d. attié , p. colas, e. delagnes, m. dixit, m. riallot, y.-h. shin, s. turnbull

23
[email protected] Astrophysics Detector Workshop – Nice – November 18 th , 2008 1 D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull MicroMEGAS MicroMEGAS + + T2K electronics T2K electronics LCTPC Collaboration Meeting - DESY irfu y a l c a s irfu y a l c a s

Upload: hubert

Post on 08-Jan-2016

43 views

Category:

Documents


0 download

DESCRIPTION

MicroMEGAS + T2K electronics. D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull. LCTPC Collaboration Meeting - DESY. Outline. Introduction, technological choice LP1 beam tests 2008-2009 Data taking periods Monitoring T2K electronics Specification - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] Astrophysics Detector Workshop – Nice – November 18th, 2008 1

D. Attié, P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

MicroMEGAS MicroMEGAS + +

T2K electronicsT2K electronics

LCTPC Collaboration Meeting - DESY

i r f u

yalcas

i r f u

yalcas

Page 2: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 2LCTPC Collaboration Meeting – DESY – September 21, 2009

OutlineOutlineOutlineOutline

•Introduction, technological choice

•LP1 beam tests 2008-2009– Data taking periods– Monitoring

•T2K electronics– Specification

•Bulk Micromegas with resistive anodes– Carbon-loaded kapton– Resistive ink

•Analysis results– Drift velocity– Spatial resolution– Comparison– New method

Page 3: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 3LCTPC Collaboration Meeting – DESY – September 21, 2009

IntroductionIntroductionIntroductionIntroduction

1. Decrease the pad size: narrowed strips, pixels

+ single electron efficiency – need to identify the electron clusters

2. Spread charge over several pads: resistive anode

+ reduce number of channels, cost and budget+ protect the electronics– need offline computing – could limit track separation 2. Resistive anode

55 mm

1. Pixels

•Need for ILC: measure 200 track points with a transverse resolution ~ 100 μm

– example of track separation with 1 mm x 6 mm pad size: 1,2 × 106 channels of electronicsz=0 > 250 μm amplification avalanche over one pad

•Spatial resolution σxy:

– limited by the pad size (0 ~ width/√12)

– charge distribution narrow (RMSavalanche ~ 15 μm)

Calculation for the ILC-TPC

D.C. Arogancia et al., NIMA 602 (2009) 403

Page 4: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 4LCTPC Collaboration Meeting – DESY – September 21, 2009

• Installation of Micromegas module + electronics in the LP1 in one hour

•Smooth operation

•Premixed bottle of Ar/CF4/Iso-C4H10; 97/3/2 (T2K gas)

•SiPM cosmic trigger (Saclay contribution) very stable (0.65 Hz)

•Three periods of data taking:– November-December 2008: Standard, Resistive Kapton

• Cosmic runs: 3 days• Beam runs at B=0T: 10 days • Beam runs at B=1T: 7 days

– May-June 2009: Resistive Ink, Resistive Kapton• Beam runs at B=1T: 2.5 days

– August 2009: Standard • Laser runs at B=1T: 3 days

Data takingData takingData takingData taking

Page 5: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 5LCTPC Collaboration Meeting – DESY – September 21, 2009

•Water content (ppm):

Monitoring historyMonitoring historyMonitoring historyMonitoring history

• Oxygen content (ppm):

June 09

July 09

August 09

September 09

102

101

103

104

102

101

103

104

105

10-

1

10-

2

• 1 to 2 days at 45 L/h to reachoperation values:

- H2O: 140 ppm

- O2: 30 ppm

Laser tests+std MM

Resistive MM

Bonn-GEM+TimePix

JGEM+TDC JGEM+ALTRO

Page 6: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 6LCTPC Collaboration Meeting – DESY – September 21, 2009

T2K electronics characteristicsT2K electronics characteristicsT2K electronics characteristicsT2K electronics characteristics

• AFTER-based electronics (72 channels/chip) from T2K experiment: – low-noise (700 e-) pre-amplifier-shaper– 100 ns to 2 μs tunable peaking time– full wave sampling by SCA– Zero Suppression capability

– November 2008: AFTER 06’ – May-June 2009: AFTER 08’ with possibility to by-pass the shaping

• Bulk Micromegas detector: 1726 (24x72) pads of ~3x7 mm²

– frequency tunable from 1 to 100 MHz (most data at 25 MHz)

– 12 bit ADC (rms pedestals 4 to 6 channels)

– pulser for calibration

Page 7: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

• Three panels were successively mounted and tested in the Large Prototype and 1T magnet:

