data management report€¦ · waves. this models an oscillating water column (owc) caisson – a...

13
1 Data Storage Report Scaling Effects in Wave Loading and Performance of a Breakwater-Integrated Oscillating Water Column Wave Energy Converter (“GWK OWCs”) Grosser Wellenkanal (GWK) Forschungszentrum Küste (FZK) Authors: Dr Tom Bruce, University of Edinburgh Prof William Allsop & John Alderson, HR Wallingford

Upload: others

Post on 13-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

1

Data Storage Report

Scaling Effects in Wave Loading and Performance of a Breakwater-Integrated Oscillating Water Column Wave

Energy Converter (“GWK OWCs”)

Grosser Wellenkanal (GWK) Forschungszentrum Küste (FZK)

Authors: Dr Tom Bruce, University of Edinburgh Prof William Allsop & John Alderson, HR Wallingford

Page 2: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

2

Status form

Document information

Project acronym GWK OWCs

Provider Forschungszentrum Küste

Facility Grosser Wellenkanal (GWK)

Title Scaling Effects in Wave Loading and Performance of a Breakwater-Integrated Oscillating Water Column Wave Energy Converter

1st

user group contact (name/email) Dr Tom Bruce, [email protected]

2nd

user group contact (name/email) Prof William Allsop, [email protected]

1st

provider contact (name/email) Stefan Schimmels, [email protected]

2nd

provider contact (name/email) Matthias Kudella, [email protected]

Start date experiment (dd-mm-yyyy) 17-02-2014

End date experiment (dd-mm-yyyy) 11-04-2014

Document history

Date Status Author Reviewer Approver

05-03-2014 Draft Tom Bruce Matthias Kudella Jens Kirkegaard

07-05-2014 Final Tom Bruce Matthias Kudella Jens Kirkegaard

Document objective This document describes the experimental program and how tests should be performed. The data storage plan may be adapted during testing. When all data has been obtained, the data storage plan should be updated to the data storage report. In the data storage report, the data is described so that others may use them.

Acknowledgement

The work described in this publication was supported by the European Community’s Seventh Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV, Contract no. 261520.

Disclaimer

This document reflects only the authors’ views and not those of the European Community. This work may rely on data from sources external to the HYDRALAB IV project Consortium. Members of the Consortium do not accept liability for loss or damage suffered by any third party as a result of errors or inaccuracies in such data. The information in this document is provided “as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and neither the European Community nor any member of the HYDRALAB IV Consortium is liable for any use that may be made of the information.

Page 3: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

3

Contents

1 Objectives .......................................................................................................................... 4

2 Experimental setup ............................................................................................................ 4 2.1 General description ................................................................................................... 4 2.2 Definition of the coordinate system ........................................................................... 5 2.3 Relevant fixed parameters ........................................................................................ 5

3 Instrumentation and data acquisition ................................................................................. 6 3.1 Instruments ............................................................................................................... 6 3.2 Definition of time origin and instrument synchronization .......................................... 8 3.3 Measured parameters ............................................................................................... 8

4 Experimental procedure and test programme ................................................................... 9

5 Data post-processing ......................................................................................................... 9

6 Organisation of data files ................................................................................................... 9

7 Remarks ............................................................................................................................. 9

A Test diary .................................................................................................................................. 9

B Drawing of the experiment ........................................................................................................ 9

Page 4: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

4

1 Objectives

The aim of the project is to explore the scaling issues involved in the physical modeling of wave energy converters (WECs) based upon the Oscillating Water Column (OWC). In pursuit of this overall aim, the project has the following specific objectives: 1. To deliver detailed, quantitative advice on the scaling of key hydraulic loads on the shoreline-mounted, simple OWC WEC. Specifically: wave loadings on the front face of the caisson, in-chamber loads on the rear wall, on the ceiling, through possible runup and slam. 2. To deliver detailed, quantitative advice on the scaling of the air spring and its relation to power take off and performance. 3. To deliver generic, quantitative advice on the scaling of overall plant performance, rooted in a physically rational framework. To meet these objectives, the following are the key elements of the physical model test design: 1. Waves: both regular and irregular waves will be used. Focussed wave groups may be used to create impact loadings. 2. Loadings will be inferred via multiple pressure transducer measurements, on front face; on rear wall of chamber (facing in); on chamber ceiling (facing down/in). 3. Power take-off will be via an orifice in chamber roof (as per most physical model studies). Flow rate in orifice will be inferred from three measurements; by: (i) orifice meter; (ii) propeller meter; and (iii) indirectly from movement of water surface in chamber. In addition, matching CFD and small-scale physical model studies are being performed at HR Wallingford and University of Edinburgh respectively.

2 Experimental setup

2.1 General description

The structure (Figure 2.1) is a hollow caisson, with a submerged opening facing the incoming waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons mounted in line across the width of the flume. Although only the central caisson is instrumented, the outer caissons are otherwise identical, including the same aperture in chamber ceiling. The structure is located at x = 97.47m; z = 1.92m. This location refers to the position of the front (up-wave_ end of the floor of the caisson. The use of the stop log as a pseudo-front face to the caisson means that the face meeting the waves is at approximately x = 97.17m.

Page 5: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

5

Figure 2.1: Cross section of OWC model, showing location in flume. Dimensions in m.

As shown in Figure 2.1, the structure sits on top of a short, smooth, uniform 1:10 gradient foreshore. The front face of the caisson is actually formed using the flume’s “stop log”. This is because impact pressures are anticipated, and the (re-used) caisson structures’ wall thicknesses were only marginal in having sufficient strength.

2.2 Definition of the coordinate system

The origin is positioned at the wave board, on the front side of the flume, at the bottom. The horizontal x-axis is positive in the direction of wave propagation towards the structure. The horizontal y-axis is positive along the wave board towards the back side of the flume. The vertical z-axis is positive upwards.

2.3 Relevant fixed parameters

A still water depth (above flume floor) of 3.5m was used for the majority of the testing, with a small number of tests being carried out with a reduced water level of 3.2 to explore this as an influence factor. The structure’s location is not changed throughout the tests. The curtain wall submergence depth, a, is maintained for the majority of the tests, with a lowered curtain wall being explored in a few tests as an influence factor.

Page 6: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

6

3 Instrumentation and data acquisition

3.1 Instruments

Wave measurement For measurement of offshore wave conditions: a four wave gauge array was placed approximately midway between paddle and structure, in full depth water. The locations are shown in Table 3.1. The Mansard & Funke method were used for separation of incident and reflected wave components. Additionally, four further gauges were set out immediately in front of structure, at c.1m spacing, to enable detailed comparisons with small-scale tests and CFD. Again, locations are given in Table 3.1. Calibration of gauges done at outset of testing, and again at the end. Gauge calibrations were found to be extremely stable as expected. The wave gauges were sampled at 100 Hz. Table 3.1: Wave gauge locations

reference x position (m) full name

wave01 50.0 offshore wave gauge – front

wave02 51.9 offshore wave gauge – front-middle

wave03 55.2 offshore wave gauge – rear middle

wave04 60.0 offshore wave gauge – rear

wave05 93.14 inshore wave gauge – front

wave06 94.14 inshore wave gauge – front-middle

wave07 95.14 inshore wave gauge – rear middle

wave08 96.14 inshore wave gauge – rear

Structure loading measurement Loadings on the structure are inferred from discrete measurements of local pressure. These were made using 12 pressure transducers at the locations listed in Table 3.2, and shown (approximately) on the sketch (Figure 3.1). Transducers will be sampled at 1 kHz. Table 3.2: Pressure transducer locations

reference x position (m) z position (m) facing full name

pt01 97.17 3.09 out to waves front face pressure – bottom

pt02 97.17 3.37 out to waves front face pressure – lower-mid

pt03 97.17 3.84 out to waves front face pressure – mid

pt04 97.17 4.34 out to waves front face pressure – upper-mid

pt05 97.17 4.69 out to waves front face pressure – top

pt06 97.67 4.22 into chamber chamber ceiling pressure – front

pt07 99.92 4.22 into chamber chamber ceiling pressure – rear

pt08 100.02 4.05 into chamber rear wall pressure – top

pt09 100.02 3.57 into chamber rear wall pressure – upper-mid

pt10 100.02 3.07 into chamber rear wall pressure – mid

pt11 100.02 2.57 into chamber rear wall pressure – lower-mid

pt12 100.02 2.07 into chamber rear wall pressure – bottom

pt13 98.32 5.02 Into chamber chamber air pressure

For the lowered curtain wall the z positions of pt01-05 must be reduced by 0.3m.

Page 7: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

7

Figure 3.1: Cross section of OWC model, showing (qualitatively) the locations of pressure transducers.

Air flow measurement / estimation The aperture in the chamber ceilings act as pseudo-PTOs, via energy loss due to orifice flow. Totally robust measurement of this air low rate is not feasible using a single instrument. Instead, three alternative “views” were taken. this will enable results to be compared critically to arrive at best estimates. Early comparisons were made during testing and showed reassuring agreement. The approaches were air_flow_01_gauges: infer air flow rate from rate of change of volume of air in chamber atop water column. This requires measurement of the water surface elevation in chamber. As it is not expected to be flat, this will be done by five (“wave”) gauges located in an “X” pattern within the chamber. Locations are given in Table 3.3. air_flow_02_orifice: infer air flow rate from pressure drop measured across an orifice meter located within exit pipe (or “chimney”). The tube has diameter 0.5m. Within the tube, orifice plates with openings of: 0.05m; 0.1m; 0.2m and 0.3m will be installable. The pressure drop will be measured by differential pressure transducer “pt14”. air_flow_03_prop_meter: infer air flow rate from direct measurement using propeller meter. The meter is located at the centre of the upper “chimney” pipe, 0.75m above the orifice opening.

Page 8: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

8

Table 3.3: Instrumentation associated with air flow rate estimation

reference x position (m) y position (m) name

elev01 97.77 1.97 chamber elev – front right

elev02 97.77 3.03 chamber elev – front left

elev03 98.75 2.5 chamber elev – centre

elev04 99.82 1.97 chamber elev – rear right

elev05 99.82 3.03 chamber elev – rear left

pt14 98.82 orifice diff pressure

prop01 at orifice centre at orifice centre propeller meter

Video recording Two video cameras were deployed: 1. External camera. This camera will look across and slightly into the waves at the front of the structure, in order to record the qualitative nature of wave interaction with the structure. This camera is synchronized with the data acquisition system. 2. In-chamber camera. This waterproof camera was mounted within the chamber of the OWC. It looked approximately diagonally across the chamber, from front corner to opposite rear corner. It will offer qualitative information on the nature of the water surface within the chamber, and on the form of the in-chamber water run-up and possible chamber ceiling interaction. Additionally, “rulers” were painted roughly on side and rear walls of the chamber to enable approximate quantification of water elevation. This camera was not directly synchronized with the data acquisition, although a consistent “time stamp” is available.

3.2 Definition of time origin and instrument synchronization

The established GWK procedure will be followed. The data acquisition system will be started before the paddle, and checked. If there are no errors, the acquisition continues to run, and the wave board is started. All data acquisition is synchronized, with the exception of the in-chamber video recording.

3.3 Measured parameters

The measured parameters are those described in Section 3.1. From these, further parameters are derived:

incident wave height (H or Hm0, for regular and irregular seas respectively) o offshore and in front of structure

incident wave period (T or Tm-1,0, Tp etc)

horizontal wave force (F or Fmax, F1/250, F1/100 etc)

instantaneous air flow rate out of chamber

instantaneous power converted by OWC

OWC efficiency / performance

Page 9: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

9

4 Experimental procedure and test programme

A diary was made of all tests. The data acquisition system is started and then the wave board is started. Data logging was stopped after the test has passed. The test programme consisted of the tests shown in Table 4.1. In summary, the test phases focus on: (i) the performance of the OWC WEC under a range of PTO conditions (i.e. range of orifice diameters); (ii) a short exploration of the repeatability / inherent variability of the tests and measured parameters; (iii) The influence of moving from regular to irregular waves; (iv) the influence of the water level; and (v) the influence of the curtain wall submergence depth. The ordering of the tests did not match these test phases exactly due to optimisation of testing time by best sequencing (e.g. to minimise changes of orifice setting; to maintain wave paddle “health”) Table 4.1: (appended) Test programme as carried out.

5 Data post-processing

No formal post-processing of data was performed during the access period.

6 Organisation of data files

The data files are organized exactly according to the advice and standard procedures of GWK. In particular:

the directory structure is exactly the GWK preferred one, and

the test- and file-naming convention is exactly as per GWK practice, viz YYYYMMDDTT, where “YYYY” is year; “MM” is month; “DD” is date within month, and “TT” is a two-digit test number for that day’s testing, sequence starting at “01”.

7 Remarks

There are no remarks to add at this stage.

A Test diary Attached

B Drawing of the experimental setup Attached

Page 10: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

Table 4.1 GWK OWCs test matrix version 26 (as carried out)

Water depth orifice Test dateTest reference Wave condition T H Tp Hm0 h do Test Name test duration

(s) (m) (s) (m) (m) (m) (s)2014031201 Solitary 4.2 0.6 3.5 0.3 WC-Solitary_OD-0.3_WL-3.5 20 12/03/20142014031202 Reg1 3 0.26 3.5 0.3 WC-Reg1_OD-0.3_WL-3.5 80 12/03/20142014031203 Reg3 3 0.52 3.5 0.3 WC-Reg3_OD-0.3_WL-3.5 80 12/03/20142014031204 Reg5 3 0.78 3.5 0.3 WC-Reg5_OD-0.3_WL-3.5 80 12/03/20142014031205 Reg6 4 0.4 3.5 0.3 WC-Reg6_OD-0.3_WL-3.5 100 12/03/20142014031206 Reg8 4 0.8 3.5 0.3 WC-Reg8_OD-0.3_WL-3.5 100 12/03/20142014031301 Reg8 4 0.8 3.5 0.3 WC-Reg8_OD-0.3_WL-3.5_kHz10 100 13/03/2014

Swap pressure diff. to 20mBar2014031302 Reg 21 3 0.2 3.5 0.3 WC-Reg 21_OD-0.3_WL-3.5 80 13/03/20142014031303 Reg 22 3 0.15 3.5 0.3 WC-Reg 22_OD-0.3_WL-3.5 80 13/03/20142014031304 Reg 23 3 0.1 3.5 0.3 WC-Reg 23_OD-0.3_WL-3.5 80 13/03/20142014031305 Reg 24 4 0.2 3.5 0.3 WC-Reg 24_OD-0.3_WL-3.5 100 13/03/20142014031306 Reg 25 4 0.15 3.5 0.3 WC-Reg 25_OD-0.3_WL-3.5 100 13/03/20142014031307 Reg 26 4 0.1 3.5 0.3 WC-Reg 26_OD-0.3_WL-3.5 100 13/03/20142014031308 Reg 27 6 0.2 3.5 0.3 WC-Reg 27_OD-0.3_WL-3.5 140 13/03/20142014031309 Reg 28 6 0.15 3.5 0.3 WC-Reg 28_OD-0.3_WL-3.5 140 13/03/20142014031310 Reg 29 6 0.1 3.5 0.3 WC-Reg 29_OD-0.3_WL-3.5 140 13/03/2014

Moved impeller to mid point of upper tube section2014031311 Reg 21 3 0.2 3.5 0.3 WC-Reg 21_OD-0.3_WL-3.5_ImpUP 80 13/03/20142014031312 Reg 22 3 0.15 3.5 0.3 WC-Reg 22_OD-0.3_WL-3.5_ImpUP 80 13/03/20142014031313 Reg 23 3 0.1 3.5 0.3 WC-Reg 23_OD-0.3_WL-3.5_ImpUP 80 13/03/20142014031314 Reg 24 4 0.2 3.5 0.3 WC-Reg 24_OD-0.3_WL-3.5_ImpUP 100 13/03/20142014031315 Reg 25 4 0.15 3.5 0.3 WC-Reg 25_OD-0.3_WL-3.5_ImpUP 100 13/03/20142014031316 Reg 26 4 0.1 3.5 0.3 WC-Reg 26_OD-0.3_WL-3.5_ImpUP 100 13/03/20142014031317 Reg 27 6 0.2 3.5 0.3 WC-Reg 27_OD-0.3_WL-3.5_ImpUP 140 13/03/20142014031318 Reg 28 6 0.15 3.5 0.3 WC-Reg 28_OD-0.3_WL-3.5_ImpUP 140 13/03/20142014031319 Reg 29 6 0.1 3.5 0.3 WC-Reg 29_OD-0.3_WL-3.5_ImpUP 140 13/03/2014

Start of Main Tests2014031401 Reg1 3 0.26 3.5 0.3 WC-Reg1_OD-0.3_WL-3.5 80 14/03/20142014031402 Reg3 3 0.52 3.5 0.3 WC-Reg3_OD-0.3_WL-3.5 80 14/03/20142014031403 Reg5 3 0.78 3.5 0.3 WC-Reg5_OD-0.3_WL-3.5 80 14/03/20142014031404 Reg6 4 0.4 3.5 0.3 WC-Reg6_OD-0.3_WL-3.5 100 14/03/20142014031405 Reg8 4 0.8 3.5 0.3 WC-Reg8_OD-0.3_WL-3.5 100 14/03/20142014031406 Reg10 4 1.2 3.5 0.3 WC-Reg10_OD-0.3_WL-3.5 100 14/03/20142014031407 Reg11 5 0.54 3.5 0.3 WC-Reg11_OD-0.3_WL-3.5 120 14/03/20142014031408 Reg13 5 1.07 3.5 0.3 WC-Reg13_OD-0.3_WL-3.5 120 14/03/20142014031409 Reg16 6 0.67 3.5 0.3 WC-Reg16_OD-0.3_WL-3.5 140 14/03/20142014031410 Irr1 3 0.26 3.5 0.3 WC-Irr1_OD-0.3_WL-3.5 3000 14/03/20142014031701 Irr4 4 0.4 3.5 0.3 WC-Irr4_OD-0.3_WL-3.5 4000 17/03/20142014031702 Irr7 5 0.54 3.5 0.3 WC-Irr7_OD-0.3_WL-3.5 5000 17/03/20142014031703 Irr10 6 0.67 3.5 0.3 WC-Irr10_OD-0.3_WL-3.5 6000 17/03/20142014031704 Reg20 6 0.34 3.5 0.3 WC-Reg20_OD-0.3_WL-3.5 140 17/03/20142014031705 Reg13 5 1.07 3.5 0.3 WC-Reg13_OD-0.3_WL-3.5 120 17/03/20142014031706 Reg18 6 1.33 3.5 0.3 WC-Reg18_OD-0.3_WL-3.5 140 17/03/20142014031707 Reg15 5 1.61 3.5 0.3 WC-Reg15_OD-0.3_WL-3.5 120 17/03/2014

Change orifice plate to 0.05m and re-install ImpellerCheck differential pressure output to see if the structure will be ok

2014031801 Reg 21 3 0.2 3.5 0.05 WC-Reg 21_OD-0.3_WL-3.5 80 18/03/20142014031802 Reg 23 3 0.1 3.5 0.05 WC-Reg 23_OD-0.3_WL-3.5 80 18/03/20142014031803 Reg 24 4 0.2 3.5 0.05 WC-Reg 24_OD-0.3_WL-3.5 100 18/03/20142014031804 Reg 26 4 0.1 3.5 0.05 WC-Reg 26_OD-0.3_WL-3.5 100 18/03/20142014031805 Reg 27 6 0.2 3.5 0.05 WC-Reg 27_OD-0.3_WL-3.5 140 18/03/20142014031806 Reg 29 6 0.1 3.5 0.05 WC-Reg 29_OD-0.3_WL-3.5 140 18/03/20142014031807 Reg1 3 0.26 3.5 0.05 WC-Reg1_OD-0.05_WL-3.5 80 18/03/20142014031808 Reg3 3 0.52 3.5 0.05 WC-Reg3_OD-0.05_WL-3.5 80 18/03/20142014031809 Reg5 3 0.78 3.5 0.05 WC-Reg5_OD-0.05_WL-3.5 80 18/03/20142014031810 Reg6 4 0.4 3.5 0.05 WC-Reg6_OD-0.05_WL-3.5 100 18/03/20142014031811 Reg8 5 0.54 3.5 0.05 WC-Reg8_OD-0.05_WL-3.5 120 18/03/20142014031812 Reg10 4 0.8 3.5 0.05 WC-Reg10_OD-0.05_WL-3.5 100 18/03/20142014031813 Reg11 6 0.67 3.5 0.05 WC-Reg11_OD-0.05_WL-3.5 140 18/03/20142014031901 Reg20 6 0.34 3.5 0.05 WC-Reg20_OD-0.05_WL-3.5 140 19/03/20142014031814 Irr1 3 0.26 3.5 0.05 WC-Irr1_OD-0.05_WL-3.5 3000 18/03/20142014031902 Irr4 4 0.4 3.5 0.05 WC-Irr4_OD-0.05_WL-3.5 4000 19/03/20142014031903 Irr7 5 0.54 3.5 0.05 WC-Irr7_OD-0.05_WL-3.5 5000 19/03/20142014031904 Reg2 3 0.39 3.5 0.05 WC-Reg2_OD-0.05_WL-3.5 80 19/03/20142014031905 Reg4 3 0.65 3.5 0.05 WC-Reg4_OD-0.05_WL-3.5 80 19/03/20142014031906 Reg7 4 0.6 3.5 0.05 WC-Reg7_OD-0.05_WL-3.5 100 19/03/20142014031907 Reg12 5 0.81 3.5 0.05 WC-Reg12_OD-0.05_WL-3.5 120 19/03/20142014031908 Reg12 5 0.81 3.5 0.05 WC-Reg12_OD-0.05_WL-3.5 120 19/03/2014

Change orifice plate to 0.1m2014031909 Reg1 3 0.26 3.5 0.1 WC-Reg1_OD-0.1_WL-3.5 80 19/03/20142014031910 Reg3 3 0.52 3.5 0.1 WC-Reg3_OD-0.1_WL-3.5 80 19/03/20142014031911 Reg5 3 0.78 3.5 0.1 WC-Reg5_OD-0.1_WL-3.5 80 19/03/20142014031912 Reg6 4 0.4 3.5 0.1 WC-Reg6_OD-0.1_WL-3.5 100 19/03/20142014031913 Reg8 4 0.8 3.5 0.1 WC-Reg8_OD-0.1_WL-3.5 100 19/03/20142014032004 Reg11 5 0.54 3.5 0.1 WC-Reg11_OD-0.1_WL-3.5 120 20/03/20142014032005 Reg12 5 0.81 3.5 0.1 WC-Reg12_OD-0.1_WL-3.5 120 20/03/20142014032006 Reg12 5 0.81 3.5 0.1 WC-Reg12 _OD-0.1_WL-3.5 120 20/03/20142014032007 Irr1 3 0.26 3.5 0.1 WC-Irr1_OD-0.1_WL-3.5 3000 20/03/20142014032008 Irr4 4 0.4 3.5 0.1 WC-Irr4_OD-0.1_WL-3.5 4000 20/03/20142014032009 Irr7 5 0.54 3.5 0.1 WC-Irr7_OD-0.1_WL-3.5 5000 20/03/20142014032010 Reg16 6 0.67 3.5 0.1 WC-Reg16_OD-0.1_WL-3.5 140 20/03/20142014032011 Reg20 6 0.34 3.5 0.1 WC-Reg20_OD-0.1_WL-3.5 140 20/03/2014

Reg wave condtions Jonswap conditions

Page 11: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

Table 4.1 GWK OWCs test matrix version 26 (as carried out)

Change orifice plate to 0.2m2014032012 Reg1 3 0.26 3.5 0.2 WC-Reg1_OD-0.2_WL-3.5 80 20/03/20142014032013 Reg3 3 0.52 3.5 0.2 WC-Reg3_OD-0.2_WL-3.5 80 20/03/20142014032014 Reg5 3 0.78 3.5 0.2 WC-Reg5_OD-0.2_WL-3.5 80 20/03/20142014032101 Reg6 4 0.4 3.5 0.2 WC-Reg6_OD-0.2_WL-3.5 100 21/03/20142014032102 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 21/03/20142014032103 Reg11 5 0.54 3.5 0.2 WC-Reg11_OD-0.2_WL-3.5 120 21/03/20142014032104 Reg13 5 1.07 3.5 0.2 WC-Reg13_OD-0.2_WL-3.5 120 21/03/20142014032105 Reg16 6 0.67 3.5 0.2 WC-Reg16_OD-0.2_WL-3.5 140 21/03/20142014032106 Reg20 6 0.34 3.5 0.2 WC-Reg20_OD-0.2_WL-3.5 140 21/03/20142014032107 Irr1 3 0.26 3.5 0.2 WC-Irr1_OD-0.2_WL-3.5 3000 21/03/20142014032108 Irr4 4 0.4 3.5 0.2 WC-Irr4_OD-0.2_WL-3.5 4000 21/03/20142014032109 Irr7 5 0.54 3.5 0.2 WC-Irr7_OD-0.2_WL-3.5 5000 21/03/20142014032401 Irr 13 4.5 0.26 3.5 0.2 WC-Irr 13_OD-0.2_WL-3.5 4500 24/03/20142014032402 Irr 14 6.5 0.4 3.5 0.2 WC-Irr 14_OD-0.2_WL-3.5 6500 24/03/2014

Change to closed orifice plate2014032403 Reg1 3 0.26 3.5 0 WC-Reg1_OD-0_WL-3.5 80 24/03/20142014032404 Irr1 3 0.26 3.5 0 WC-Irr1_OD-0_WL-3.5 3000 24/03/20142014032405 Reg3 3 0.52 3.5 0 WC-Reg3_OD-0_WL-3.5 80 24/03/20142014032406 Reg5 3 0.78 3.5 0 WC-Reg5_OD-0_WL-3.5 80 24/03/2014

Sealing air duct2014032601 Reg1 3 0.26 3.5 0 WC-Reg1_OD-0_WL-3.5 80 26/03/20142014032602 Reg5 3 0.78 3.5 0 WC-Reg5_OD-0_WL-3.5 80 26/03/20142014032603 Reg6 4 0.4 3.5 0 WC-Reg6_OD-0_WL-3.5 100 26/03/20142014032604 Reg8 4 0.8 3.5 0 WC-Reg8_OD-0_WL-3.5 100 26/03/20142014032605 Reg8 4 0.8 3.5 0 WC-Reg8_OD-0_WL-3.5 100 26/03/20142014032701 Reg1 3 0.26 3.5 0 WC-Reg1_OD-0_WL-3.5 80 27/03/20142014032702 Reg3 3 0.52 3.5 0 WC-Reg3_OD-0_WL-3.5 80 27/03/20142014032703 Reg5 3 0.78 3.5 0 WC-Reg5_OD-0_WL-3.5 80 27/03/20142014032704 Reg6 4 0.4 3.5 0 WC-Reg6_OD-0_WL-3.5 100 27/03/20142014032705 Reg11 5 0.54 3.5 0 WC-Reg11_OD-0_WL-3.5 120 27/03/20142014032706 Reg16 6 0.67 3.5 0 WC-Reg16_OD-0_WL-3.5 140 27/03/20142014032707 Reg20 6 0.34 3.5 0 WC-Reg20_OD-0_WL-3.5 140 27/03/20142014032708 Irr1 3 0.26 3.5 0 WC-Irr1_OD-0_WL-3.5 3000 27/03/20142014032709 Irr3 3 0.52 3.5 0 WC-Irr3_OD-0_WL-3.5 3000 27/03/20142014032710 Irr5 4 0.6 3.5 0 WC-Irr5_OD-0_WL-3.5 4000 27/03/20142014032711 Irr7 5 0.54 3.5 0 WC-Irr7_OD-0_WL-3.5 5000 27/03/20142014032712 Irr 13 4.5 0.26 3.5 0 WC-Irr 13_OD-0_WL-3.5 4500 27/03/20142014032801 Irr10 6 0.67 3.5 0 WC-Irr10_OD-0_WL-3.5 6000 28/03/20142014040101 Irr3 3 0.52 3.5 0 WC-Irr3_OD-0_WL-3.5 3000 01/04/20142014040102 Reg8 4 0.8 3.5 0 WC-Reg8_OD-0_WL-3.5 100 01/04/20142014040103 Reg5 3 0.78 3.5 0 WC-Reg5_OD-0_WL-3.5 80 01/04/20142014040104 Reg5 3 0.78 3.5 0 WC-Reg5_OD-0_WL-3.5 80 01/04/20142014040105 Reg1 3 0.26 3.5 0 WC-Reg1_OD-0_WL-3.5 80 01/04/2014

