d1 5 6. sinapsa, hemijska neurotransmisija 2h

78
SINAPSE

Upload: sinisa-ristic

Post on 05-Jul-2015

1.153 views

Category:

Technology


3 download

TRANSCRIPT

Page 1: D1 5 6. sinapsa, hemijska neurotransmisija 2h

SINAPSE

Page 2: D1 5 6. sinapsa, hemijska neurotransmisija 2h

• Drecun – Osnovi fiziologije

Page 3: D1 5 6. sinapsa, hemijska neurotransmisija 2h

• Gradja hemijske sinapse

• Procesi u presinaptickom kompleksu

• Procesi u sinaptickoj pukotini

• Procesi u postsinaptickom kompleksu

• Generisanje akcionog potencijala u postsinaptickom neuronu

• Presinapticka inhibicija

• Facilitacija neurona

• Neurotransmiteri

• Neuropeptidi

• Aksoplazmatski transport

• Jonotropni I metabolotropni efekti sinapticke transmisije

• Serotonin

• Dopamin

• Noradrenalin

• Acetilholin

• Gaba

• Glicin

• Ekscicitotoksicnost neurona

• Kola reverberacije• Kola divergencije

• Kola konvergencije

• Dugotrajna potencijacija i depresija sinaticke transmisije

• Retrogradna sinapticka transmisija

• Neurotroficni faktori

Page 4: D1 5 6. sinapsa, hemijska neurotransmisija 2h

NERVNO-MIŠIĆNA SINAPSA

Sinapsa je mesto funkcionalnog kontakta i komunikacije između bilo koje dve nadražljive ćelije

Nervno-mišićna sinapsa ili motorna sinapsa-sinapsa između vlakna motorne nervne ćelije i mišićne ćelije

hemijske sinapse -poruke se prenose posredstvom hemijskih agenasa - neurotransmitera

Page 5: D1 5 6. sinapsa, hemijska neurotransmisija 2h
Page 6: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Električne sinapse -AP se prenosi direktno sa jedne ćelije na drugu

Nervni-mišićna sinapsa je sinapsa koja se formira između završnog dugmića motorne nervne ćelije i mišićne ćelije

Motorna nervna ćelija je presinaptička ćelija, a mišićna ćelija je postsinaptička ćelija

Page 7: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Membrane presinaptičke i postsinaptičke ćelije nisu u direktnom kontaktu-razdvojene su sinaptičkom pukotinom ( vanćelijskim prostorom od nekoliko desetina nm)

U završnim dugmićima MNĆ nalazi se veliki broj sinaptičkih vezikula od kojih svaka sadrži nekoliko hiljada molekula neurotransmitera-actilholina (Ach)-hemijskog glasnika, prenosioca poruke

Page 8: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Postsinaptička membrana sadrži specifične proteine receptore za Ach -jonski kanali prohodni pretežno za jone Na koji ulaze u ćeliju

Kada AP stigne do završnih dugmića motorne nervne ćelije promena potencijala presinaptičke membrane uslovljava prolazno povećanje unutarćelijske koncentracije jona Ca2+

Page 9: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Povećanje koncentracije Ca2+ u citoplazmi završnog dugmića izaziva pomeranje sinaptičkih vezikula prema presinaptičkoj membrani, njihovo spajanje sa njom i oslobađanje Ach iz vezikula u sinaptičku pukotinu procesom egzocitoze

Ach putuje kroz sinaptičku pukotinu i vezuje se za receptore na postsinaptičkoj membrani što dovodi do ulaska jona Na i depolarizaciju membrane mišićne ćelije- potencijal motorne ploče

Page 10: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Potencijal motorne ploče izaziva otvarnje voltažno-zavisnih kanala za Na i nastaje AP

Page 11: D1 5 6. sinapsa, hemijska neurotransmisija 2h

CENTRALANA SINAPSA

Page 12: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Centralne sinapse - sinapse koje se uspostavljaju između NĆ u CNS-uVećina NĆ gradi sinapse sa ogromnim brojem, najčešće nekoliko stotina, drugih NĆ

Prenos signala sa jedne NĆ na drugu u CNS-u je posredovan različitim transmiterima od kojih svaki prepoznaje svoj specifični receptorEfekat delovanja neurotransmitera u centralnoj sinapsi zavisi od same prirode neurotransmitera, kao i od receptora za koji se vezuje

