crystal metallic structure

Upload: sachin-rane

Post on 14-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Crystal Metallic Structure

    1/38

    1/27/201

    Fundamental Structure

    of Crystalline Solids

    2

    Non dense, random packing

    Dense, ordered packing

    Dense, ordered packed structures tend to havelower energies.

    Energy and

    Packing

    Energy

    r

    typical neighborbond length

    typical neighborbond energy

    Energy

    r

    typical neighborbond length

    typical neighborbond energy

  • 7/27/2019 Crystal Metallic Structure

    2/38

    1/27/201

    3

    atoms pack in periodic, 3D arraysCrystalline materials...

    metalsmany ceramicssome polymers

    atoms have no periodic packing

    Noncrystalline materials...

    complex structuresrapid cooling

    crystalline SiO2

    "Amorphous " = Noncrystalline

    Materials and Packing

    Si Oxygen

    typical of:

    occurs for:

    noncrystalline SiO2

    Crystal Terminalogy

    Crystal : Regular, periodic and repeated arrangement

    Lattice: Three dimensional array of points coinciding with atom positions.

    Unit cell: smallest repeatable entity that can be used to

    completely represent a crystal structure. It is the building block of crystal structure.

  • 7/27/2019 Crystal Metallic Structure

    3/38

    1/27/201

    5

    7 crystal systems

    14 Bravais /space lattices

    A small group of lattice points which formsa repetitive pattern is called a unit cell .

    a, b, and c are the lattice constants

    Classification of Crystal Systems:

    The angles ( ,, ) between the lattice translation vectors and thedistance(a,b,c) between two successive points along these vectorsare used to classify the crystal structures into 7 systems

  • 7/27/2019 Crystal Metallic Structure

    4/38

    1/27/201

  • 7/27/2019 Crystal Metallic Structure

    5/38

    1/27/201

    9

    Rare

    due

    to

    low

    packing

    density (only

    Polonium

    (Po)

    has

    this

    structure)

    Coordination # = 6(# nearest neighbors)

    (Courtesy P.M. Anderson)

    Simple Cubic Structure (SC)

    10

    APF for a simple cubic structure = 0.52

    APF = a 3

    4

    3 (0.5 a ) 31

    atoms

    unit cellatom

    volume

    unit cell

    volume

    Atomic Packing

    Factor

    (APF)

    APF = Volume of atoms in unit cell*

    Volume of unit cell

    *assume hard spheres

    a

    R=0.5 a

    contains 8 x 1/8 =

    1 atom/unit cellEffective no of atoms / UC

  • 7/27/2019 Crystal Metallic Structure

    6/38

    1/27/201

    11

    Coordination # = 8

    (Courtesy P.M. Anderson)

    Atoms touch each other along cube diagonals.Note: All atoms are identical; the center atom is shadeddifferently only for ease of viewing.

    Body Centered Cubic Structure (BCC)

    ex: Cr, W, Fe ( ), Tantalum, Molybdenum

    2 atoms/unit cell: 1 center + 8 corners x 1/8

    12

    Atomic Packing

    Factor:

    BCC

    a

    APF =

    4

    3 ( 3 a /4 ) 32

    atoms

    unit cell atom

    volume

    a 3

    unit cell

    volume

    length = 4R =Close packed directions:

    3 a

    APF for a body centered cubic structure = 0.68

    aR

    a2

    a3

  • 7/27/2019 Crystal Metallic Structure

    7/38

    1/27/201

    13

    Coordination # = 12

    (Courtesy P.M. Anderson)

    Atoms touch each other along face diagonals.Note: All atoms are identical; the face centered atoms are shaded

    differently only for ease of viewing.