- standard anode- resistive anode (Carbon-loaded Kapton) with a resistivity ~ 4-8 MΩ/- resistive ink (~1-2 MΩ/)

[email protected] 7LCTPC Collaboration Meeting – DESY – September 21, 2009

Bulk Micromegas module fro LP1Bulk Micromegas module fro LP1Bulk Micromegas module fro LP1Bulk Micromegas module fro LP1

Standard bulk Micromegas module Carbon loaded kapton Micromegas module

May-June 2009

Nov.-Dec. 2008

Page 8: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 8LCTPC Collaboration Meeting – DESY – September 21, 2009

Description of the resistive anodesDescription of the resistive anodesDescription of the resistive anodesDescription of the resistive anodes

DetectorDielectric

layerResistive layer

Resistivity (MΩ/)

Resistive Kapton

Epoxy-glass75 µm

C-loaded Kapton25 µm

~4-8

Resistive Ink Epoxy-glass 75 µm

Ink (3 layers) ~50 µm

~1-2

PCB

Prepreg

Resistive Kapton

PCB

Prepreg Glue

1-2 μm

Resistive Ink

Glue

1-2 μm

Resistive Kapton Resistive Ink

Page 9: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 9LCTPC Collaboration Meeting – DESY – September 21, 2009

Micromegas + T2K electronics in LP1Micromegas + T2K electronics in LP1Micromegas + T2K electronics in LP1Micromegas + T2K electronics in LP1

Page 10: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 10LCTPC Collaboration Meeting – DESY – September 21, 2009

Data flowData flowData flowData flow

T2K electronics1728 channels

Back-end electronic(ML405)

PCT2K DAQ on Linux

ILC_DATA_01

ILC_DATA_02

ILC_BCKP_01

ILC_BCKP_02

Saclay

500 Go 500 Go

500 Go

1 To

500 Go

NativeToLCIO (Yun-Ha Shin)Transfert done by K. Dehmelt

TCP/IP via ethenet

Opticalfibre 1-hour automatic

rsync backup

Grid

• Maximum rate: 14 Hz (Zero Suppression mode)

• Triggered by beam (no TLU)

• Easy to use (GUI)

DAQ:

Page 11: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 11LCTPC Collaboration Meeting – DESY – September 21, 2009

5 GeV beam data summary (B=1T)5 GeV beam data summary (B=1T)5 GeV beam data summary (B=1T)5 GeV beam data summary (B=1T)

Standard Edrift=230 V/cmLow diffusion Edrift=140

V/cm Peaking time (ns) Peaking time (ns) 100 200 500 10002000 100 200 500 10002000

Z (cm)

5.4 311 309 310 287 288 308 307 304 30511.1 395 396 397 398 399 407 408 409 410 41121.1 353 354 355 356 357 363 364 365 366 36731.1 329 333 334 335 336 330 343 344 345 34641.1 373 374 377 378 379 385 386 387 388 38951.1 312 313 314 315 316 326 430 431 432 433

Standard conditions (25 MHz)230 V/cm

Peaking time (ns)

z (cm) 100 no Shaping

500 + Shapin

gZS No ZS ZS

4.3 575/576 583 57110 586 587/588 58415 606 607 60420 600 601/602 59925 608 609 61030 591 592 59040 597 598 59650 594 595 593

• November-December 2008: AFTER 06’

• May-June 2009: AFTER 08’ with possibility to by-pass the shaping

Resistive Kapton run numbers

Page 12: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 12LCTPC Collaboration Meeting – DESY – September 21, 2009

Determination of z rangeDetermination of z rangeDetermination of z rangeDetermination of z range

• Cosmic run at 25 MHz of sampling frequency time bin = 40 ns

• TPC length = 56.7 cm agreement with survey

190 time bins

Page 13: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 13LCTPC Collaboration Meeting – DESY – September 21, 2009

Pad signals: beam data samplePad signals: beam data samplePad signals: beam data samplePad signals: beam data sample

•B = 1T

• T2K gas

• Peaking time: 100 ns

• Frequency: 25 MHz

• z = 5 cm

Page 14: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 14LCTPC Collaboration Meeting – DESY – September 21, 2009

Two-track separation capabilityTwo-track separation capabilityTwo-track separation capabilityTwo-track separation capability

r

φ

z

•B = 0T

• T2K gas

• Peaking time: 100 ns

• Frequency: 25 MHz

• z = 5 cm

Page 15: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 15LCTPC Collaboration Meeting – DESY – September 21, 2009