Page 13: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Sinaptičke veze između NĆ su hemijske sinapse i najčešće se uspostavljaju između nervnog vlakna presinaptičke NĆ i dendrita postsinaptičke NĆ-AKSODENDRITSKE SINAPSEPresinaptička membrana – membrana terminalnih dugmića i postsinaptička membrana- dendritska membrana su razdvojene sinaptičkom pukotinom Na postsinaptičkoj membrani su receptori za neurotransmiter

Page 14: D1 5 6. sinapsa, hemijska neurotransmisija 2h
Page 15: D1 5 6. sinapsa, hemijska neurotransmisija 2h
Page 16: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Različite NĆ sadrže različite neurotransmitere

Neurotransmiteri se prema hemijskoj strukturi mogu svstati u četiri kategorije: amino-kiseline, amini, peptidi i purinski nukleotidi

Vezivanje neurotransmitera za receptor uslovljava promenu oblika receptorskog proteina i on postaje funkcionalan

Page 17: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Efekat neurotransmitera je ekscitatoran kada nakon vezivanja neurotransmitera dođe do promene oblika receptorskog proteina , što dovodi do otvaranja jonskih kanala koji su pod kontrolom ovog receptora i propuštanja jona Na pri čemu dolazi do depolarizacije postsinaptičke membrane- ekscitatorni postsianptički potencijal (EPSP)

Page 18: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Efekat neurotransmitera je inhibitoran kada bezivanje neurotransmitera za receptor na

postsinaptičkoj memebrani uslovljava otvaranje jona za K ili Cl, jer tada dolazi do hiperpolarizacije postsinaptičke membrane -inhibitorni postsinaptički potencijal (IPSP)

Page 19: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Pojedinačni EPSP nema dovoljnu amplitudu da izazove AP, ali kako NĆ uspostavljaju sinapse sa velikim brojem drugih NĆ istovremena aktivnost većeg broja presinaptičkih NĆ može dovesti do sabiranja sinaptičkih potencijala i nastanka AP Ovaj tip sabirajućeg uticaja većeg broja presinaptičkih neurona naziva se PROSTORNO SABIRANJE Ukoliko se višestruka sinaptička transmisija dešava sa jedne na drugu NĆ na drugu NĆ takođe dolazi do sabiranja –VREMENSKOG SABIRANJA

Page 20: D1 5 6. sinapsa, hemijska neurotransmisija 2h

SYNAPTIC TRANSMISSION I Tim Murphy NRSC 500, 2009

 

The definition of synaptic transmission is simply the communication between two nerve cells.  Communication believed to involve specialized structures termed "synapses".

 

We will focus on:

1) The discovery of synaptic transmission

2) The form of transmission, i.e. chemical or electrical

3) Criteria for a chemical transmitter

4) Ionic requirement for release

5) Quantal aspects of release:  vesicle theory

Page 21: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Discovery of synaptic transmission

• Cajal's golgi staining methods suggested the presence of contacts between cells that were used for communication

• Sherrington proposed the term "synapse" meaning to clasp to describe the structure.

Page 22: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Shepherd 1997 TINS

Cajal’s drawings      Sherrington’s insights 1890s.of golgi stain.   

Page 23: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Modern golgi staining, YFP mouse cortical fluorescence, can be bred to other KO’s, transgenics.  

Page 24: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 25: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Otto Loewi, chemical transmitter.

• 1936 Nobel prize for Medicine

• Showed that vagus nerve stimulation liberates a diffusible transmitter.

• Perfusate from one stimulated Frog Heart could be transferred to another and have an effect on beat frequency.

Page 26: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Debate on synaptic transmission - chemical or electrical.

• Otto Loewi showed that acetylcholine could mimic the effect of vagal nerve stimulation.

• What additional experiment would have been nice to prove that the vagal nerve released acetylcholine.

• The results of Loewi's experiments sparked debate about whether chemical and electrical transmission was occurring.

• Subsequently shown that both chemical and electrical transmission exist.

Page 27: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 28: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Chemical Electrical

Page 29: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 30: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Electrical Synapses

• Gap junction-type communication important for rapidly synchronizing syncytia of cells as is observed in astrocytes, heart, and developing brains. Present in invertebrates to promote rapid defensive secretions.

• Problems with electrical: difficult to modulate gating of channels (exceptions exist cAMP, pH).

• Can't change sign, i.e. charge always flows "down hill."• Electrical synaptic transmission requires that the

presynaptic cell or terminal be larger than the postsynaptic cell for it to inject considerable charge, no real amplification mechanism.