    Face Centered Cubic Structure (FCC)

    ex: Al, Cu, Au, Pb, Ni, Pt, Ag

    4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

    14

    APF for a face centered cubic structure = 0.74Atomic Packing

    Factor:

    FCC

    maximum achievable APF

    APF =

    4

    3 ( 2 a /4 ) 34

    atoms

    unit cell atomvolume

    a 3

    unit cell

    volume

    Close packed directions:

    length = 4R = 2 a

    Unit cell contains:6 x1/2 + 8 x1/8

    = 4 atoms/unit cella

    2 a

  • 7/27/2019 Crystal Metallic Structure

    8/38

    1/27/201

    15

    Coordination # = 12

    APF = 0.74

    3D Projection

    2D Projection

    Hexagonal Close Packed Structure

    (HCP)

    6 atoms/unit

    cell

    ex: Cd, Mg, Ti, Zn

    c/ a = 1.633

    c

    a

    A sites

    B sites

    A sites Bottom layer

    Middle layer

    Top layer

    Possible Bravais lattices:

    Cubic : Simple, BC, FCHexagonal : SimpleTetragonal : Simple, BCOrthorhombic : Simple, Base C, Body-C, FCMonoclinic : Simple, BCTriclinic, Trigonal : Simple

    Crystal System Axial relationships Interaxial Angles

    Cubic a=b=c == =90 o

    tetragonal a=b c == =90 o

    Hexagonal a=b c ==90 =120

    Rhomohedral/trygonal

    a=b=c == 90o

    Orthorhombic a b c == =90 o

    Monoclinic a b c = =90 o

    triclinic a b c 90o

  • 7/27/2019 Crystal Metallic Structure

    9/38

    1/27/201

    Allotropy

  • 7/27/2019 Crystal Metallic Structure

    10/38

    1/27/201

    Example: Copper

    = n AVc NA

    # atoms/unit cell Atomic weight (g/mol)

    Volume/unit cell(cm 3/unit cell)

    Avogadro's number(6.023 x 10 23 atoms/mol)

    Data from Table inside front page of Callister :

    crystal structure = FCC: 4 atoms/unit cell atomic weight = 63.55 g/mol (1 amu = 1 g/mol) atomic radius R = 0.128 nm (1 nm = 10 -7 cm)

    Vc = a3

    ; For FCC, a = 4R/ 2 ; Vc = 4.75 x 10-23

    cm3

    Compare to actual: Cu = 8.94 g/cm 3Result: theoretical Cu = 8.89 g/cm 3

    THEORETICAL DENSITY,

    15

    Element AluminumArgonBariumBerylliumBoronBromineCadmiumCalciumCarbonCesiumChlorineChromium

    Cobalt CopperFlourineGalliumGermaniumGoldHeliumHydrogen

    SymbolAlArBaBeBBrCdCaCCsClCr

    CoCu FGaGeAuHeH

    At. Weight (amu)26.9839.95137.339.01210.8179.90112.4140.0812.011132.9135.4552.00

    58.9363.55 19.0069.7272.59196.974.0031.008

    Atomic radius(nm)0.143------0.2170.114------------0.1490.1970.0710.265------0.125

    0.1250.128 ------0.1220.1220.144------------

    Density(g/cm 3 )2.71------3.51.852.34------8.651.552.251.87------7.19

    8.98.94 ------5.905.3219.32------------

    CrystalStructureFCC------BCCHCPRhomb------HCPFCCHexBCC------BCC

    HCPFCC ------Ortho.Dia. cubicFCC------------

    Characteristics of Selected Elements at 20C

  • 7/27/2019 Crystal Metallic Structure

    11/38

    1/27/201

    metals ceramics polymers

    16

    (

    g / c m

    3 )

    Graphite/Ceramics/Semicond

    Metals/Alloys Composites/ fibersPolymers

    1

    2

    2 0

    30B ased on data in Table B1, Callister

    *GFRE, CFRE, & AFRE are Glass,Carbon, & Aramid Fiber-ReinforcedEpoxy composites (values based on

    60% volume fraction of aligned fibersin an epoxy matrix).10

    345

    0.30.40.5

    Magnesium

    Aluminum

    Steels

    Titanium

    Cu,Ni

    Tin, Zinc

    Silver, Mo

    TantalumGold, WPlatinum

    G raphiteSiliconGlass - sodaConcrete

    Si nitrideDiamondAl oxide

    Zirconia

    H DPE, PSPP, LDPEPC

    PTFE

    PET

    PVCSilicone

    Wood

    AFRE *

    CFRE *GFRE*Glass fibers

    Carbon fibers

    A ramid fibers

    DENSITIES OF MATERIAL CLASSES

    a) crystal System? b) Crystal Structure? c) Density ? if Aw=141 g/mol

    3.2

    Tetragonal

    BCT

  • 7/27/2019 Crystal Metallic Structure

    12/38

    1/27/201

    Crystallographic Points Coordinates

    Fractional multiples of unit cell, edge lengths. Less than or equal 1 With out separation with commas (,)