Change to 0.05m diameter orifice2014040106 Reg1 3 0.26 3.5 0 WC-Reg1_OD-0_WL-3.5 80 01/04/20142014040107 Reg3 3 0.52 3.5 0 WC-Reg3_OD-0_WL-3.5 80 01/04/20142014040108 Reg5 3 0.78 3.5 0 WC-Reg5_OD-0_WL-3.5 80 01/04/20142014040109 Reg6 4 0.4 3.5 0 WC-Reg6_OD-0_WL-3.5 100 01/04/20142014040110 Reg8 4 0.8 3.5 0 WC-Reg8_OD-0_WL-3.5 100 01/04/20142014040111 Reg16 6 0.67 3.5 0 WC-Reg16_OD-0_WL-3.5 140 01/04/20142014040112 Reg20 6 0.34 3.5 0 WC-Reg20_OD-0_WL-3.5 140 01/04/2014

Change to 0.2m diameter orifice2014040113 Reg2 3 0.39 3.5 0.2 WC-Reg2_OD-0.2_WL-3.5 80 01/04/20142014040114 Reg4 3 0.65 3.5 0.2 WC-Reg4_OD-0.2_WL-3.5 80 01/04/20142014040115 Reg7 4 0.6 3.5 0.2 WC-Reg7_OD-0.2_WL-3.5 100 01/04/20142014040116 Reg9 4 1 3.5 0.2 WC-Reg9_OD-0.2_WL-3.5 100 01/04/20142014040117 Reg5 3 0.78 3.5 0.2 WC-Reg5_OD-0.2_WL-3.5 80 01/04/20142014040118 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040119 Reg12 5 0.81 3.5 0.2 WC-Reg12_OD-0.2_WL-3.5 120 01/04/20142014040120 Reg17 6 1 3.5 0.2 WC-Reg17_OD-0.2_WL-3.5 140 01/04/20142014040121 Reg 23 3 0.1 3.5 0.2 WC-Reg 23_OD-0.3_WL-3.5 80 01/04/20142014040122 Reg 24 4 0.2 3.5 0.2 WC-Reg 24_OD-0.3_WL-3.5 100 01/04/20142014040123 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040124 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040125 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040126 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040127 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040128 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040129 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5 100 01/04/20142014040202 Irr2 3 0.39 3.5 0.2 WC-Irr2_OD-0.2_WL-3.5 3000 02/04/20142014040203 Irr3 3 0.52 3.5 0.2 WC-Irr3_OD-0.2_WL-3.5 3000 02/04/20142014040204 Irr5 4 0.6 3.5 0.2 WC-Irr5_OD-0.2_WL-3.5 4000 02/04/20142014040205 Irr?? 4 0.8 3.5 0.2 WC-Irr??_OD-0.2_WL-3.5 4000 02/04/20142014040206 Irr?? 5 0.81 3.5 0.2 WC-Irr??_OD-0.2_WL-3.5 5000 02/04/20142014040207 Irr11 6 1 3.5 0.2 WC-Irr11_OD-0.2_WL-3.5 6000 02/04/2014

Page 12: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons

Table 4.1 GWK OWCs test matrix version 26 (as carried out)

Lower water level 0.5m to 3.0m water depth2014040301 Reg1 3 0.26 3 0.2 WC-Reg1_OD-0.2_WL-3 80 03/04/20142014040302 Reg3 3 0.52 3 0.2 WC-Reg3_OD-0.2_WL-3 80 03/04/20142014040303 Reg5 3 0.78 3 0.2 WC-Reg5_OD-0.2_WL-3 80 03/04/20142014040304 ?? doesn't exist2014040305 Irr1 3 0.26 3 0.2 WC-Irr1_OD-0.2_WL-3 3000 03/04/20142014040306 Reg6 4 0.4 3 0.2 WC-Reg6_OD-0.2_WL-3 100 03/04/20142014040307 Reg8 4 0.8 3 0.2 WC-Reg8_OD-0.2_WL-3 100 03/04/20142014040308 Irr3 3 0.52 3 0.2 WC-Irr3_OD-0.2_WL-3 3000 03/04/20142014040309 Reg11 5 0.54 3 0.2 WC-Reg11_OD-0.2_WL-3 120 03/04/20142014040310 Irr5 4 0.6 3 0.2 WC-Irr5_OD-0.2_WL-3 4000 03/04/20142014040311 Reg13 5 1.07 3 0.2 WC-Reg13_OD-0.2_WL-3 120 03/04/20142014040312 Irr7 5 0.54 3 0.2 WC-Irr7_OD-0.2_WL-3 5000 03/04/20142014040313 Reg16 6 0.67 3 0.2 WC-Reg16_OD-0.2_WL-3 140 03/04/20142014040314 Reg20 6 0.34 3 0.2 WC-Reg20_OD-0.2_WL-3 140 03/04/20142014040315 Irr10 6 0.67 3 0.2 WC-Irr10_OD-0.2_WL-3 6000 03/04/2014

Curtain wall lowered by 0.3m, and water level returned to 3.5m2014040601 Reg1 3 0.26 3.5 0.2 WC-Reg1_OD-0.2_WL-3.5_LCW 80 06/04/20142014040603 Reg3 5 0.52 3.5 0.2 WC-Reg3_OD-0.2_WL-3.5_LCW 120 06/04/20142014040604 Irr1 3 0.26 3.5 0.2 WC-Irr1_OD-0.2_WL-3.5_LCW 3000 06/04/20142014040605 Irr3 3 0.52 3.5 0.2 WC-Irr3_OD-0.2_WL-3.5_LCW 3000 06/04/20142014040606 Reg5 3 0.78 3.5 0.2 WC-Reg5_OD-0.2_WL-3.5_LCW 80 06/04/20142014040607 Reg6 4 0.4 3.5 0.2 WC-Reg6_OD-0.2_WL-3.5_LCW 100 06/04/20142014040608 Reg8 4 0.8 3.5 0.2 WC-Reg8_OD-0.2_WL-3.5_LCW 100 06/04/20142014040701 Reg11 5 0.54 3.5 0.2 WC-Reg11_OD-0.2_WL-3.5_LCW 120 07/04/20142014040702 Irr5 4 0.6 3.5 0.2 WC-Irr5_OD-0.2_WL-3.5_LCW 4000 07/04/20142014040703 Irr7 5 0.54 3.5 0.2 WC-Irr7_OD-0.2_WL-3.5_LCW 5000 07/04/20142014040704 Reg13 5 1.07 3.5 0.2 WC-Reg13_OD-0.2_WL-3.5_LCW 120 07/04/20142014040705 Irr10 6 0.67 3.5 0.2 WC-Irr10_OD-0.2_WL-3.5_LCW 6000 07/04/20142014040706 Reg16 6 0.67 3.5 0.2 WC-Reg16_OD-0.2_WL-3.5_LCW 140 07/04/20142014040707 Reg20 6 0.34 3.5 0.2 WC-Reg20_OD-0.2_WL-3.5_LCW 140 07/04/2014

Change water level to 3.2m2014040708 Reg16 6 0.67 3.2 0.2 WC-Reg16_OD-0.2_WL-3.2_LCW 140 07/04/20142014040709 Reg20 6 0.34 3.2 0.2 WC-Reg20_OD-0.2_WL-3.2_LCW 140 07/04/20142014040710 Reg13 5 1.07 3.2 0.2 WC-Reg13_OD-0.2_WL-3.2_LCW 120 07/04/20142014040801 Irr11 6 1 3.2 0.2 WC-Irr11_OD-0.2_WL-3.2_LCW 6000 08/04/20142014040802 Reg5 3 0.78 3.2 0.2 WC-Reg5_OD-0.2_WL-3.2_LCW 80 08/04/20142014040803 Reg3 5 0.52 3.2 0.2 WC-Reg3_OD-0.2_WL-3.2_LCW 120 08/04/20142014040804 Irr3 3 0.52 3.2 0.2 WC-Irr3_OD-0.2_WL-3.2_LCW 3000 08/04/20142014040805 Reg8 4 0.8 3.2 0.2 WC-Reg8_OD-0.2_WL-3.2_LCW 100 08/04/20142014040806 Irr5 4 0.6 3.2 0.2 WC-Irr5_OD-0.2_WL-3.2_LCW 4000 08/04/2014

Change water level to 3.2m2014040807 Irr11 6 1 3.5 0.2 WC-Irr11_OD-0.2_WL-3.5_LCW 6000 08/04/2014

Page 13: Data Management Report€¦ · waves. This models an Oscillating Water Column (OWC) caisson – a shoreline-mounted wave energy converter (WEC). There are three identical OWC caissons