Page 31: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Electrical synaptic transmission.

Fundamental Neuro.

Page 32: D1 5 6. sinapsa, hemijska neurotransmisija 2h
Page 33: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Saint-Amant and Drapeau Neuron 2001

Chemical transmission inhibitors do not block transmission in developing Zebrafish.

Page 34: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Saint-Amant and DrapeauNeuron 2001

Gap junction inhibitors block transmission in developing Zebrafish.

Page 35: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Chemical transmission.

• Contrary to electrical transmission multiple steps are required to release transmitter chemicals and for them to act on postsynaptic receptors, resulting in a time delay (can be as short as 0.1 msec).

• Directional, select localization of release machinery to presynaptic terminals and receptors to postsynaptic specializations.

• Can change sign by release of inhibitory transmitter.

• Highly modulatable as it has many steps presynaptic terminal and at the postsynaptic sites.

Page 36: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Chemical Synaptic Transmission.

• Definition: Communication between cells which involves the rapid release and diffusion of a substance to another cell where it binds to a receptor (at a localized site) resulting in a change in the postsynaptic cells properties.

Page 37: D1 5 6. sinapsa, hemijska neurotransmisija 2h

A hall mark of chemicaltransmission is a delaybetween presynaptic Ca2+ elevation and secretion.  The delay can be as short as 0.1 ms, but is usually longer due to a variety of factors.

Fundamental Neuro. 2002

Page 38: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Steps to chemical synaptic transmission.

• First need to bring the presynaptic neuron to threshold at axon hillock.

• Conduction down axon, length, R*C dependent.

• Opening of voltage gated Ca channels.• Diffusion and action of Ca at release

machinery.• Exocytosis and diffusion of transmitter in cleft.• Activation of postsynaptic receptors.

Page 39: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Synaptic delays can be less than 0.2 ms from calciumentry (Fund. Neurosci. Chap 8) to the beginning of secretion,but are typically longer when all steps are considered.

From Sudhof 2004

Page 40: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Chemical synapse types.

• Axosomatic, axoaxonic, axodendritic, and dendrodendritic.

• Excitatory (type I) and inhibitory (type II) synapses have different structure in CNS neurons.

• CNS synapses usually release one or small number of release sites while nerve muscle synapses have up to 300 active zones.

See http://synapses.mcg.edu/atlas

Page 41: D1 5 6. sinapsa, hemijska neurotransmisija 2h

See http://synapses.mcg.edu/atlasJosef Spacek

Type I Excitatory Type II Inhibitory

Page 42: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 43: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Synapse structure like real estate location, location, location!!

From Squire et al. Fund. Neurosci 2nd ed.

Multiple release sites NMJ

Page 44: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Criteria for a chemical transmitter, make a case for glutamate.

• The transmitter substance must be synthesized in the presynaptic neuron. Experiment?

• It must be present in the presynaptic terminal and released in amounts sufficient to result in the level of response produced by the endogenous transmitter. experiment?

• When applied exogenously the substance should mimic the effect of the endogenous transmitter. experiment?

• A specific mechanism must exist for removing the transmitter from the synaptic cleft. experiment?

Page 45: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Ionic requirement for release.

• Calcium influx is the trigger for fast evoked transmitter release

• An elevation in intracellular calcium concentration is an absolute requirement for transmitter release. Na+ and K+ ions not necessary for release.

• How do you test this hypothesis?

Page 46: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Ion substitution and pharmacology experiments.

• The influx of calcium is triggered by voltage gated ion channels.

• Depolarization itself is not needed to stimulate release, as calcium can be elevated by other means (caged calcium chelators).

• The relationship between calcium influx and release is related to the "power (exponent)" of calcium entry and is highly nonlinear. For example for a 4th power relationship a doubling of calcium entry can produce a 16 fold increase in release.

Page 47: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Slope on a log-log plot indicates power relation, a small change in calcium produces a large change in release.

Slope=5.0

Slope=1.6

Release~[Ca]^3-5

from Delaney Enc. of Sci.

Page 48: D1 5 6. sinapsa, hemijska neurotransmisija 2h

G. AugustineCurr. Op. in Neurobiol.

Neurotransmitter release is triggered by a locally-activated low affinity sensor since bulk cytosolic [Ca] rarely exceeds 10-6 M,yet transmitter release requires much higher [Ca].

Page 49: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Squid giant axon and release• Due to its large size the squid giant axon has been

used to examine the calcium dependence of transmitter release.

• Squid studies using different Ca2+ buffers indicate high concentrations of Ca2+ that are reached for less than 1 ms trigger release.

• Most calcium entry which triggers release occurs during the falling phase of action potential. Why is this advantageous?

Page 50: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Rate of calcium binding by buffer (chelator) provides insight into

release machinery.

• Fast BAPTA (kon 8x108 M -1 *sec -1) buffers block release whereas,

• slow EGTA (kon 1x107 M-1*sec -1) buffers do not (Adler et al. 1991 J. Neurosci.).

• Time for equilibration of EGTA with calcium~1000 µs versus 12.5 µs for BAPTA.

• To estimate the buffer equilibration time take 1/(koff +kon*[Ca]), use koff of 8x101 sec –1 for both buffers and 1x10-4 for [Ca] at peak.

Page 51: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Temporal requirements.

• Calcium trigger must be able to act within 0.1 ms of presynaptic stimulation. This requirement restricts the class of chemical events that may be involved in evoked release.

• Phosphorylation, protein synthesis, gene expression all out.

• Everything must be ready and localized- diffusion could not move transmitter vesicles or calcium very far.

Page 52: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Reviewed in EF Stanley TINS 1997

Calcium channels are clustered on the release face of the chick caylx synapse. 

Outside of synapse

Release face of synapse

Patch config.

Page 53: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Diffusion time of Ca2+ limits release latency.

• Buffered calcium diffusion coeff. are on the order of 200 µm2/sec (D) so calcium could only diffuse a small distance at the most (~0.2 µm) during the synaptic delay (0.0001 s, 0.1 ms), so Ca2+ channels need to be very close to the release machinery.

• distance=Sqrt(2Dt) D=diffusion coeff., t=time

Page 54: D1 5 6. sinapsa, hemijska neurotransmisija 2h

The diffusion time is dependent on the square of the distance (d).

• t=d2/(2*D), where t=time, d=distance, and D=diffusion coefficient.

• For 0.1 µm the time is 0.025 ms.• However for 1.0 µm the time jumps by the

square to 2.5 ms (100 times longer!), way longer than the release

latency.

These equations are for reference.

Page 55: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Calcium as a local messenger.

• Fast channel activation, diffuses to couple excitation to synaptic chemistry.

• Low affinity, rapid off rate, and restricted microdomains are characteristics of the calcium flux that evokes release.

• Rapid off rate allows for re-loading of release mechanism. Affinity=kon/koff

• high off rate = low affinity.

Page 56: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Kd or Km, concentration at ½ max binding or activity.

Kd=Km=kdissoc/kassocaffinity=1/km, low affinity means a big km which usuallymeans a large kdissoc

Note koff=kdissoc and kon=kassoc

Page 57: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Low affinity binding gives rapid off rate.

• Concentration for ½ max activity is ~1/affinity and is termed the Kd or Km, if a binding site has a low affinity more ligand is needed to get ½ saturation.

• Therefore Kd=koff/kon, assuming a diffusion limited kon of 5x108 M –1 s –1 then koff must be 5x104 s-1 if the Kd is 100 µM.

• To estimate the dissociation time constant take 1/(koff +kon*[Ca]) or 20 µs.

Note after the channels close [Ca] is ~ 1x10-7 and the kon*[Ca] is small compared to koff.

These equations are for reference.

Page 58: D1 5 6. sinapsa, hemijska neurotransmisija 2h

For a simple reaction.

[ES][E]+[S]kon*[S]

koffThe time constant will be: 

τ=1/(koff+kon*[S])20 µs=1/(5x104 s-1 + 5x108 M –1 s –1 *1x10-7 M)

  

For reference

Page 59: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Local domains of Ca2+

near channel mouths control transmitter release.

EF Stanley TINS 1997

It is unclearwhether release is alwaystriggered by a singlechannel or whethermultiple ones cooperate.

Page 60: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Transmitter release microdomains.

1.8 mM

Activationof Ca channels

Resting statejust after channelclosure, bulk Cais up only 10%.

Page 61: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Atwood & Shanker Karunanithi DIVERSIFICATION OF SYNAPTIC STRENGTH: PRESYNAPTIC ELEMENTS Nature Reviews Neuroscience 3, 497 -516 (2002).

To make full use of microdomains the vesicle must be bound to the calcium channels.

Page 62: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Atwood & Shanker Karunanithi DIVERSIFICATION OF SYNAPTIC STRENGTH: PRESYNAPTIC ELEMENTS Nature Reviews Neuroscience 3, 497 -516 (2002).

B

BAPTA, a faster buffer than EGTAmore readily blocks synaptic transmission.Given 100 µM Ca2+, BAPTA equilibrates in <20 µs whileEGTA takes ~1000 µs.

Page 63: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Calcium as a local messenger.

• Fast channel activation, diffuses to couple excitation to synaptic chemistry.

• Low affinity, rapid off rate, and restricted microdomains are characteristics of the calcium flux that evokes release.

• Rapid off rate allows for re-loading of release mechanism. Affinity=kon/koff, high off rate = low affinity.

Page 64: D1 5 6. sinapsa, hemijska neurotransmisija 2h
Page 65: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Quantal aspects of release at the neuromuscular junction.

• At the neuromuscular junction small spontaneous potentials (depolarizations) termed miniature end plate potentials are observed.

• The amplitude of evoked responses (due to calcium influx) is always an integer multiple of the unitary response.

• Shown that calcium increases the probability of observing a unitary response and not its amplitude.

• These data suggested the existence of transmitter quanta or packets.

• Evoked transmission mediated by the release of ~ 150 quanta over a 1-3 ms period. Each quantum leads to about 0.5 mV depolarization.

Page 66: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 67: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 68: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Page 69: D1 5 6. sinapsa, hemijska neurotransmisija 2h

1X

4X

2X

Stimulation

1 mV

1X

2X

3X

4X

mini Mini histogram.

Evoked amplitudes.

Squire Fund. Neurosci. 2002

Page 70: D1 5 6. sinapsa, hemijska neurotransmisija 2h
Page 71: D1 5 6. sinapsa, hemijska neurotransmisija 2h

CNS synapses and quanta.

• At synapses with only a single release site, changing the probability of release (changing calcium concentration) does not effect the amplitude of the response (as only zero or one vesicle is released).

• At synapses with multiple release sites, changing probability can change the response amplitude as more transmitter is released.

• At the NMJ a single nerve can elicit a postsynaptic AP given multiquantal release, while at the CNS multiple synapses must cooperate, forces a network.

Page 72: D1 5 6. sinapsa, hemijska neurotransmisija 2h

From Kristin Harris Lectures.http://synapses.mcg.edu/lab/harris/lectures.htm

Define the number of readily releasable vesicles a synapse has available.  A consequence of having of limitednumber is depletion at high stimulus frequency.

Page 73: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Many vesiclesIn the RRP.

Few vesiclesin the RRP, undergoes depression.

Fundamental Neuro. 2002

Remember depressionover short timescalescan be caused by other mechanisms including desensitization and autoreceptors.

Page 74: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Residual Cacan facilitatetransmission if not all quanta are released on the first stimulus. Iftransmission isrobust on the first stimulus most readily releasable vesicles will be gone and depression results.

Squire Fundamental Neurosci. 2002

Short term plasticity, history dependent changes in responsiveness.

Stim.

Page 75: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Time 

Voltage

Response types at single CNS synapses with different #s of release sites.

failure

1 vesicle2 ves.

1 ves.fail

Page 76: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Response of CNS synapsecan reflect sum behavior of individual synapsesthat may act in an all ornone manner.

electrode

Page 77: D1 5 6. sinapsa, hemijska neurotransmisija 2h

electrode

When multiple synapses (or release sites) are involved facilitationcan reflect an increase in release probability (all or none secretion) at single synapses.

Trial 1                                                           Trial 2, 25 ms later

Page 78: D1 5 6. sinapsa, hemijska neurotransmisija 2h

Readings• Neuroscience 4th Ed. Purves Chapters 4-6 optional• Fundamental Neuroscience 1st Ed. Chapters 7 and 8 (for

Neurochem also), 2nd Ed. Chapters 7 and 8, 3rd Ed. Chapters 7,8.

• Delaney, Kerry R (March 2000 ) Calcium and Neurotransmitter Release. In: Encyclopedia of Life Sciences, London: Nature Publishing Group, http://www.els.net/doi:10.1038/npg.els.0000027

• Harold L. Atwood & Shanker Karunanithi Diversification of synaptic strength: presynaptic elements. Nature Reviews Neuroscience 3, 497 -516 (2002). Advanced review comprehensive.

• For great EM pictures of synapse see Josef Spacek’s site http://synapses.mcg.edu/atlas