    24

    Point CoordinatesPoint coordinates for unit cell

    center area /2, b /2, c/2

    Point coordinates for unit cell corner are 111

    z

    x

    y

    a b

    c

    000

    111

  • 7/27/2019 Crystal Metallic Structure

    13/38

    1/27/201

    25

    Crystallographic Directions1. Vector repositioned (if necessary) to pass

    through origin.2. Read off projections in terms of

    unit cell dimensions a , b , and c3. Adjust to smallest integer values4. Enclose in square brackets, no commas

    [uvw ]

    ex: 1 0 => 2 0 1 => [ 201 ]

    -1 1 1

    families of directions < uvw >

    z

    x

    Algorithm

    where overbar represents a negative index[ 111 ]=>

    y

  • 7/27/2019 Crystal Metallic Structure

    14/38

    1/27/201

    3.14

    A)

    B)

    C)

    D)

    How to draw the direction of [uvw]

    1.Divide with the biggest integer among them.

    2. Multiply with edge lengths.

    3. Take corresponding length on ref. Axis/edges.

    4. Farm a line by projection.

  • 7/27/2019 Crystal Metallic Structure

    15/38

    1/27/201

    3.9: Draw a [211] direction in Orthorhombic unit cell?

    4. Move along the edges / axis

    1 2 -1 1

    2 2/2 -1/2 1/2

    3 a - b/2 c/2

    U V W

    _

    3.9: Draw a [211] direction in Orthorhombic unit cell?

    4. Move along the edges / axis

    1 2 -1 1

    2 2/2 -1/2 1/2

    3 a - b/2 c/2

    U V W

    _

    a-b/2c/2

  • 7/27/2019 Crystal Metallic Structure

    16/38

    1/27/201

    HCP Crystallographic Directions

    32

    1. Vector repositioned (if necessary) to passthrough origin.

    2. Read off projections in terms of unitcell dimensions a 1, a 2, a 3, or c

    3. Adjust to smallest integer values4. Enclose in square brackets, no commas

    [uvtw ]

    [ 1120 ]ex: , , -1, 0 =>

    dashed red lines indicateprojections onto a 1 and a 2 axes a 1

    a 2

    a 3

    -a 32

    a 2

    2a1

    -a 3

    a 1

    a 2

    z Algorithm

  • 7/27/2019 Crystal Metallic Structure

    17/38

    1/27/201

    33

    HCP Crystallographic Directions Hexagonal Crystals

    4 parameter Miller Bravais lattice coordinates are related to the direction indices (i.e., u 'v 'w ') as follows.

    ==

    =

    'wwt

    v

    u

    )vu( +-

    )'u'v2(3

    1-

    )'v'u2(3

    1-=

    ]uvtw[]'w'v'u[

    -a 3

    a 1

    a 2

    z

    3.17

  • 7/27/2019 Crystal Metallic Structure

    18/38

    1/27/201

    Crystallographic Planes

    Crystallographic planes are specified byMiller indices (hkl)

    Indices are smallest Reciprocal of planeIntercepts with edges (Axis) of unit cell.

    Any two planes parallel to each other areequivalent and have identical indices.

    Procedure:1.Determine the intercepts made by the plane withthe three axes. If the plane passes through theorigin pick a parallel plane within the unit cell.2. Calculate the reciprocals of the intercepts.3. Divide by a common factor to convert tosmallest possible integers.4. Enclose in parentheses no

    commas i.e., (hkl)

  • 7/27/2019 Crystal Metallic Structure

    19/38

    1/27/201

    4. Miller Indices (110)

    1. Intercepts 1 1

    2. Reciprocals 1/1 1/1 1/ 1 1 0

    3. Reduction 1 1 0

    example a b c

    4. Miller Indices (111)

    1. Intercepts 1 1 12. Reciprocals 1/1 1/1 1/1

    1 1 13. Reduction 1 1 1

    Example 2 a b c

    z

    x

    ya b

    c

    38

    z

    x

    ya b

    c

    4. Miller Indices (634)

    example

    1. Intercepts 1/2 1 3/4a b c

    2. Reciprocals 1/ 1/1 1/

    2 1 4/3

    3. Reduction 6 3 4

    (001)(010),

    Family of Planes { hkl}Same atomic arrangement

    ( 100), (010),(001),Ex: {100} = (100),

  • 7/27/2019 Crystal Metallic Structure

    20/38

    1/27/201

    3.22: Determine miller indices for the planes?

    2. Intercepts (in a,b,c) 1 1 -1

    Plane A

    3. Reciprocals 1 1 -1

    Miller Indices (111) _

    Plane B

    1. Intercepts a b -c

    h k l

    3.19: a) Draw (021) plane for orthogonal unit cell? _

    3 Intercept par b/2 -c

    1. Indices 0 2 -1

    2. Reciprocals 1/2 -1

    h k l

  • 7/27/2019 Crystal Metallic Structure

    21/38

    1/27/201

    3.19: b) (200) monoclinic

    3.21: for cubic unit cell

    a) (101), b) (211) c) (012) d) (313) e) (111) f) (212) g) (312) h) (301) _ _ _ _ _ _ _

  • 7/27/2019 Crystal Metallic Structure

    22/38

    1/27/201

    4.3) c/a = 1.633in HCP

    Atom at M is midway between the top andbottom so

    Atom at M is midway between the top andbottom so

  • 7/27/2019 Crystal Metallic Structure

    23/38

    1/27/201

    (110) For FCC

    Atomic Arrangements in planes

    (110) For BCC

    46

    ex: linear density of FCC in [110]direction

    Linear Density

    a

    [110]vector directionof length

    vector directiononcentered atomsof number DensityLinear =

    # atoms

    length

    12/a nm

    a2

    2LD

    ==

  • 7/27/2019 Crystal Metallic Structure

    24/38

    1/27/201

    [111] 2/ 3 a

    [100] 1/a[110] 1/ 2 a

    BCC

    aR

    a

    2 a

    FCC

    [111] 1/ 3 a

    [100] 1/a[110] 2/ a

    Planar Densities

    planeof area planeaoncentered atomsof number

    DensityPlanar =

    # atoms

    length

    22 /a 2 nm

    a 22

    PD==

    (001) plane

  • 7/27/2019 Crystal Metallic Structure

    25/38

    1/27/201

    (111) 1/ 3a 2

    (100) 1/a 2

    (110) 2 /a 2

    BCC

    aR

    a

    2 a

    FCC

    (111) 4/ 3 a 2

    (100) 2/a 2

    (110) 2/ a 2

    50

    Planar Density of (100) IronSolution: At T < 912 C iron has the BCC structure.

    Radius of iron R = 0.1241 nm

    R3

    4a =

    2D repeat unit

    =Planar Density =a 2

    1

    atoms2D repeat unit

    =nm 2

    atoms12.1

    m2atoms

    = 1.21 x 10 191

    2

    R34area

    2D repeat unit

    (100) 1/a 2

    aR

  • 7/27/2019 Crystal Metallic Structure

    26/38

    1/27/201

    51

    Linear Density of [111] Iron

    [111] 2/ 3a

    aR

    Radius of iron R = 0.1241 nm

    R3

    4a =

    2= =

    nmatoms4.029

    matoms4.029 x 10 9

    R3linear Density =

    atoms2D repeat unit

    length2D repeat unit 3

    4

    a

    2 a

    [110] 2/ a

    Highest planar & Linear density for FCC / CCP(Cubic Closed Pack)

    (111) 4/ 3 a 2

    Closed packed directions

    Closed packed planes

  • 7/27/2019 Crystal Metallic Structure

    27/38

    1/27/201

    11

    ABCABC... Stacking Sequence 2D Projection

    A sites

    B sitesC sites

    B B

    B

    BB

    B BC C

    CA

    A

    FCC Unit Cell AB

    C

    FCC STACKING SEQUENCE

    FCC Stacking sequence

    A

    B

    C

    A

    B

    C

  • 7/27/2019 Crystal Metallic Structure

    28/38

    1/27/201

    12

    ABAB... Stacking Sequence

    3D Projection 2D Projection

    A sites

    B sites

    A sites

    Bottom layer

    Middle layer

    Top layer

    HEXAGONAL CLOSEPACKED STRUCTURE (HCP)

  • 7/27/2019 Crystal Metallic Structure

    29/38

    1/27/201

    A

    B

    A

    B

    A

    A

    HCP Stacking sequence

  • 7/27/2019 Crystal Metallic Structure

    30/38

    1/27/201

    3.27: fallowing are the planes

    a) What is crystal system?

    b) What is crystal lattice?

