dc2405a: ltm2893 isolated 100mhz adc serial interface and

12
1 dc2405af DEMO MANUAL DC2405A DESCRIPTION LTM2893 Isolated 100MHz ADC Serial Interface and LTC2328-18 Demonstration circuit 2405A shows an LTM ® 2893 isolating and interfacing an LTC ® 2328-18. The LTM2893 is a high speed SPI isolator for interfacing read only ADCs with a full complement of control signals. The LTC2328-18 is a low noise, high speed 18-bit successive approximation register (SAR) ADC. Low noise isolated power is delivered to the isolated side with an LT3999 push-pull driver and isolation transformer. The DC2405A demonstrates the DC and AC operation of the LTC2328-18 without performance degradation with the LTM2893. The Serial Peripheral Interface (SPI) runs L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PScope and QuikEval are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. PERFORMANCE SUMMARY at a maximum 100MHz SCK frequency. The LTM2893 is compatible with many ADCs with SPI clock frequencies up to 100MHz. The DC2405A connects to either the DC890 for measure- ments with PScope™, or DC590 for measurements with QuikEval™, or DC2026 for measurements with QuikEval and a DC590 sketch or single sample measurements with an example sketch. Design files for this circuit board are available at http://www.linear.com/demo/DC2405A Specifications are at T A = 25°C PARAMETER CONDITIONS MIN TYP MAX UNITS Input Supply Range V CC – GND 4.75 5.25 V Analog Signal Input Range (AIN) ±10.24 V Clock Frequency (CLK IN) 10 100 MHz DC590 Interface Voltage Supply 3.0 3.3 3.6 V

Upload: others

Post on 04-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

1dc2405af

DEMO MANUAL DC2405A

DESCRIPTION

LTM2893 Isolated 100MHz ADC Serial

Interface and LTC2328-18

Demonstration circuit 2405A shows an LTM®2893 isolating and interfacing an LTC®2328-18. The LTM2893 is a high speed SPI isolator for interfacing read only ADCs with a full complement of control signals. The LTC2328-18 is a low noise, high speed 18-bit successive approximation register (SAR) ADC. Low noise isolated power is delivered to the isolated side with an LT3999 push-pull driver and isolation transformer.

The DC2405A demonstrates the DC and AC operation of the LTC2328-18 without performance degradation with the LTM2893. The Serial Peripheral Interface (SPI) runs

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PScope and QuikEval are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

at a maximum 100MHz SCK frequency. The LTM2893 is compatible with many ADCs with SPI clock frequencies up to 100MHz.

The DC2405A connects to either the DC890 for measure-ments with PScope™, or DC590 for measurements with QuikEval™, or DC2026 for measurements with QuikEval and a DC590 sketch or single sample measurements with an example sketch.

Design files for this circuit board are available at http://www.linear.com/demo/DC2405A

Specifications are at TA = 25°C

PARAMETER CONDITIONS MIN TYP MAX UNITS

Input Supply Range VCC – GND 4.75 5.25 V

Analog Signal Input Range (AIN) ±10.24 V

Clock Frequency (CLK IN) 10 100 MHz

DC590 Interface Voltage Supply 3.0 3.3 3.6 V

2dc2405af

DEMO MANUAL DC2405A

DC2405A CONNECTION DIAGRAM

DC2405A JUMPERS

Figure 1. DC2405A Setup

DEFINITIONS

JP1 – GND2, Isolated ground connection

JP2 – VCC, 5V Power supply input connection

JP3 – GND, Power supply return connection

JP4 – CFG, Default 0, when CFG = 1 a secondary image in U10 is selected, currently not implemented.

JP5 – OE, Output enable for U10, default ON. When OE is ON, U10 drives the signals to U1 (for use with the DC890, DC590, and DC2026). When OE is OFF the signals to U1 are high impedance from U10 and the interface signals can be driven externally.

JP6 – JTAG, header for factory use only

JP7 – EEPROM, is for factory use only, default WP.

100MHz CLK IN

5V GND

DC890

ANALOGINPUT

3dc2405af

DEMO MANUAL DC2405A

Figure 2. PScope Display Capturing 2kHz Input Tone

DC890 QUICK START PROCEDURECheck to make sure that all switches and jumpers are set to their default settings as described in the DC2405A Jumpers section and Figure 1 of this manual. The demo board is designed to use the onboard isolated power sup-ply to generate all the required bias voltages. The analog input is DC coupled.