Drift velocity vs. peaking timeDrift velocity vs. peaking timeDrift velocity vs. peaking timeDrift velocity vs. peaking time

Edrift = 230 V/cm

Vd

Magboltz = 76 µm/ns

Edrift = 140 V/cm

Vd

Magboltz = 59 µm/ns

Z (cm)

Tim

e

bin

s

Tim

e

bin

s

• B=1T data

• For several peaking time settings: 200 ns, 500 ns, 1

µs, 2 µs

Z (cm)

Resistive Kapton

Page 16: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 16LCTPC Collaboration Meeting – DESY – September 21, 2009

Spatial resolutionSpatial resolutionSpatial resolutionSpatial resolution

eff

2d2

0x NzC

σσ

• Resolution at z=0: σ0 = 54.8±1.6 μm with 2.7-3.2 mm pads (wpad/55)

• Effective number of electrons: Neff = 31.8±1.4 consistent with expectations

Resistive Kapton

Page 17: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 17LCTPC Collaboration Meeting – DESY – September 21, 2009

Comparison at B=1T, z ~ 5 cmComparison at B=1T, z ~ 5 cmComparison at B=1T, z ~ 5 cmComparison at B=1T, z ~ 5 cm

Resistive Kapton Resistive Ink

• RUN 310

• vdrift = 230 cm/μs

• Vmesh = 380 V

• Peaking time: 500 ns

• Frequency Sampling: 25 MHz

• RUN 549

• Vdrift = 230 cm/μs

• Vmesh = 360 V

• Peaking time: 500 ns

• Frequency Sampling: 25 MHz

Page 18: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 18LCTPC Collaboration Meeting – DESY – September 21, 2009

Pad Response Functions, z ~ 5 cmPad Response Functions, z ~ 5 cmPad Response Functions, z ~ 5 cmPad Response Functions, z ~ 5 cm

Γ = 7 mmδ = 10 mm

Γ = 11 mmδ = 13 mm

xpad – xtrack (mm)xpad – xtrack (mm)

xpad – xtrack (mm)xpad – xtrack (mm)

σz=5 cm = 68 μm σz=5cm = 130 μm !

Resistive Kapton Resistive Ink

Page 19: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 19LCTPC Collaboration Meeting – DESY – September 21, 2009

2.2 GeV Momentum2.2 GeV Momentum2.2 GeV Momentum2.2 GeV Momentum

Resistive Kapton

Page 20: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 20LCTPC Collaboration Meeting – DESY – September 21, 2009

A better way to analyze charge dispersion data:

•The original PRF “amplitude” dependent on TPC operational parameters

•Develop a standard way not requiring fine tuning

•Tested several new ideas with simulated data

•Apply and test new algorithm to reanalyze DESY 5 T magnetic field results

•Criteria: PRF can be applied consistently and easily over a wide range of TPC operating conditions

•Observed resolution function is Gaussian.

•New measured resolution is as good or better then obtained previously

•A simple fixed window integration works the best!

5T data (2006): new analysis5T data (2006): new analysis5T data (2006): new analysis5T data (2006): new analysis

Page 21: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 21LCTPC Collaboration Meeting – DESY – September 21, 2009

Resolution comparison: old method vs. “average (700ns)”

5T data (2006): new analysis5T data (2006): new analysis5T data (2006): new analysis5T data (2006): new analysis

• Old methodOld method: : 3652/17669 Flat Flat 50 50 µµm m resolution resolution independent of z over independent of z over 15 cm 15 cm

• New methodNew method: : 5663/17669 Flat Flat 40 µm 40 µm resolutionresolution independent of zindependent of z

Page 22: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

[email protected] 22LCTPC Collaboration Meeting – DESY – September 21, 2009

Future planFuture planFuture planFuture plan

In 2008/2009 with one detector module In 2010 with 7 detector modules.

Reduce

th

e e

lect

ronic

sR

esi

stiv

e t

ech

nolo

gy c

hoic

e

FEM

FECs

Page 23: D. Attié , P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S. Turnbull

ConclusionsConclusionsConclusionsConclusions

•Two Micromegas with resistive anode have been tested within the EUDET facility using 1T magnet to reduce the transverse diffusion

•C-loaded Kapton technology gives better result than resistive ink technology

•First analysis results confirm excellent resolution at small distance with theresistive C-loaded Kapton: 55 µm for 3 mm pads

•New method (fixed windows integration) analysis very promising

•Plans are to test another resistive Kapton with lower resistivity (~1 MΩ/), then go to 7 modules with integrated electronics in 2010

[email protected] LCTPC Collaboration Meeting – DESY – September 21, 2009 23