    Tetragonal

    BCT

    BCT

  • 7/27/2019 Crystal Metallic Structure

    31/38

    1/27/201

    4.20: fallowing are the planes

    a) What is crystal system?

    b) What is crystal lattice?

    Orthorambic

    FCO

  • 7/27/2019 Crystal Metallic Structure

    32/38

    1/27/201

    c) Determine atomic wt if = 18.91 ?

    = n AVc NA

    # atoms/unit cell Atomic weight (g/mol)

    Volume/unit cell(cm 3/unit cell)

    Avogadro's number(6.023 x 10 23 atoms/mol)

    4.10

    Titanium is HCP crystal and density 4.51 gr / cm 3

    1) Vol of unit cell in m 3 ?2) If c/ a ratio is 1.58 value of a, c ?

  • 7/27/2019 Crystal Metallic Structure

    33/38

    1/27/201

    4.12

    Niobium atomic radius 0.143nm, density 8.57 g/ccDetermine whether it is a FCC or BCC

    4.15

  • 7/27/2019 Crystal Metallic Structure

    34/38

    1/27/201

    67

    Polymorphism Two or more distinct crystal structures for the

    same material (allotropy/polymorphism)

    Titanium , Ti

    carbondiamond, graphite

    BCC

    FCC

    BCC

    1538C

    1394C

    912C

    -Fe

    -Fe

    -Fe

    liquid

    iron system

    "Existence of an elemental solid into more thanone physical forms is known as ALLOTROPY "

    Existence of substance into more than onecrystalline forms is known as"POLYMORPHISM".

    Example:1) Mercuric iodide (HgI 2 ) forms two types of crystals.

    a . Orthorhombicb . Trigonal

    2) Calcium carbonate (CaCO3) exists in two types of

    crystalline forms.a. Orthorhombic (Aragonite)b. Trigonal

  • 7/27/2019 Crystal Metallic Structure

    35/38

    1/27/201

    Allotropy

    So me engineering applications require single crystals:

    Crystal properties reveal featuresof atomic structure.

    --Ex: Certain crystal planes in quartzfracture more easily than others.

    --diamond singlecrystals for abrasives

    --turbine blades

    CRYSTALS AS BUILDING BLOCKS

  • 7/27/2019 Crystal Metallic Structure

    36/38

    1/27/201

    71

    Most engineering materials are polycrystals.

    Nb-Hf-W plate with an electron beam weld. Each "grain" is a single crystal. If grains are randomly oriented,

    overall component properties are not directional. Grain sizes typ. range from 1 nm to 2 cm

    (i.e., from a few to millions of atomic layers).

    1 mm

    Polycrystals

    Isotropic

    Anisotropic

  • 7/27/2019 Crystal Metallic Structure

    37/38

    1/27/201

    73

    Single Crystals

    -Properties vary withdirection: anisotropic .

    -Example: the modulusof elasticity (E) in BCC iron:

    Polycrystals

    -Properties may/may notvary with direction.

    -If grains are randomlyoriented: isotropic .

    (E poly iron = 210 GPa)-If grains are textured ,anisotropic.

    200 m

    Single vs PolycrystalsE (diagonal) = 273 GPa

    E (edge) = 125 GPa

    22

    Demonstrates " polymorphism " The same atoms canhave more than onecrystal structure.

    DEMO: HEATING ANDCOOLING OF AN IRON WIRE

    Temperature, C

    BCC Stable

    FCC Stable

    914

    1391

    1536

    shorter

    longer!shorter!

    longer

    Tc 768 magnet falls off

    BCC Stable

    Liquid

    heat up

    cool down

  • 7/27/2019 Crystal Metallic Structure

    38/38

    1/27/201

    Non crystalline solid

    atoms have no periodic packing

    Noncrystalline materials...

    complex structuresrapid cooling

    "Amorphous " = Noncrystalline = super cooled liquid

    occurs for: