dcs-igarss11_v2-aguilera.ppt

32
IGARSS 2011 Esteban Aguilera Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and A. Reigber

Upload: grssieee

Post on 09-Jun-2015

4.029 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Compressed Sensing forPolarimetric SAR Tomography

E. Aguilera, M. Nannini and A. Reigber

Page 2: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

1. Polarimetric SAR tomography

2. Compressive sensing of single signals

3. Multiple signals compressive sensing: Exploiting correlations

4. Compressive sensing for volumetric scatterers

5. Conclusions

Overview

Page 3: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

azimuthground range

M parallel tracks for 3D imaging

Tomographic SAR data acquisition

Side-looking illumination at L-Band

Page 4: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

The tomographic data stack

Our dataset is a stack of M two-dimensional SAR images per polarimetric channel

M images

azimuthrange

Page 5: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

The tomographic data stack

Projections of the reflectivity in the elevation direction are encoded in M pixels (complex valued)

azimuthrange

1

2

M

b

bB

b

Page 6: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

The tomographic signal model: B = AX

11,1 1,2 1,3 1,1

22,1 2,2 2,3 2,2

33,1 3,2 3,3 3,

,1 ,2 ,3 ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N

N

N

MM M M M N N

xa r a r a r a rb

xa r a r a r a rb

xa r a r a r a r

ba r a r a r a r x

,4

,( )i jj r

i ja r e

height

B : measurementsA : steering matrixX : unknown reflectivity

Page 7: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

What’s the problem?

High resolution and low ambiguity require a large number of tracks:

1. Expensive and time consuming

2. Sometimes infeasible

3. Long temporal baselines affect reconstruction

Page 8: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Where does this work fit?

Beamforming (SAR tomography):

1. Beamforming (Reigber, Nannini, Frey)

2. Adaptive beamforming (Lombardini, Guillaso)

3. Covariance matrix decomposition (Tebaldini)

Physical Models (SAR interferometry):1. PolInSAR (Cloude, Papathanassiou)2. PCT (Cloude)

Compressed sensing (SAR tomography)1. Single signal approach (Zhu, Budillon)2. Multiple signal/channel approach

Page 9: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

A

B AX

AMxN : steering matrix

XN : unknown reflectivityBM : stack of pixels

height

gnd. rangeazimuth

Page 10: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

The compressive sensing approach

We look for the sparsest solution that matches the measurements

minX 1

X

2AX B subject to

Convex optimization problem

Page 11: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

How many tracks?

In theory:

take

measurements

frequencies selected at random

In practice:

we can use our knowledge about the signal and sample less:

low frequency components seem to do the job!

0 log( )M C S N

2M S

Page 12: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

CS for vegetation mapping ?

The elevation profile can be approximated by a summation of sparse profiles

Different to conventional models (non-sparse). And probably a bad one…

elevation

amplitude

= + + … +

Page 13: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Tomographic E-SAR Campaign

Testsite: Dornstetten, GermanyHorizontal baselines: ~ 20mVertical baselines: ~ 0mAltitude above ground: ~ 3800m# of baselines: 23

3,5 m

2 corner reflectors in layover and ground

Page 14: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

CAPON using 23 tracks (13x13 window) = ground truth

40 m

2 corner reflectors in layover

Canopy and groundGround

40 m

Single Channel Compressive Sensing

CS using only 5 tracks

Page 15: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Normalized intensity – 40 m

Beamforming (23 passes, 3x3)

SSCS (5 passes, 3x3)

Page 16: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Multiple Signal Compressive Sensing

Assumption: adjacent azimuth-range positions are likely to have targets at about the same elevation

1 1 1

2 2 2...

M M M

b c d

b c d

b c d

L columns

azimuthrange

range

azimuthM images

GHH

Page 17: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Polarimetric correlations

We can further exploit correlations between polarimetric channels

G

3L columns

GHH GHV GVV

Page 18: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

A

G AY

AMxN : steering matrixYNx3L : unknown reflectivities

HH HV VV Mx3L : stacks of pixelsG

Page 19: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

YNx3L : unknown reflectivity

Y

minY

2AY G subject to

2,1Y

Elevation profile reconstruction

We look for a matrix with the least number of non-zero rows that matches the measurements

Page 20: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Mixed-norm minimization

minY

2AY G subject to

0

Number of columns in Y (window size + polarizations)

Probability of recovery failure

(Eldar and Rauhut, 2010)

2,1Y

Page 21: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

SSCS (saturated) MSCS (span saturated)

MSCS (polar) MSCS (span)

Layover recovery with CS

Page 22: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Beamforming (23 passes, 3x3)

SSCS (5 passes, 3x3)

MSCS (5 passes, 3x3)

MSCS (pre-denoised) (5 passes, 3x3)

Layover recovery with CS

Page 23: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Volumetric Imaging

Single signal CS (5 tracks)

Multiple signal CS (5 tracks)

40 m

Page 24: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Volumetric Imaging

Single signal CS (5 tracks)

Multiple signal CS (5 tracks)

40 m

Page 25: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Volumetric Imaging

Polarimetric Capon beamforming (5 tracks)

Multiple signal CS (5 tracks)

40 m

Page 26: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Towards a “realistic” sparse vegetation model

elevation

amplitude

Canopy and ground component

Possible sparse description in wavelet domain!

Page 27: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Sparsity in the wavelet domain

Daubechies wavelet example: 4 vanishing moments 3 levels of decomposition

groundcanopy ground

canopy

0.5

1

0

0.5

1

0

Page 28: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

minY 1

WY

( )AY D Gs.t.

Additional regularization

1

L1 norm of wavelet expansion

(W: transform matrix)

synthetic aperture

2,1Y

Page 29: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Volumetric Imaging in Wavelet Domain

Fourier beamforming using 23 tracks (23x23 window)

Wavelet-based CS (5 tracks)

40 m

Page 30: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Volumetric Imaging in Wavelet Domain

Fourier beamforming using 23 tracks (23x23 window)

Wavelet-based CS (5 tracks)

40 m

Page 31: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Conclusions

Single signal CS:

1. High resolution with reduced number of tracks2. Recovers complex reflectivities but polarimetry problematic3. Model mismatch is not catastrophic (CS theory)4. It’s time-consuming (Convex optimization)

Multiple signal CS:

1. Polarimetric extension of CS2. Higher probability of reconstruction, less noise3. More robust for distributed targets4. Vegetation reconstruction in the wavelet domain

Page 32: DCS-IGARSS11_v2-aguilera.ppt

IGARSS 2011Esteban Aguilera

Convex optimization solvers

CVX (Disciplined Convex Programming): http://cvxr.com/cvx/

SEDUMI: http://sedumi.ie.lehigh.edu/