deciphering the role of fluids in early stage rifting from...

1
33.0˚ 34.0˚ 35.0˚ 11.0˚ 10.0˚ 9.0˚ 33.6˚ 33.7˚ 33.8˚ 33.9˚ 34.0˚ 10.0˚ 9.9˚ 9.8˚ 9.7˚ 9.6˚ Deciphering the role of fluids in early stage rifting from full moment tensor inversion of East African earthquakes S.J. Oliva 1 ([email protected]), C.J. Ebinger 1 , S.W. Roecker 2 , D.B. Keir 3 , D.J. Shillington 4 , P. Chindandali 5 1 U. of Rochester (USA), 2 Rensselaer Polytechnic Inst. (USA), 3 U. of Southampton (UK), 4 LDEO, Columbia U. (USA), 5 Geological Survey of Malawi (Malawi) 1. Introduction 3. Magmatic sector: Kenya - Northern Tanzania 5. Discussion 2. Full moment tensor inversion The East African Rift splits around the Archaean Tanzania craton into the magmatic Eastern branch and the mostly amagmatic Western branch. The EARS is the site of lower crustal EQs and active magma intrusion, enabling detection of a broad range of rifting processes and providing insights into the early rifting. Focus: Is brittle strain accommodated by shear in magmatic and amagmatic rift sectors, or do magma and volatile flow add a significant isotropic component? Are there dierences between unusual lower crustal EQs and shallow EQs? (Adapted from Dawson, 2008) 4. Amagmatic sector: Northern Malawi Acknowledgments Dreger & Ford TDMT algorithm full waveforms, TRV components MT decompositions capture dierent mechanisms DC : shear faulting ISO : tensile opening CLVD : non-V DC deviation uses a 1D velocity model from a seismic line, north of the region largest variance reduction = best fit improved source depth estimate bp filter 0.02 - 0.10 Hz, or range within non-ISO vs ISO solution: EVT1 and EVT2: Two significant-sized EQs within a day of the same mechanism, with a big isotropic component as shown in this inversion = an intrusion? — awaiting inSAR results on this Suggests reinterpretation of shallow magma chamber of the Biggs et al (2009, 2013) geodetic model based on InSAR Full moment tensor inversion uses Dreger and Ford TDMT-INVC algorithm (Dreger, 2003; Minson & Dreger, 2008). Many thanks to N. Lindsey for assistance in learning this code. Support from NSF, ANR, IRIS/PASSCAL gratefully acknowledged. 36 -3 -2.5 < 5 <10 <15 <20 <30 <40 <50 Gelai Songo b.f. NATRON BASIN OL NS Lo F1 F3 Manyara b.f K Kitumbeine Engaruka tf F2 F4 Em C C’ C C’ -30 -20 -10 0 2.5 3.0 3.5 4.0 Vs -25 -15 -5 0 10 20 30 40 50 60 5 0 1 2 3 S. ank Gelai volcano Naibor Soito monogenetic cones N. ank, Oldoinyo Lengai volcano Songo border fault Natron Basin km km km W E 2007 dike intrusion Mw5.9 36E magma body 17/7/2007 magma body sedimentary strata Mosonik v B B’ B B’ Manyara basin magma intrusion zone local stress eld rotation RIFT SEGMENT LINKAGE VIA MAGMA INTRUSION strain by slip along border fault strain by magma intrusion and slip along border fault Gelai volcano Gelai dike intrusion zone ? Oldoinyo Lengai ca. 15 km Naibor Soito monogenetic cones NS OL Border fault Magadi basin Natron basin Geometry of earthquakes close to the region of the 2007 diking could be indicative of a sill (Weinstein et al, submitted) Strain accommodation via non-DC mechanisms (indicative of fluids?) supports the magma-driven model of rifting Tanganyika rift Malawi rift ISO component can be significant, important to consider May be indicative of fluid activity T51C-2942 35.8˚ 35.9˚ 36.0˚ 36.1˚ 36.2˚ 2.9˚ 2.8˚ 2.7˚ 2.6˚ 2.5˚ 35.0˚ 36.0˚ 37.0˚ 38.0˚ 6.0˚ 5.0˚ 4.0˚ 3.0˚ 2.0˚ 1.0˚ M1 M2 M3 M4 M5 Gelai Oldoinyo Lengai Kerimasi border fault EVT1 EVT2 EVT3 EVT4 EVT5 EVT6 0 5 10 15 20 25 30 35 40 Depth (km) Sample waveform fits Event EVT1 2013-06-03 03:24 Ml 4.40, 8 km depth % DC 30 % CLVD 32 % ISO 39 MW43.data 30.00 sec LN46.data 30.00 sec LN25.data 30.00 sec NBI.data 30.00 sec EVT2 2013-06-03 09:53 Ml 4.38, 8 km depth EVT3 2014-08-04 03:06 Ml 3.68, 11 km depth % DC 48 % CLVD 40 % ISO 12 EVT4 2014-09-05 17:54 Ml 3.60, 8 km depth % DC 37 % CLVD 28 % ISO 36 % DC 33 % CLVD 42 % ISO 25 EVT5 2014-09-19 19:50 Ml 3.50, 7 km depth % DC 65 % CLVD 30 % ISO 5 EVT6 2014-10-31 17:50 Ml 5.1, 21 km depth % DC 49 % CLVD 29 % ISO 31 PR11.data 30.00 sec MW36.data 30.00 sec LL23.data 30.00 sec PR33.data 30.00 sec LL24.data 22.50 sec LL23.data 22.50 sec LL22.data 22.50 sec KEN3.data 22.50 sec LL24.data 22.50 sec LL22.data 22.50 sec KEN3.data 22.50 sec NG55.data 22.50 sec PR31.data 22.50 sec PR11.data 22.50 sec MW44.data 22.50 sec LL65.data 22.50 sec LL65.data 22.50 sec LOSI.data 22.50 sec MBAR.data 22.50 sec PR52.data 22.50 sec deviatoric solution isotropic solution EVT1-Tanz EVT2-Tanz EVT7-Mlwi % DC 99 % CLVD 1 % ISO 0 % DC 30 % CLVD 32 % ISO 39 % DC 98 % CLVD 2 % ISO 0 % DC 37 % CLVD 28 % ISO 36 % DC 53 % CLVD 28 % ISO 19 % DC 89 % CLVD 11 % ISO 0 Sample waveform fits Event EVT7 2014-12-31 19:47 Mw 5.1, 6 km depth % DC 53 % CLVD 28 % ISO 19 EVT8 2014-12-31 20:41 5 km depth % DC 61 % CLVD 33 % ISO 6 EVT9 2015-01-01 00:33 10 km depth % DC 52 % CLVD 42 % ISO 6 ZINI.data 30.00 sec MBAM.data 30.00 sec WINO.data 30.00 sec GAWA.data 30.00 sec KALO.data 22.50 sec KARM.data 22.50 sec UWEM.data 22.50 sec NKAL.data 22.50 sec NGON.data 22.50 sec MLOW.data 22.50 sec LOSI.data 22.50 sec IGOM.data 22.50 sec EVT9 EVT7 EVT8 0 5 10 15 20 25 30 35 40 Depth (km) CRAFTI broadband seismic array, 2013-2014 M > 3.5 with good azimuthal coverage (for EVT6, the SEGMeNT array in SW complements CRAFTI) EVT1-5, source-to-receiver distances < 200 km SEGMeNT array, 2014-12-31 EQ sequence EVT7-9, source-to-receiver distances < 200 km Shallow extensional and strike-slip events, similar to 2009 Karonga sequence Unruptured segment during the 2009 sequence? Though not as strong Shallow Mw5.1 EQ may have triggered slip on faults in lower crust, with strike-slip mechanisms possibly associated with linkage to faults that slipped in 2009 First motion analyses of full aftershock sequence to test fault linkage hypothesis Smaller volumetric components of FMT in amagmatic compared to magmatic sectors, suggesting less fluid activity or dierent mechanism of activity Significant CLVD in all FMTs probably due to fluids (Weinstein et al, 2016) (Weinstein et al, 2016) (Adapted from Gaherty et al, AGU 2012; Faults after Ebinger 1993; Mortimer et al, 2007; Biggs et al, 2010; Bathymetry from Lyons et al, 2011) Rungwe Lake Malawi (Lake Nyasa) Karonga Livingstone fault 12/12/2009 12/08/2009 12/06/2009 12/19/2009

Upload: others

Post on 28-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Deciphering the role of fluids in early stage rifting from ...geoprisms.org/.../2017/02/Oliva_poster_AGU2016_opt.pdf · 33.0˚ 34.0˚ 35.0˚ −11.0˚ −10.0˚ −9.0˚ 33.6˚ 33.7˚

33.0˚ 34.0˚ 35.0˚−11.0˚

−10.0˚

−9.0˚

33.6˚ 33.7˚ 33.8˚ 33.9˚ 34.0˚−10.0˚

−9.9˚

−9.8˚

−9.7˚

−9.6˚

Deciphering the role of fluids in early stage rifting from full moment tensor inversion of East African earthquakes S.J. Oliva1 ([email protected]), C.J. Ebinger1, S.W. Roecker2, D.B. Keir3, D.J. Shillington4, P. Chindandali5

1U. of Rochester (USA), 2Rensselaer Polytechnic Inst. (USA), 3U. of Southampton (UK), 4LDEO, Columbia U. (USA), 5Geological Survey of Malawi (Malawi)

1. Introduction 3. Magmatic sector: Kenya - Northern Tanzania 5. Discussion

2. Full moment tensor inversion

The East African Rift splits around the Archaean Tanzania craton into the magmatic Eastern branch and the mostly amagmatic Western branch. The EARS is the site of lower crustal EQs and active magma intrusion, enabling detection of a broad range of rifting processes and providing insights into the early rifting.

Focus: Is brittle strain accommodated by shear in magmatic and amagmatic rift sectors, or do magma and volatile flow add a significant isotropic component? Are there differences between unusual lower crustal EQs and shallow EQs?

(Adapted from Dawson, 2008)

Chapter 1

Introduction

There are only a few areas on Earth where continental platebreak-up and the attendant magmatism are taking place at thepresent day. In this context, the East African Rift system takespride of place as it is the most extensive, presently active,continental extension zone, the extension being accompanied

by seismicity, crustal thinning and, in some sectors, magmatism.The reason for this spectacular fracturing of the African Platehas been the subject of much debate but there is general consensusthat it is due, at least in part, to the presence of rising thermalplumes in the mantle beneath Africa. The extension is now held

Fig. 1.1. Map of East Africa, showing the plate tectonic position of the North Tanzania Divergence relative to the Red Sea spreading centre, and the main structural units

of the Ethiopian and Kenya domes and the Tanzania Craton.

J. B. Dawson, University of Edinburgh ( [email protected])From: DAWSON, J. B. 2008. The Gregory Rift Valley and Neogene–Recent Volcanoes of Northern Tanzania. Geological Society, London, Memoirs, 33, 1–2.

0435-4052/08/$15.00 # The Geological Society of London 2008. DOI: 10.1144/M33.1

at Marie Curie Library - The Abdus Salam ICTP on July 20, 2015http://mem.lyellcollection.org/Downloaded from

4. Amagmatic sector: Northern Malawi

Acknowledgments

✦ Dreger & Ford TDMT algorithm ✦ full waveforms, TRV components ✦ MT decompositions capture different mechanisms

✦ DC : shear faulting ✦ ISO : tensile opening ✦ CLVD : non-∆V DC deviation

✦ uses a 1D velocity model ✦ from a seismic line, north of the region

✦ largest variance reduction = best fit ✦ improved source depth estimate ✦ bp filter 0.02 - 0.10 Hz, or range within ✦ non-ISO vs ISO solution:

✦ EVT1 and EVT2: Two significant-sized EQs within a day of the same mechanism, with a big isotropic component as shown in this inversion = an intrusion? — awaiting inSAR results on this

✦ Suggests reinterpretation of shallow magma chamber of the Biggs et al (2009, 2013) geodetic model based on InSAR

Full moment tensor inversion uses Dreger and Ford TDMT-INVC algorithm (Dreger, 2003; Minson & Dreger, 2008). Many thanks to N. Lindsey for assistance in learning this code. Support from NSF, ANR, IRIS/PASSCAL gratefully acknowledged.

36 

-3 

-2.5 

< 5<10<15<20<30<40<50

Gelai

Songob.f.

NATRONBASIN

OLNS

Lo

F1F3

Manyarab.f

K

Kitumbeine

Engaruka tf

F2

F4

Em

C C’

C C’

-30

-20

-10

0

2.5 3.0 3.5 4.0

Vs

� ��

��

����

-25

-15

-5

0 10 20 30 40 50 60

5

0

1

2

3

S. flank Gelai volcano

NaiborSoito monogenetic cones

N. flank, OldoinyoLengai volcano

Songo borderfault

Natron Basin

km

km

km

W E2007 dike intrusion

Mw5.9

36E

magma body

17/7/2007

��

��

���

magma body

sedimentary strata

Mosonik

v

B B’

B B’

Manyarabasin

magma intrusion zone local stress field rotation

RIFTSEGMENTLINKAGE VIA MAGMAINTRUSION

strainby slip alongborder fault

strainby magma intrusionand slip alongborder fault

Gelai volcano

Gelai

dike intrusion zone

?

OldoinyoLengai

ca. 15 km

Naibor Soitomonogeneticcones

NSOL

Border fault

Magadibasin

Natronbasin

✦ Geometry of earthquakes close to the region of the 2007 diking could be indicative of a sill (Weinstein et al, submitted)

✦ Strain accommodation via non-DC mechanisms (indicative of fluids?) supports the magma-driven model of rifting

Tanganyika rift

Malawi rift

✦ ISO component can be significant, important to consider ✦ May be indicative of fluid activity

T51C-2942

35.8˚ 35.9˚ 36.0˚ 36.1˚ 36.2˚−2.9˚

−2.8˚

−2.7˚

−2.6˚

−2.5˚

35.0˚ 36.0˚ 37.0˚ 38.0˚−6.0˚

−5.0˚

−4.0˚

−3.0˚

−2.0˚

−1.0˚

M1M2M3M4M5

Gelai

Oldoinyo Lengai

Kerimasi

border fault

EVT1

EVT2

EVT3

EVT4

EVT5

EVT6

0 5 10 15 20 25 30 35 40 45 50Depth (km)

Tangential Radial Vertical

MW43.data

Distance = 33 km Azimuth = 211 Max Amp = 1.39e−03 cm Zcorr = 7 VR = 50 30.00 sec

LN46.data

Distance = 64 km Azimuth = 96 Max Amp = 8.46e−04 cm Zcorr = 11 VR = 73 30.00 sec

LN26.data

Distance = 44 km Azimuth = 326 Max Amp = 4.12e−03 cm Zcorr = 6 VR = 39 30.00 sec

LN25.data

Distance = 54 km Azimuth = 334 Max Amp = 3.77e−03 cm Zcorr = 7 VR = 48 30.00 sec

LN14.data

Distance = 66 km Azimuth = 32 Max Amp = 4.44e−04 cm Zcorr = 9 VR = 6 30.00 sec

LL24.data

Distance = 82 km Azimuth = 337 Max Amp = 8.01e−04 cm Zcorr = 9 VR = −16 30.00 sec

page 1 of 2

Tangential Radial Vertical

PR63.data

Distance = 63 km Azimuth = 245 Max Amp = 6.84e−05 cm Zcorr = 4 VR = 0 22.50 sec

PR61.data

Distance = 89 km Azimuth = 255 Max Amp = 5.84e−05 cm Zcorr = 7 VR = 33 22.50 sec

NG55.data

Distance = 57 km Azimuth = 221 Max Amp = 1.15e−04 cm Zcorr = 6 VR = 66 22.50 sec

MW43.data

Distance = 51 km Azimuth = 189 Max Amp = 1.60e−04 cm Zcorr = 5 VR = 53 22.50 sec

LN15.data

Distance = 23 km Azimuth = 54 Max Amp = 3.11e−04 cm Zcorr = 0 VR = 23 22.50 sec

LL24.data

Distance = 58 km Azimuth = 336 Max Amp = 1.71e−04 cm Zcorr = 4 VR = 85 22.50 sec

page 1 of 2

Tangential Radial Vertical

NG55.data

Distance = 60 km Azimuth = 217 Max Amp = 2.34e−04 cm Zcorr = 6 VR = 57 22.50 sec

NG54.data

Distance = 72 km Azimuth = 268 Max Amp = 8.06e−05 cm Zcorr = 6 VR = 50 22.50 sec

LN26.data

Distance = 18 km Azimuth = 307 Max Amp = 2.29e−04 cm Zcorr = 2 VR = 34 22.50 sec

LN25.data

Distance = 27 km Azimuth = 329 Max Amp = 1.95e−04 cm Zcorr = 3 VR = 39 22.50 sec

LN15.data

Distance = 21 km Azimuth = 65 Max Amp = 2.16e−04 cm Zcorr = 0 VR = 29 22.50 sec

LN14.data

Distance = 54 km Azimuth = 56 Max Amp = 7.62e−05 cm Zcorr = 6 VR = 76 22.50 sec

page 1 of 2

Tangential Radial Vertical

LN34.data

22.50 sec

LL65.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

PR52.data

22.50 sec

PR61.data

22.50 sec

page 2 of 2

Sample waveform fitsEvent

EVT12013-06-03 03:24Ml 4.40, 8 km depth

% DC 30 % CLVD 32 % ISO 39

Tangential Radial Vertical

MW43.data

30.00 sec

LN46.data

30.00 sec

LN26.data

30.00 sec

LN25.data

30.00 sec

LN14.data

30.00 sec

LL24.data

30.00 sec

page 1 of 2Tangential Radial Vertical

MW43.data

30.00 sec

LN46.data

30.00 sec

LN26.data

30.00 sec

LN25.data

30.00 sec

LN14.data

30.00 sec

LL24.data

30.00 sec

page 1 of 2

Tangential Radial Vertical

MW43.data

30.00 sec

LN46.data

30.00 sec

LN26.data

30.00 sec

LN25.data

30.00 sec

LN14.data

30.00 sec

LL24.data

30.00 sec

page 1 of 2

Tangential Radial Vertical

LL23.data

30.00 sec

NBI.data

30.00 sec

KMBO.data

30.00 sec

�LL23.data

NBI.dataKMBO.data

Depth = 8Strike = 262 ; 47Rake = −66 ; −117Dip = 51 ; 44Mo = 1.40e+23Mw = 4.71Percent DC = 30Percent CLVD = 32Percent ISO = 39Variance = 1.88e−07Var. Red. = 43.0

page 2 of 2

EVT22013-06-03 09:53Ml 4.38, 8 km depth

EVT32014-08-04 03:06Ml 3.68, 11 km depth

% DC 48 % CLVD 40 % ISO 12

EVT42014-09-05 17:54Ml 3.60, 8 km depth

% DC 37 % CLVD 28 % ISO 36

% DC 33 % CLVD 42 % ISO 25

EVT52014-09-19 19:50Ml 3.50, 7 km depth

% DC 65 % CLVD 30 % ISO 5

EVT62014-10-31 17:50Ml 5.1, 21 km depth

% DC 49 % CLVD 29 % ISO 31

Tangential Radial Vertical

PR63.data

30.00 sec

PR33.data

30.00 sec

PR11.data

30.00 sec

NG56.data

30.00 sec

NG54.data

30.00 sec

MW36.data

30.00 sec

PR63.dataPR33.data

PR11.dataNG56.data

NG54.data

MW36.data

Depth = 8Strike = 260 ; 32Rake = −64 ; −132Dip = 64 ; 36Mo = 5.20e+23Mw = 5.08Percent DC = 37Percent CLVD = 28Percent ISO = 36Variance = 6.00e−07Var. Red. = 44.4

page 1 of 2

Tangential Radial Vertical

PR63.data

30.00 sec

PR33.data

30.00 sec

PR11.data

30.00 sec

NG56.data

30.00 sec

NG54.data

30.00 sec

MW36.data

30.00 sec

PR63.dataPR33.data

PR11.dataNG56.data

NG54.data

MW36.data

Depth = 8Strike = 260 ; 32Rake = −64 ; −132Dip = 64 ; 36Mo = 5.20e+23Mw = 5.08Percent DC = 37Percent CLVD = 28Percent ISO = 36Variance = 6.00e−07Var. Red. = 44.4

page 1 of 2

Tangential Radial Vertical

LN26.data

30.00 sec

LN25.data

30.00 sec

LN15.data

30.00 sec

LL65.data

30.00 sec

LL23.data

30.00 sec

LN26.data

LN25.data

LN15.dataLL65.data

LL23.data

Depth = 8Strike = 260 ; 32Rake = −64 ; −132Dip = 64 ; 36Mo = 5.20e+23Mw = 5.08Percent DC = 37Percent CLVD = 28Percent ISO = 36Variance = 6.00e−07Var. Red. = 44.4

page 2 of 2

Tangential Radial Vertical

PR63.data

30.00 sec

PR33.data

30.00 sec

PR11.data

30.00 sec

NG56.data

30.00 sec

NG54.data

30.00 sec

MW36.data

30.00 sec

PR63.dataPR33.data

PR11.dataNG56.data

NG54.data

MW36.data

Depth = 8Strike = 260 ; 32Rake = −64 ; −132Dip = 64 ; 36Mo = 5.20e+23Mw = 5.08Percent DC = 37Percent CLVD = 28Percent ISO = 36Variance = 6.00e−07Var. Red. = 44.4

page 1 of 2

Tangential Radial Vertical

PR63.data

22.50 sec

PR61.data

22.50 sec

NG55.data

22.50 sec

MW43.data

22.50 sec

LN15.data

22.50 sec

LL24.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

LL23.data

22.50 sec

LL22.data

22.50 sec

KEN3.data

22.50 sec

KEN2.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

LL23.data

22.50 sec

LL22.data

22.50 sec

KEN3.data

22.50 sec

KEN2.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

LL23.data

22.50 sec

LL22.data

22.50 sec

KEN3.data

22.50 sec

KEN2.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

LL66.data

22.50 sec

LL24.data

22.50 sec

LL23.data

22.50 sec

LL22.data

22.50 sec

KEN3.data

22.50 sec

KEN2.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

LL66.data

22.50 sec

LL24.data

22.50 sec

LL23.data

22.50 sec

LL22.data

22.50 sec

KEN3.data

22.50 sec

KEN2.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

LL66.data

22.50 sec

LL24.data

22.50 sec

LL23.data

22.50 sec

LL22.data

22.50 sec

KEN3.data

22.50 sec

KEN2.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

NG55.data

22.50 sec

NG54.data

22.50 sec

LN26.data

22.50 sec

LN25.data

22.50 sec

LN15.data

22.50 sec

LN14.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

PR33.data

22.50 sec

PR31.data

22.50 sec

PR11.data

22.50 sec

NG55.data

22.50 sec

MW44.data

22.50 sec

LN46.data

22.50 sec

page 1 of 2Tangential Radial Vertical

PR33.data

22.50 sec

PR31.data

22.50 sec

PR11.data

22.50 sec

NG55.data

22.50 sec

MW44.data

22.50 sec

LN46.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

PR33.data

22.50 sec

PR31.data

22.50 sec

PR11.data

22.50 sec

NG55.data

22.50 sec

MW44.data

22.50 sec

LN46.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

LN34.data

22.50 sec

LL65.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

JILO.data

22.50 sec

KIPE.data

22.50 sec

LL65.data

22.50 sec

LOSI.data

22.50 sec

MBAR.data

22.50 sec

NG56.data

22.50 sec

page 1 of 2Tangential Radial Vertical

JILO.data

22.50 sec

KIPE.data

22.50 sec

LL65.data

22.50 sec

LOSI.data

22.50 sec

MBAR.data

22.50 sec

NG56.data

22.50 sec

page 1 of 2Tangential Radial Vertical

JILO.data

22.50 sec

KIPE.data

22.50 sec

LL65.data

22.50 sec

LOSI.data

22.50 sec

MBAR.data

22.50 sec

NG56.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

PR52.data

22.50 sec

PR61.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

MW43.data

Distance = 33 km Azimuth = 211 Max Amp = 1.39e−03 cm Zcorr = 7 VR = 50 30.00 sec

LN46.data

Distance = 64 km Azimuth = 96 Max Amp = 8.46e−04 cm Zcorr = 11 VR = 73 30.00 sec

LN26.data

Distance = 44 km Azimuth = 326 Max Amp = 4.12e−03 cm Zcorr = 6 VR = 39 30.00 sec

LN25.data

Distance = 54 km Azimuth = 334 Max Amp = 3.77e−03 cm Zcorr = 7 VR = 48 30.00 sec

LN14.data

Distance = 66 km Azimuth = 32 Max Amp = 4.44e−04 cm Zcorr = 9 VR = 6 30.00 sec

LL24.data

Distance = 82 km Azimuth = 337 Max Amp = 8.01e−04 cm Zcorr = 9 VR = −16 30.00 sec

page 1 of 2

Tangential Radial Vertical

MW43.data

Distance = 33 km Azimuth = 211 Max Amp = 1.39e−03 cm Zcorr = 6 VR = 35 30.00 sec

LN46.data

Distance = 64 km Azimuth = 96 Max Amp = 8.46e−04 cm Zcorr = 11 VR = 68 30.00 sec

LN26.data

Distance = 44 km Azimuth = 326 Max Amp = 4.12e−03 cm Zcorr = 6 VR = 38 30.00 sec

LN25.data

Distance = 54 km Azimuth = 334 Max Amp = 3.77e−03 cm Zcorr = 7 VR = 46 30.00 sec

LN14.data

Distance = 66 km Azimuth = 32 Max Amp = 4.44e−04 cm Zcorr = 9 VR = 3 30.00 sec

LL24.data

Distance = 82 km Azimuth = 337 Max Amp = 8.01e−04 cm Zcorr = 9 VR = −15 30.00 sec

page 1 of 2Tangential Radial Vertical

LN26.data

Distance = 16 km Azimuth = 305 Max Amp = 4.19e−03 cm Zcorr = 7 VR = 52 30.00 sec

LN25.data

Distance = 25 km Azimuth = 330 Max Amp = 3.30e−03 cm Zcorr = 6 VR = 61 30.00 sec

LN15.data

Distance = 22 km Azimuth = 70 Max Amp = 2.66e−03 cm Zcorr = 8 VR = 26 30.00 sec

LL65.data

Distance = 70 km Azimuth = 296 Max Amp = 3.69e−03 cm Zcorr = 14 VR = 31 30.00 sec

LL23.data

Distance = 56 km Azimuth = 322 Max Amp = 1.80e−03 cm Zcorr = 8 VR = 37 30.00 sec

page 2 of 2

deviatoric solution

isotropic solution

EVT1-Tanz EVT2-Tanz EVT7-Mlwi

% DC 99 % CLVD 1 % ISO 0

% DC 30 % CLVD 32 % ISO 39

% DC 98 % CLVD 2 % ISO 0

% DC 37 % CLVD 28 % ISO 36

Tangential Radial Vertical

THAN.data

Distance = 163 km Azimuth = 168 Max Amp = 5.74e−03 cm Zcorr = 14 VR = 28 30.00 sec

MLOW.data

Distance = 91 km Azimuth = 156 Max Amp = 1.01e−02 cm Zcorr = 6 VR = 58 30.00 sec

ZINI.data

Distance = 168 km Azimuth = 107 Max Amp = 1.18e−02 cm Zcorr = 11 VR = 75 30.00 sec

NGEA.data

Distance = 211 km Azimuth = 110 Max Amp = 1.42e−02 cm Zcorr = 17 VR = 44 30.00 sec

LIGA.data

Distance = 168 km Azimuth = 116 Max Amp = 9.85e−03 cm Zcorr = 12 VR = 75 30.00 sec

KURU.data

Distance = 217 km Azimuth = 127 Max Amp = 1.08e−02 cm Zcorr = 19 VR = 58 30.00 sec

page 1 of 3

% DC 53 % CLVD 28 % ISO 19

Tangential Radial Vertical

THAN.data

Distance = 163 km Azimuth = 168 Max Amp = 5.72e−03 cm Zcorr = 14 VR = 21 30.00 sec

MLOW.data

Distance = 91 km Azimuth = 156 Max Amp = 8.35e−03 cm Zcorr = 6 VR = 47 30.00 sec

ZINI.data

Distance = 168 km Azimuth = 107 Max Amp = 1.18e−02 cm Zcorr = 11 VR = 74 30.00 sec

NGEA.data

Distance = 211 km Azimuth = 110 Max Amp = 1.41e−02 cm Zcorr = 17 VR = 44 30.00 sec

LIGA.data

Distance = 168 km Azimuth = 116 Max Amp = 9.95e−03 cm Zcorr = 12 VR = 74 30.00 sec

KURU.data

Distance = 217 km Azimuth = 127 Max Amp = 1.09e−02 cm Zcorr = 19 VR = 56 30.00 sec

page 1 of 3

% DC 89 % CLVD 11 % ISO 0

Sample waveform fitsEvent

EVT72014-12-31 19:47Mw 5.1, 6 km depth

% DC 53 % CLVD 28 % ISO 19

EVT82014-12-31 20:41 5 km depth

% DC 61 % CLVD 33 % ISO 6

EVT92015-01-01 00:33

10 km depth

% DC 52 % CLVD 42 % ISO 6

Tangential Radial Vertical

THAN.data

30.00 sec

MLOW.data

30.00 sec

ZINI.data

30.00 sec

NGEA.data

30.00 sec

LIGA.data

30.00 sec

KURU.data

30.00 sec

THAN.dataMLOW.data

ZINI.dataNGEA.dataLIGA.data

KURU.data

Depth = 6Strike = 9 ; 160Rake = −72 ; −113Dip = 53 ; 41Mo = 2.80e+24Mw = 5.57Percent DC = 53Percent CLVD = 28Percent ISO = 19Variance = 2.25e−06Var. Red. = 60.6

page 1 of 3

Tangential Radial Vertical

CHML.data

30.00 sec

WINO.data

30.00 sec

MKIL.data

30.00 sec

MBAM.data

30.00 sec

LOSI.data

30.00 sec

JILO.data

30.00 sec

�CHML.data

WINO.data

MKIL.dataMBAM.data

LOSI.dataJILO.data

Depth = 6Strike = 9 ; 160Rake = −72 ; −113Dip = 53 ; 41Mo = 2.80e+24Mw = 5.57Percent DC = 53Percent CLVD = 28Percent ISO = 19Variance = 2.25e−06Var. Red. = 60.6

page 2 of 3

Tangential Radial Vertical

CHML.data

30.00 sec

WINO.data

30.00 sec

MKIL.data

30.00 sec

MBAM.data

30.00 sec

LOSI.data

30.00 sec

JILO.data

30.00 sec

�CHML.data

WINO.data

MKIL.dataMBAM.data

LOSI.dataJILO.data

Depth = 6Strike = 9 ; 160Rake = −72 ; −113Dip = 53 ; 41Mo = 2.80e+24Mw = 5.57Percent DC = 53Percent CLVD = 28Percent ISO = 19Variance = 2.25e−06Var. Red. = 60.6

page 2 of 3

Tangential Radial Vertical

GAWA.data

30.00 sec

MBEY.data

30.00 sec

� GAWA.dataMBEY.data

Depth = 6Strike = 9 ; 160Rake = −72 ; −113Dip = 53 ; 41Mo = 2.80e+24Mw = 5.57Percent DC = 53Percent CLVD = 28Percent ISO = 19Variance = 2.25e−06Var. Red. = 60.6

page 3 of 3

Tangential Radial Vertical

KALO.data

22.50 sec

THAZ.data

22.50 sec

KARM.data

22.50 sec

KIPE.data

22.50 sec

UWEM.data

22.50 sec

NKAL.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

KALO.data

22.50 sec

THAZ.data

22.50 sec

KARM.data

22.50 sec

KIPE.data

22.50 sec

UWEM.data

22.50 sec

NKAL.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

KALO.data

22.50 sec

THAZ.data

22.50 sec

KARM.data

22.50 sec

KIPE.data

22.50 sec

UWEM.data

22.50 sec

NKAL.data

22.50 sec

page 1 of 2Tangential Radial Vertical

KALO.data

22.50 sec

THAZ.data

22.50 sec

KARM.data

22.50 sec

KIPE.data

22.50 sec

UWEM.data

22.50 sec

NKAL.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

NGON.data

22.50 sec

MLOW.data

22.50 sec

KAPK.data

22.50 sec

ZINI.data

22.50 sec

LOSI.data

22.50 sec

IGOM.data

22.50 sec

page 1 of 1Tangential Radial Vertical

NGON.data

22.50 sec

MLOW.data

22.50 sec

KAPK.data

22.50 sec

ZINI.data

22.50 sec

LOSI.data

22.50 sec

IGOM.data

22.50 sec

page 1 of 1

Tangential Radial Vertical

NGON.data

22.50 sec

MLOW.data

22.50 sec

KAPK.data

22.50 sec

ZINI.data

22.50 sec

LOSI.data

22.50 sec

IGOM.data

22.50 sec

page 1 of 1Tangential Radial Vertical

NGON.data

22.50 sec

MLOW.data

22.50 sec

KAPK.data

22.50 sec

ZINI.data

22.50 sec

LOSI.data

22.50 sec

IGOM.data

22.50 sec

page 1 of 1

EVT9

EVT7

EVT8

Tangential Radial Vertical

THAN.data

Distance = 163 km Azimuth = 168 Max Amp = 5.74e−03 cm Zcorr = 14 VR = 28 30.00 sec

MLOW.data

Distance = 91 km Azimuth = 156 Max Amp = 1.01e−02 cm Zcorr = 6 VR = 58 30.00 sec

ZINI.data

Distance = 168 km Azimuth = 107 Max Amp = 1.18e−02 cm Zcorr = 11 VR = 75 30.00 sec

NGEA.data

Distance = 211 km Azimuth = 110 Max Amp = 1.42e−02 cm Zcorr = 17 VR = 44 30.00 sec

LIGA.data

Distance = 168 km Azimuth = 116 Max Amp = 9.85e−03 cm Zcorr = 12 VR = 75 30.00 sec

KURU.data

Distance = 217 km Azimuth = 127 Max Amp = 1.08e−02 cm Zcorr = 19 VR = 58 30.00 sec

page 1 of 3

0 5 10 15 20 25 30 35 40 45 50Depth (km)

Tangential Radial Vertical

KALO.data

22.50 sec

THAZ.data

22.50 sec

KARM.data

22.50 sec

KIPE.data

22.50 sec

UWEM.data

22.50 sec

NKAL.data

22.50 sec

page 1 of 2

Tangential Radial Vertical

NGON.data

22.50 sec

MLOW.data

22.50 sec

KAPK.data

22.50 sec

ZINI.data

22.50 sec

LOSI.data

22.50 sec

IGOM.data

22.50 sec

page 1 of 1

✦ CRAFTI broadband seismic array, 2013-2014 ✦ M > 3.5 with good azimuthal coverage (for EVT6, the SEGMeNT array in SW

complements CRAFTI) ✦ EVT1-5, source-to-receiver distances < 200 km

✦ SEGMeNT array, 2014-12-31 EQ sequence ✦ EVT7-9, source-to-receiver distances < 200 km

✦ Shallow extensional and strike-slip events, similar to 2009 Karonga sequence

✦ Unruptured segment during the 2009 sequence? Though not as strong

✦ Shallow Mw5.1 EQ may have triggered slip on faults in lower crust, with strike-slip mechanisms possibly associated with linkage to faults that slipped in 2009

✦ First motion analyses of full aftershock sequence to test fault linkage hypothesis

✦ Smaller volumetric components of FMT in amagmatic compared to magmatic sectors, suggesting less fluid activity or different mechanism of activity

✦ Significant CLVD in all FMTs probably due to fluids

(Weinstein et al, 2016)

(Weinstein et al, 2016)

(Adapted from Gaherty et al, AGU 2012; Faults after Ebinger 1993; Mortimer et al, 2007; Biggs et al, 2010; Bathymetry from Lyons et al, 2011)

Tangential Radial Vertical

MW43.data

Distance = 33 km Azimuth = 211 Max Amp = 1.39e−03 cm Zcorr = 7 VR = 50 30.00 sec

LN46.data

Distance = 64 km Azimuth = 96 Max Amp = 8.46e−04 cm Zcorr = 11 VR = 73 30.00 sec

LN26.data

Distance = 44 km Azimuth = 326 Max Amp = 4.12e−03 cm Zcorr = 6 VR = 39 30.00 sec

LN25.data

Distance = 54 km Azimuth = 334 Max Amp = 3.77e−03 cm Zcorr = 7 VR = 48 30.00 sec

LN14.data

Distance = 66 km Azimuth = 32 Max Amp = 4.44e−04 cm Zcorr = 9 VR = 6 30.00 sec

LL24.data

Distance = 82 km Azimuth = 337 Max Amp = 8.01e−04 cm Zcorr = 9 VR = −16 30.00 sec

page 1 of 2

Tangential Radial Vertical

PR63.data

Distance = 63 km Azimuth = 245 Max Amp = 6.84e−05 cm Zcorr = 4 VR = 0 22.50 sec

PR61.data

Distance = 89 km Azimuth = 255 Max Amp = 5.84e−05 cm Zcorr = 7 VR = 33 22.50 sec

NG55.data

Distance = 57 km Azimuth = 221 Max Amp = 1.15e−04 cm Zcorr = 6 VR = 66 22.50 sec

MW43.data

Distance = 51 km Azimuth = 189 Max Amp = 1.60e−04 cm Zcorr = 5 VR = 53 22.50 sec

LN15.data

Distance = 23 km Azimuth = 54 Max Amp = 3.11e−04 cm Zcorr = 0 VR = 23 22.50 sec

LL24.data

Distance = 58 km Azimuth = 336 Max Amp = 1.71e−04 cm Zcorr = 4 VR = 85 22.50 sec

page 1 of 2

Tangential Radial Vertical

NG55.data

Distance = 60 km Azimuth = 217 Max Amp = 2.34e−04 cm Zcorr = 6 VR = 57 22.50 sec

NG54.data

Distance = 72 km Azimuth = 268 Max Amp = 8.06e−05 cm Zcorr = 6 VR = 50 22.50 sec

LN26.data

Distance = 18 km Azimuth = 307 Max Amp = 2.29e−04 cm Zcorr = 2 VR = 34 22.50 sec

LN25.data

Distance = 27 km Azimuth = 329 Max Amp = 1.95e−04 cm Zcorr = 3 VR = 39 22.50 sec

LN15.data

Distance = 21 km Azimuth = 65 Max Amp = 2.16e−04 cm Zcorr = 0 VR = 29 22.50 sec

LN14.data

Distance = 54 km Azimuth = 56 Max Amp = 7.62e−05 cm Zcorr = 6 VR = 76 22.50 sec

page 1 of 2

Tangential Radial Vertical

LN34.data

22.50 sec

LL65.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

PR52.data

22.50 sec

PR61.data

22.50 sec

page 2 of 2

Tangential Radial Vertical

THAN.data

Distance = 163 km Azimuth = 168 Max Amp = 5.74e−03 cm Zcorr = 14 VR = 28 30.00 sec

MLOW.data

Distance = 91 km Azimuth = 156 Max Amp = 1.01e−02 cm Zcorr = 6 VR = 58 30.00 sec

ZINI.data

Distance = 168 km Azimuth = 107 Max Amp = 1.18e−02 cm Zcorr = 11 VR = 75 30.00 sec

NGEA.data

Distance = 211 km Azimuth = 110 Max Amp = 1.42e−02 cm Zcorr = 17 VR = 44 30.00 sec

LIGA.data

Distance = 168 km Azimuth = 116 Max Amp = 9.85e−03 cm Zcorr = 12 VR = 75 30.00 sec

KURU.data

Distance = 217 km Azimuth = 127 Max Amp = 1.08e−02 cm Zcorr = 19 VR = 58 30.00 sec

page 1 of 3

Tangential Radial Vertical

NGON.data

22.50 sec

MLOW.data

22.50 sec

KAPK.data

22.50 sec

ZINI.data

22.50 sec

LOSI.data

22.50 sec

IGOM.data

22.50 sec

page 1 of 1

Tangential Radial Vertical

KALO.data

22.50 sec

THAZ.data

22.50 sec

KARM.data

22.50 sec

KIPE.data

22.50 sec

UWEM.data

22.50 sec

NKAL.data

22.50 sec

page 1 of 2

Rungwe

Lake Malawi (Lake Nyasa)

Karonga

Livingstone fault

12/12/2009

12/08/2009

12/06/2009

12/19/2009