-2 101 102 103 104 10-1

103

102

101

10-1

10-2

10-3

10-4

104

Page 38: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

(water, CO2) + clay minerals

Page 39: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Fabric map

Kaolinite

pH

Edge IEP, pH 7.2

Face or Particle IEP

pH 4

log(co)co=0.1-0.15 mol/L

Edge IEP

Face or Particle IEP

pH < 4

co=0.25-0.3 mol/Lco=5 10-3 mol/L

? ? ? ?

pH

log(co)

Montmorillonite

Page 40: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Clay-CO2 interaction

1s 3s 6s 2s 4s 5s montmorillonite in liquid CO2

(N. Skipper - UCL)

Page 41: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Clay-CO2 interaction (a) Kaolinite (b) Montmorillonite

1

10

100

1000

water brine heptane liq CO2 sc CO2

Flo

c si

ze [

µm

]

0.1

1

10

100

1000

water brine heptane liq CO2 sc CO2

Flo

c si

ze [

µm

]

0.50

0.60

0.70

0.80

0.90

1.00

water brine heptane liq CO2 scCO2

Fin

al p

oro

sity

[ ]

0.50

0.60

0.70

0.80

0.90

1.00

water brine heptane liq CO2 scCO2

Fin

al p

oro

sity

[ ]

Fluid

permittivity 78.5 56 1.385 1.167 1.167 78.5 56 1.385 1.167 1.167

Ah [10-20

J] 1.57 1.24 0.84 4.20 4.20 0.98 0.73 0.42 3.14 3.14

Double

layer

large low c0

short high c0

none none none large low c0

short high c0

none none none

Aggregation disper-sed

face to face

edge to

edge

disper-sed

face to face

*

Montmorillonite

'

AH

Page 42: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Breakthrough – Healing (self-healing?)

’ = 1 MPa

PCO2

Δz

Pin

CO2 inlet

Sealing Solution

CO2 & water outlet

Page 43: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Caprock: Chattanooga Shale (b)

OD= 40mm

ID= 3.17mm

Height: 25mm<h<35mm

Page 44: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Initial breakthrough test

After sealing treatments

0

10

20

30

40

50

0 2 4 6 8

Pre

ss

ure

[k

Pa

]

Time [minute]

Pbt≈20kPa

0

1

2

3

4

5

6

0 100 200 300 400 500

Pre

ss

ure

[M

Pa

]

Time [hour]

Pd≈1.25MPa

Pd≈1.05MPa

1st treatment

2nd treatment

Caprock: Chattanooga Shale

Page 45: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Hydrates

Page 46: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Carbon geological storage

Temperature [°C]

Pre

ssu

re [

MPa

]

Page 47: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

J Karl Johnson – NETL

Gas replacement in hydrates

Page 48: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

CH4-hydrate

CH4 gas 1mm

(a) -2539min – Before repla-cement,

in CH4 atmosphere

(d) 18min – In liquid CO2 (e) 36min – In liquid CO2 (f) 186min – In liquid CO2

(g) 1176min – In liquid CO2 (h) 2178min – In liquid CO2 (i) 3768min – In liquid CO2

CH4 gas

(b) During liquid CO2 flooding (rising

from the bottom)

CH4-hydrate

Liquid CO2

(c) 0min – Immediately after liquid

CO2 flooding

CH4-hydrate

CH4 Hydrate flooded by liquid CO2 P=6MPa, T=275K

Gas replacement in hydrates

Page 49: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

30

min

Hydrate-bearing sand in liquid CO2

CO2

injection

[4.2MPa,275.4K]

[4.3MPa,274.1K]

Hydrate-bearing sand in CH4

0 s 190 s

Initial Sw=0.045

0.0h

0.5h

1.0h

-0.5h

1.5h

Gas replacement in hydrates

Page 50: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Summary

Page 51: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Carbon geological storage

Capillarity

water

2COM

cos

k)(B w2COw

cos

vC 2CO

T. Hamida – U. Calgary

Viscosity

Buoyancy

Convection /Advection k

v

D

vPe

vDa

Péclet

Damköhler

Page 52: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Summary: HCTM phenomena

Complex HTCM material properties and couplings

Potential development of positive feedback mechanisms

Caution: poor understanding of some "common" processes

New emergent phenomena in CO2 geologic storage

Engineered injection

Sealing strategies (promote self-healing conditions)

CO2-CH4 replacement

Page 53: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Presentation Outline

Project Overview: The Proposal

Accomplishments: HTCM Coupled Processes

Appendices: Contact Information

Schedule

Bibliography

Page 54: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Contact Information

J. Carlos Santamarina

404-894-7605

[email protected]

http://pmrl.ce.gatech.edu/

Page 55: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Project Schedule

Graduate Students (funded by this project)

PhD 1: D. N. Espinoza (Numerical)

PhD 2: S. Kim (Experimental)

Carlos Santamarina

Calendar YearMar Jun Sept Dec Mar Jun Sept Dec Mar Jun Sept Dec

Team

Team

Team

Team

Team

Team

Team

Team

2.2 Dissolution

2.3 Breakthrough / Self-heal

2011 2012

Task #5 - Numerical Simulation: Coupled HCTM Processes

4.2 Particle-scale phenomena

2010

Task #1 - Project Management and Planning

Task #2 - Experimental studies 2.1 Pore scale

Task #3 - Analyses – Scales – Parameter Domain

Task #4 - Numerical Upscaling 4.1 Pore-scale phenomena

Page 56: Coupled HCTM Phenomena - netl.doe.gov · kick-off meeting 1/2010 . Contact grain-grain dissolution Droplet surface tension contact angle ... transients 1D 2D 3D - σ’ DEM - PFC

Bibliography Theses

• Seunghee Kim (2012). Carbon Geological Storage – CHM Coupling

• Nicolas Espinoza (2011). CO2 sequestration – Fundamental Studies.

• Minsu Cha (2012). Mineral Dissolution - Implications.

• Jaewon Jang (2011). Gas Production from Methane Hydrates

• Jong Won Jung (2010). Gas Production from Methane Hydrates.

• Hosung Shin (2009). Discontinuities.

Journal Papers (6 additional papers in preparation – Contact PI)

• Espinoza, D.N. and Santamarina J.C., Clay interaction with liquid and supercritical CO2: The relevance of electrical and

capillary forces, International Journal of Greenhouse Gas Control (submitted).

• Espinoza, D.N. and Santamarina J.C. (2010), Water-CO2-mineral systems: interfacial tension, contact angle and diffusion –

Implications to CO2 geological storage, Water Resources Research, vol. 46, DOI: 10.1029/2009WR008634.

• Espinoza, D.N., Kim, S.H., Santamarina, J.C. (2011), Carbon Geological Storage, KSCE Journal of Civil Engineering, vol. 15,

no. 4, pp. 707-719.

• Espinoza, D.N. and Santamarina, J.C. (2011), P-wave monitoring of hydrate-bearing sand during CH4-CO2 replacement, Int.

J. Greenhouse Gas Control, doi:10.1016/j.ijggc.2011.02.006.

• Jung, J.W., Espinoza, D.N. and Santamarina, J.C. (2010), Hydrate Bearing Sediments: CH­4-CO2 Replacement, Journal of

Geophysical Research, vol. 115, B10102, doi:10.1029/2009JB000812

• Jung, J.W. and Santamarina, J.C. (2010), CH4-CO2 Replacement in Hydrate-Bearing Sediments: A Pore-Scale Study, G-

Cubed Geochemistry, Geophysics and Geosystems, Vol. 11, Q0AA13, doi:10.1029/2010GC003339.

• Shin, H., Santamarina, J.C. and Cartwright, J. (2010), Displacement Field In Contraction Driven Faults, J. Geophysical

Research, 115, B07408, doi:10.1029/2009JB006572.

• Shin H. and Santamarina J.C. (2009). Mineral Dissolution and the Evolution of k0. J. Geotechnical and Geoenvironmental

Eng. ASCE, vol. 135, no. 8, pp. 1141-1147.

• Jang, J., Narsilio, G. and Santamarina, J.C. (2011), Hydraulic Conductivity in Spatially Varying Media -A Pore-Scale

Investigation, Geophysical Journal International, vol. 184, pp. 1167-1179