1. Connect the DC2405A to a DC890 USB High Speed Data Collection Board using the edge connector J4.

2. Connect the DC890 to a host PC with a standard USB A/B cable.

3. Apply +5V and ground to the VCC and GND terminals.

4. Apply a low jitter signal source to J1. Observe the rec-ommended input voltage range for the analog input.

5. Connect a low jitter 100MHz 2.5VP-P sine wave or square wave to connector J2. Note that J2 has a 50Ω termination resistor to ground. Alternatively, a DC1216A 100MHz fixed frequency clock source board can be used.

6. Run the PScope software (Pscope.exe version K83 or later), which can be downloaded from www.linear.com/ designtools/software. The PScope software should rec-ognize the DC2405A and configure itself automatically.

7. Click the Collect button (see Figure 2) to begin acquiring data. The Collect button then changes to Pause, which can be clicked to stop data acquisition.

Complete PScope software documentation is available from the Help menu. Updates can be downloaded from the Tools menu. Check for updates periodically as new features may be added.

4dc2405af

DEMO MANUAL DC2405A

DC590/DC2026 QUICK START PROCEDUREIMPORTANT! To avoid damage to the DC2405A, make sure that VCCIO (JP6 of the DC590, JP3 of the DC2026) of the DC590/DC2026 is set to 3.3V before connecting the DC590/DC2026 to the DC2405A.

1. To use the DC590/DC2026 with the DC2405A, it is necessary to apply 5V and ground to the VCC and GND terminals of the DC2405A.

2. Connect the DC590/DC2026 to a host PC with a standard USB A/B cable.

3. Connect the DC2405A to a DC590/DC2026 USB serial controller using the supplied 14-conductor ribbon cable.

4. Apply a signal source to J1. A clock source on J2 is not necessary.

5. Run the QuikEval software (QuikEval.exe version K107 or later), which is available from www.linear.com/designtools/software. The correct control panel will be loaded automatically.

6. Click the COLLECT button (Figure 3) to begin reading the ADC.

Figure 3. QuikEval Screenshot Captured with a 50Ω Terminator on AIN

5dc2405af

DEMO MANUAL DC2405A

DC2405A SETUPDC POWER

The DC2405A requires +5VDC and draws ~265mA. This current is split between the isolated side and the logic side. The isolated side current consumption is through the DC/DC power converter supplying the LT1468, input buffer, LTC2328-18 ADC, and the isolated side of the LTM2893. The logic side current supplies the FPGA, clock input path, and the LTM2893.

CLOCK SOURCE

You must provide a low jitter 2.5VP-P sine or square wave to the clock input J2 for data collection with the DC890. The clock input is AC-coupled so the DC level of the clock signal is not important. A generator, such as the Rohde & Schwarz SMB100A high speed clock source, is recom-mended to drive the clock input. Drive J2 with a 100MHz clock frequency. The ratio between the clock source and the sampling frequency is 100:1. A 100MHz clock source results in a 1Msps sampling rate.

DATA OUTPUT

If not connected to a DC890, parallel data output from this board (0V to 2.5V by default), can be acquired by a logic analyzer, and subsequently imported into a spreadsheet, or mathematical package depending on what form of digital signal processing is desired. Alternatively, the data can be fed directly into an application circuit. Use pin 50 of

J4, edge connector, to latch the data. The data should be latched using the negative edge of this signal.

ANALOG INPUTS

The DC2405A analog input AIN is a single-ended input referenced to GND2. AIN has a high input impedance buffer (LT1468) before the LTC2328-18 ADC. The default setup for the DC2405A requires that AIN be driven with a low noise, low distortion generator for SINAD, THD, or SNR testing. Use an analog source such as the Stanford Research DS360 or SR1. Synchronize the clock source to the analog source through an external reference input to generate SNR and SINAD results similar to Figure 2 without windowing.

LTM2893 DIGITAL INTERFACE

The demo board has an unpopulated header placeholder in-between U10 and U1. All interface signals between the FPGA (U10) and the logic interface of the LTM2893 (U1) are exposed. An external interface may be connected to this header location by setting the OE jumper JP5 off. When JP5 is low, all signals to the LTM2893 will be high impedance from the FPGA. The header placeholder pin pitch is on 0.100-inch centers.

6dc2405af

DEMO MANUAL DC2405A

This demo board is tested in-house by attempting to duplicate the FFT plot shown in Figure 2. This involves a 100MHz clock source synchronized with a reference clock to an SR1 sinusoidal generator. The SR1 sinusoidal generator is set at a frequency of 2.01416kHz. The input signal level is approximately –1dBFS. A typical FFT obtained with DC2405A is shown in Figure 2. Note that to calculate the real SNR, the signal level (F1 amplitude = –1.006dB) has to be added back to the SNR that PScope displays. With the example shown in Figure 2, this means that the actual SNR would be 94.76dB instead of the 93.76dB that PScope displays.

There are a number of scenarios that can produce mislead-ing results when evaluating an ADC. One that is common

is feeding the converter with an input frequency that is a sub-multiple of the sample rate and will only exercise a small subset of the possible output codes. The proper method is to pick an M/N frequency for the input sine wave frequency. N is the number of samples in the FFT. M is a prime number between one and N/2. Multiply M/N by the sample rate to obtain the input sine wave frequency. Another scenario that can yield poor results is if you do not have a signal generator capable of ppm frequency ac-curacy or if it cannot be locked to the clock frequency. You can use an FFT with windowing to reduce the “leakage” or spreading of the fundamental, to get a close approximation of the ADC performance. If an amplifier or clock source with poor phase noise is used, the windowing will not improve the SNR.

DC2405A DATA COLLECTION

7dc2405af

DEMO MANUAL DC2405A

Due to the relatively low and somewhat unpredictable sample rate of the DC590/DC2026, its usefulness is lim-ited to noise measurement and data collection of slowly moving signals.

To observe measurements from QuikEval, use a DC590 or program a DC2026 with a DC590 sketch from an Arduino IDE. Then launch QuikEval, a typical data capture and histogram are shown in Figure 3.

DC590/DC2026 DATA COLLECTION

To observe measurements and see example code for read-ing and configuring the LTM2893 from the DC2026, run an Arduino IDE and select File > Sketchbook > Part Number > 2000 > 2800 > 2893 >DC2405A. Upload the program to the DC2026 and launch the Serial Monitor from the tools menu. A brief menu will display on the serial monitor output. Selecting 1 and sending to the DC2026 will result in a single conversion and the result will be displayed in the Serial Monitor window.

8dc2405af

DEMO MANUAL DC2405A

PARTS LISTITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER

1 1 C1 CAPACITOR, CERAMIC, 3.3nF 5% 1206 250V NPO TDK/C3216C0G2E332J085AA

2 40 C2, C8, C15, C17, C18, C20, C23-C28, C34, C45-46, C48-71, C73

CAPACITOR, CERAMIC, 100nF 10% 0402 50V X7R TDK/C1005X7R1H104K050BB

3 9 C3, C7, C10-13, C43, C47, C72 CAPACITOR, CERAMIC, 1μF 10% 0603 35V X7R TDK/C1608X7R1V105K080AC

4 4 C4-5, C29, C36 CAPACITOR, CERAMIC, 10μF 10% 1206 35V X7R TDK/C3216X7R1V106K160AC

5 0 C6, C9 OPTIONAL

6 1 C14 CAPACITOR, CERAMIC, 47μF 20% 1210 6.3V X7S TDK/C3225X7S0J476M250AC

7 1 C16 CAPACITOR, CERAMIC, 2.2μF 10% 0603 10V X7R TDK/C1608X7R1A225K080AC

8 4 C19, C38, C40, C44 CAPACITOR, CERAMIC, 10μF 10% 0805 16V X6S TDK/C2012X6S1C106K085AC

2 C21-22 CAPACITOR, CERAMIC, 150pF 10% 1808 250V X7R MURATA/GA342QR7GF151KW01L

9 7 C30-32, C35, C37, C39, C41 CAPACITOR, CERAMIC, 10nF 10% 0402 50V X7R TDK/C1005X7R1H103K050BB

10 1 C33 CAPACITOR, CERAMIC, 1μF 10% 1206 100V X7R TDK/C3216X7R2A105K160AA

11 1 C42 CAPACITOR, TANTALUM, 47μF 10% 2413 16V KEMET/T494C476K016AT

12 2 D1-2 DIODE, ARRAY, 75V 215mA SOT363 DIODES INC/BAV99DW-7-F

13 2 J1-2 CONNECTOR, BNC JACK, EDGE MOUNT TE CONNECTIVITY/1274727-1

14 1 J3 HEADER, 2 × 7 2mm SHROUDED MOLEX/87831-1420

15 3 JP1-3 HEADER, LOOP 1 × 2, 0.2mm AAVID/125700D00000G

16 3 JP4-5, JP7 HEADER, 1 × 3, 2mm WURTH/62000311121

17 3 JP4-5, JP7 SHUNT, 1 × 2, 2mm WURTH/60800213421

18 1 JP6 HEADER, 2 ×5, 0.1mm WURTH/61301021121

19 2 L1-2 INDUCTOR, COUPLED, 22μH 3 × 3mm 1.9Ω 0.44A COILCRAFT/LPD3015-223MRB

20 6 MH1-6 STANDOFF, NYLON 0.25" KEYSTONE, 8831 (SNAP ON)

21 2 R3-4 RESISTOR, 0Ω 1% 0603 VISHAY/CRCW06030000Z0EA

22 1 R2 OPTIONAL

23 3 R9-10, R35 RESISTOR, 1kΩ 1% 0603 VISHAY/CRCW06031K00FKEA

24 4 R7-8, R12, R25 RESISTOR, 33Ω 1% 0402 VISHAY/CRCW040233R0FKED

25 1 R11 RESISTOR, 49.9Ω 1% 1206 VISHAY/CRCW120649R9FKEA

26 1 R6 RESISTOR, 28kΩ 1% 0603 VISHAY/CRCW060328K0FKEA

27 1 R5 RESISTOR, 49.9kΩ 1% 0603 VISHAY/CRCW060349K9FKEA

28 7 R13, R16, R22, R36-38, R40 RESISTOR, 4.99kΩ 1% 0603 VISHAY/CRCW06034K99FKEA

29 14 R14-15, R17-21, R24, R26, R28, R31-33, R34

RESISTOR, 10kΩ 1% 0402 VISHAY/CRCW040210K0FKED

30 2 R1, R23 RESISTOR, 100kΩ 1% 0603 VISHAY/CRCW0603100RFKEA

31 3 R27, R29-30 RESISTOR, 100kΩ 1% 0402 VISHAY/CRCW0402100KFKED

32 1 R39 RESISTOR, 2kΩ 1% 0603 VISHAY/CRCW06032K00FKEA

33 11 RA1-11 RESISTOR ARRAY, 33kΩ 4 RES 1206 PANASONIC/EXB-38V330JV

34 1 TR1 TRANSFORMER, 5kV 2:1 WURTH/750313626

35 1 U1 IC, 100MHz ADC-SPI ISOLATOR LINEAR TECH/LTM2893CY#PBF

36 1 U2 IC, OPAMP LINEAR TECH/LT1468CS8#PBF

37 1 U3 IC, ADC, 1MSPS, 18-BIT, BIPOLAR, ±10.24V LINEAR TECH/LTC2328CMS-18#PBF

38 1 U4 IC, PUSH-PULL DC/DC DRIVER, 1A, 1MHz LINEAR TECH/LT3999EMSE#PBF

9dc2405af

DEMO MANUAL DC2405A

PARTS LISTITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER

39 1 U5 IC, BUS SWITCH, SPST, SC70-5 FAIRCHILD SEMI/NC7SZ66P5X

40 1 U6 IC, INVERTER, SC70-5 FAIRCHILD SEMI/NC7SZ04P5X

41 1 U7 IC, D-TYPE POS TRG, MSOP8 ON SEMI/NL17SZ74USG

42 2 U8-9 IC, UNBUFFERED INVERTER, SC70-5 FAIRCHILD SEMI/NC7SVU04P5X

43 1 U10 IC, FPGA/CPLD 130 I/O 169UBGA ALTERA/10M08SAU169C8GES

44 2 U11-12 IC, LDO, 15V, 100mA LINEAR TECH/LT3060ETS8-15#PBF

45 2 U13-14 IC, LDO, 5V, 100mA LINEAR TECH/LT1761ES5-5#PBF

46 1 U15 IC, LDO, 3.3V, 500mA LINEAR TECH/LT1763CDE-3.3#PBF

47 1 U16 IC, BUFFER, TRI-STATE, QUAD, 14TSSOP NXP/74LVT126PW,118

48 2 U17-18 IC, BUS TRANSCEIVER, TRI-STATE, SOT-563 TI/SN74LVC1T45DRLR

49 1 U19 IC, EEPROM, 2-KBIT, I2C, 8TSSOP MICROCHIP/24LC024-I/ST

10dc2405af

DEMO MANUAL DC2405A

SCHEMATIC DIAGRAM

R9

1k

3 26

5 17 4

U2

LT14

68R

110

0

C1

3.3n

FN

PO

HG

FE

DC

BA

HG

FE

DC

BA

4 5 6 7 8 9 10

4 5 6 7 8 9 10

LK

JI

LK

JI

1 2 3

1 2 3

R3

0C

6

OPT

15V

C7

1uF

-15V

C3

1uF

C9

OPT

R4

0

5VA

GN

D

2

OU

T5

IN1

SH

DN

3B

YP4

U13

LT17

61-5

5VA

C38

10uF

C37

10nF

C15

100n

F

5VD

C18

100n

F

C17

100n

F

C14

47uF

ON

A1

SS

A2

MO

SI

A3

SC

KA

4

BU

SY

A5

CN

VA

6

VL

B1

MIS

OA

B2

MIS

OB

B3

CS

CB

4

GN

DB

5

FAU

LTB

6

VC

CC

1

GN

DC

2

SA

C4

GN

DC

3

SB

C5

SC

C6

VC

C2

N1

GN

D2

N2

GN

D2

N3

SA

2N

4

SB

2N

5

SC

2N

6

VL2

P1

MIS

OA

2P

2

MIS

OB

2P

3

VL2

P4

GN

D2

P5

BU

SYS

P6

ON

2R

1

SS

2R

2

SC

K2

R4

MO

SI2

R3

BU

SY2

R5

CN

V2

R6

U1

LTM

2893

CY

3V3

CH

AIN

10

VDD2

IN+

4

IN-

5

REFBUF7

REFIN8

CN

V9

BU

SY

11

RD

L/S

DI

12

SC

K13

SD

O14

OV

DD

15

GND 3

GND 6

VDDLBYP 1GND 16

U3

LTC

2328

-18

5VD

C16

2.2u

F

C8

100n

F

C2

100n

F

R2

OPT

GN

D

2

OU

T5

IN1

SH

DN

3B

YP4

U14

LT17

61-5

5VD

C40

10uF

C39

10nF

C19

10uF

RDC 6OVLO/DC5 UVLO4

SWB 10

SYNC 8ILIM/SS 9

VIN3 RBIAS2 SWA1

RT 7GN

D11

U4

LT39

99

R6

28k

R5

49.9

k

316 4

25

TR1

C13

1uF

C12

1uF

C42

47uF

2413

C5

10uF

35V

AD

J7

SH

DN

1

OU

T6

IN5

GN

D2

RE

F/B

YP8

GN

D3

GN

D4

U12

LT30

60-1

5C

32

10nF

C36

10uF

35V

C35

10nF

AD

J7

SH

DN

1

OU

T6

IN5

GN

D2

RE

F/B

YP8

GN

D3

GN

D4

U11

LT30

60-1

5C

31

10nF

C29

10uF

35V

C30

10nF

C4

10uF

35V

C11

1uF

C10

1uF

15V

-15V

C34

100n

F

ISOLATION BARRIER

C33

1uF

L1 22uHL2 22uH

24

U6

NC

7SZ0

4P5X

R11

49.9

R10

1kC24

100n

F

J2C

LK10

0MH

z M

AX

3.3V

PP

J1A

IN+/

- 10.

24V

3V3

24

U8

NC

7SV

U04

P5X

R25

33

D2

Q5

CP

1

CLR 6PR7

Q3

U7

NL1

7SZ7

4

R8

33

3V3

24

U9

NC

7SV

U04

P5X

R12

33

R7

33

CN

VS

T_33

12

4

U5

NC

7SZ6

6P5X

CLK

CN

V

SD

OA

SC

KB

US

Y

CS

C

FAU

LT

3V3

C44

10uF

C41

10nF

JP2

VC

C4.

75V

to 5

.25V

JP3

GN

D

CLK

IN10

/11

OU

T2/

3

GND 7GND 13SH

DN

8S

EN

5

BYP

6

U15

LT17

63-3

.3

CS

SD

I

SD

OB

SA

SB

SC

CNVBSYSCKSDICS

FLT

CSCSOBSOA

CNV33

ETA

DD

EV

OR

PP

AV

ER

OC

ED

ES

CR

IPTI

ON

SCSBSA

C43

1uF

Q_D

ETE

CT

R16

4.99

k

R13

4.99

k3V

3

C26

100n

F

C28

100n

F

C23

100n

F

3V3

C25

100n

F

C27

100n

F

KWB

KWB

21

5102 ,ht4 rebmevo

N ,yadsendeW

2

-2

2ND

PR

OTO

TYP

EKW

B11

-4-1

5

LTM

2893

CY

DE

MO

CIR

CU

IT 2

405A

SC

HE

MA

TIC

ISO

LATE

D 1

00M

Hz

AD

C -

SP

I IN

TER

FAC

E

NO

TE: U

NLE

SS

OTH

ER

WIS

E S

PE

CIF

IED

1. IN

STA

LL S

HU

NTS

AS

SH

OW

N.

15V

5VA 5VD

-15V

JP1

GN

D2

C20

100n

F

-VI+VI

CNV2BSY2SCK2SDO2

CU

STO

ME

R N

OTI

CE

THIS

CIR

CU

IT IS

PR

OP

RIE

TAR

Y TO

LIN

EA

R T

EC

HN

OLO

GY

AN

D S

UP

PLI

ED

FO

RU

SE

WIT

H L

INE

AR

TE

CH

NO

LOG

Y P

AR

TS.

LIN

EA

R T

EC

HN

OLO

GY

HA

S M

AD

E A

BE

ST

EFF

OR

TTO

DE

SIG

N A

CIR

CU

IT T

HA

T M

EE

TS C

US

TOM

ER

-S

UP

PLI

ED

SP

EC

IFIC

ATI

ON

S; H

OW

EV

ER

, IT

RE

MA

INS

THE

CU

STO

ME

RS

RE

SP

ON

SIB

ILIT

Y TO

VE

RIF

YP

RO

PE

R A

ND

RE

LIA

BLE

OP

ER

ATI

ON

IN T

HE

AC

TUA

LA

PP

LIC

ATI

ON

. C

OM

PO

NE

NT

SU

BS

TITU

TIO

N A

ND

PR

INTE

D C

IRC

UIT

LA

YOU

T M

AY

SIG

NIF

ICA

NTL

YA

FFE

CT

CIR

CU

IT P

ER

FOR

MA

NC

E O

R R

ELI

AB

ILIT

Y.C

ON

TAC

T LI

NE

AR

TE

CH

NO

LOG

Y A

PP

LIC

ATI

ON

SE

NG

INE

ER

ING

FO

R A

SS

ISTA

NC

E.

3V3

D2:

AB

AV9

9DW

D2:

B

D1:

AB

AV9

9DW

D1:

B

GN

DG

ND

2

C21

150p

F

C22

150p

F

11dc2405af

DEMO MANUAL DC2405A

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

SCHEMATIC DIAGRAM

SD

AS

CL

TMS

TCK

TDO

TDI

2 4 6 8 10 12 14

1 3 5 7 9 11 13

J3Q

EV

AL

47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99454341393735333129272523211917151311975312 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

J4

AB

CD

EF

GH

AB

CD

EF

GH

4 5 6 7 8 9 10

4 5 6 7 8 9 10

IJ

KL

IJ

KL

1 2 3

1 2 3

R38

4.99

k

3V3

R39

2k

SC

L6

SD

A5

WP

7A

01

A1

2

A2

3

VC

C8

VS

S4

U19

24LC

024-

I/ST

R40

4.99

kR

364.

99k

R37

4.99

k

C73

100n

FJP

7E

EP

RO

M

WP

PG

Q_E

N

Q_S

DO

Q_S

DI

Q_C

S

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

CLK

OU

T

BA

NK

1A

, 1B IO

E5

E5

IOD

1D

1

IOG

1G

1

IOH

1H

1

IOG

2G

2

IOC

2C

2

IOE

3E

3

IOE

4E

4

IOF5

F5

IOF4

F4

IOH

2H

2

IOG

4G

4

IOF6

F6

IOH

3H

3

IOF1

F1

IOB

1B

1

IOC

1C

1

IOE

1E

1

U10

:A

10M

08S

AU

169C

8GES

BA

NK

2

ION

2N

2IO

G5

G5

IOL1

L1

ION

3N

3

IOL2

L2

IOJ1

J1

IOH

6H

6

IOJ2

J2

IOM

3M

3

IOL3

L3

IOK

2K

2

IOK

1K

1

IOH

4H

4

IOM

1M

1

IOH

5H

5

IOM

2M

2

U10

:B

10M

08S

AU

169C

8GES

BA

NK

3

IOM

9M

9IO

L5L5

IOJ7

J7

ION

11N

11

IOK

7K

7

IOM

4M

4

IOL4

L4

IOM

5M

5

ION

12N

12

ION

10N

10

IOM

12M

12

IOM

13M

13

IOJ5

J5

ION

4N

4

IOK

5K

5

ION

5N

5

ION

6N

6

ION

7N

7

IOM

7M

7

IOM

8M

8

IOJ6

J6

ION

8N

8

IOK

6K

6

ION

9N

9

IOM

11M

11

IOL1

1L1

1

IOJ8

J8

IOM

10M

10

IOL1

0L1

0

IOK

8K

8

U10

:C

10M

08S

AU

169C

8GES

BA

NK

5

IOJ9

J9IO

K10

K10

IOJ1

3J1

3

IOH

10H

10

IOH

13H

13

IOK

11K

11

IOJ1

0J1

0

IOL1

2L1

2

IOH

9H

9

IOH

8H

8

IOG

12G

12

IOG

13G

13

IOJ1

2J1

2

IOL1

3L1

3

IOK

12K

12

IOK

13K

13

U10

:D

10M

08S

AU

169C

8GES

BA

NK

6 IOB

12B

12IO

G9

G9

IOE

9E

9

IOB

11B

11

IOC

12C

12

IOG

10G

10

IOF1

3F1

3

IOE

13E

13

IOB

13B

13

IOA

12A

12

IOE

10E

10

IOC

11C

11

IOF9

F9

IOE

12E

12

IOF1

2F1

2

IOD

13D

13

IOF1

0F1

0

IOC

13C

13

IOF8

F8

IOD

9D

9

IOD

12D

12

IOD

11D

11

U10

:E

10M

08S

AU

169C

8GES

BA

NK

8

IOA

6A

6IO

C10

C10

IOB

6B

6

IOA

4A

4

IOB

5B

5

IOA

8A

8

IOC

9C

9

IOA

9A

9

IOA

3A

3

IOB

3B

3

IOD

6D

6

IOE

6E

6

IOB

9B

9

IOA

10A

10

IOB

10B

10

IOA

11A

11

IOD

8D

8

IOE

8E

8

IOB

7B

7

IOE

7E

7

IOA

7A

7

IOD

7D

7

IOB

4B

4

IOC

4C

4

IOA

5A

5

IOC

5C

5

IOB

2B

2

IOA

2A

2

U10

:F

10M

08S

AU

169C

8GES

PW

R/G

ND

AD

C_V

REF

D3

GN

DA

1V

CC

_ON

EF7

GN

DA

13

GN

DB

8

VC

CIO

1AF2

GN

DC

3

VC

C_O

NE

G6

VC

C_O

NE

G8

VC

C_O

NE

H7

VC

CIO

3L6

GN

DD

5

VC

CIO

2K

3G

ND

N13

GN

DN

1V

CC

IO1B

G3

GN

DF3

VC

CIO

2J3

GN

DH

12G

ND

G7

RE

FGN

DE

2

GN

DE

11

GN

DJ4

GN

DL9

GN

DM

6

AN

AIN

1D

2

VC

CA

3D

4V

CC

A2

D10

VC

CA

1K

4

VC

CA

4K

9

VC

CIO

3L7

VC

CIO

3L8

VC

CIO

5H

11

VC

CIO

5J1

1

VC

CIO

6F1

1

VC

CIO

6G

11

VC

CIO

8C

6

VC

CIO

8C

7

VC

CIO

8C

8

U10

:G

10M

08S

AU

169C

8GES

C67

100n

F

C63

100n

F

C55

100n

F

C70

100n

F

C59

100n

F

C62

100n

F

C69

100n

F

C66

100n

F

C60

100n

F

C61

100n

F

C57

100n

F

C56

100n

F

C54

100n

F

C53

100n

F

C65

100n

F

C50

100n

F

C51

100n

F

C49

100n

F

C48

100n

F

C46

100n

F

C68

100n

F

C58

100n

F

3V3

Q_E

N

12

34

56

78

910

JP6

R31

10k

3V3

R28

10k

JTA

GEN

R35

1k

3V3

CN

VS

T_33

CLK

D1

D0

D5

D2

D4

D6

C72

1uF

D3

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

CLK

OU

T

SA

SB

SC

SC

K

CS

SD

I

CS

C

CN

V

SD

OA

SD

OB

FAU

LT

BU

SY

Q_S

DI

Q_S

CK

Q_C

S

Q_S

DO

Q_S

CK

R24

10k

R14

10k

R18

10k

R21

10k

R19

10k

R17

10k

R15

10k

3V3

3V3

CFGD

CRC

3V3

CLRCFG

3V3

3V3

3V3

STAT

3V3

SC

LS

DA

QSDO

QSDIQSCKQCS

QSPR

EC

OR

EV

AP

PR

OV

ED

DA

TED

ES

CR

IPTI

ON

CLK

2

CLK

2

QEN

Q_D

ETE

CT

JP4

CO

NFI

G

10

JP5

OE O

N

OFF

Q_S

PA

RE

231

564

9810

121113

U16

74LV

T126

R20

10k

3V3

Q_S

PA

RE

Q_S

PA

RE

_DIR

34

1

6

5

2

U17

LVC

1T45

34

1

6

5

2

U18

LVC

1T45

Q_S

PA

RE

_DIR

3V3

R33

10k

R22

4.99

k

C45 10

0nF

R3410k

3V33V3

C52

100n

F

C64

100n

F

C71

100n

F

3V3

-2

2ND

PR

OTO

TYP

EKW

B11

-4-1

5

KWB

KWB

Wed

nesd

ay, N

ovem

ber 4

th, 2

015

22

2LT

M28

93IY

DE

MO

CIR

CU

IT 2

405A

SC

HE

MA

TIC

ISO

LATE

D 1

00M

Hz

AD

C -

SP

I IN

TER

FAC

E

CU

STO

ME

R N

OTI

CE

THIS

CIR

CU

IT IS

PR

OP

RIE

TAR

Y TO

LIN

EA

R T

EC

HN

OLO

GY

AN

D S

UP

PLI

ED

FO

RU

SE

WIT

H L

INE

AR

TE

CH

NO

LOG

Y P

AR

TS.

LIN

EA

R T

EC

HN

OLO

GY

HA

S M

AD

E A

BE

ST

EFF

OR

TTO

DE

SIG

N A

CIR

CU

IT T

HA

T M

EE

TS C

US

TOM

ER

-S

UP

PLI

ED

SP

EC

IFIC

ATI

ON

S; H

OW

EV

ER

, IT

RE

MA

INS

THE

CU

STO

ME

RS

RE

SP

ON

SIB

ILIT

Y TO

VE

RIF

YP

RO

PE

R A

ND

RE

LIA

BLE

OP

ER

ATI

ON

IN T

HE

AC

TUA

LA

PP

LIC

ATI

ON

. C

OM

PO

NE

NT

SU

BS

TITU

TIO

N A

ND

PR

INTE

D C

IRC

UIT

LA

YOU

T M

AY

SIG

NIF

ICA

NTL

YA

FFE

CT

CIR

CU

IT P

ER

FOR

MA

NC

E O

R R

ELI

AB

ILIT

Y.C

ON

TAC

T LI

NE

AR

TE

CH

NO

LOG

Y A

PP

LIC

ATI

ON

SE

NG

INE

ER

ING

FO

R A

SS

ISTA

NC

E.

R23 100

C47 1u

F

R3210k

QDIR

RA

5:B

33

RA

5:A

33R

A5:

C33

RA

5:D

33

RA

11:A

33RA

11:B

33

RA

11:C

33 RA

11:D

33

RA

10:A

33

RA

10:B

33

RA

10:C

33

RA

10:D

33

RA

9:A

33

RA

9:B

33

RA

9:C

33

RA

9:D

33

RA

8:A

33 RA

8:B

33RA

8:C

33

RA

8:D

33

RA

7:A

33

RA

7:B

33

RA

7:C

33

RA

7:D

33

RA

6:B

33

RA

6:A

33

RA

6:C

33RA

6:D

33

RA

4:D

33 RA

4:B

33

RA

4:A

33

RA

4:C

33

RA

1:B

33

RA

1:A

33

RA

1:D

33 RA

1:C

33

RA

2:A

33

RA

2:B

33

RA

2:C

33

RA

2:D

33 RA

3:A

33 RA

3:B

33

RA

3:C

33

RA

3:D

33

R27

100k

R30

100k

R29

100k

R26

10k

3V3

12dc2405af

DEMO MANUAL DC2405A

Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 FAX: (408) 434-0507 www.linear.com © LINEAR TECHNOLOGY CORPORATION 2016

LT 0516 • PRINTED IN USA

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology

1630 McCarthy Blvd.

Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation