defect kinetics in epi /cz silicon after co 60 - irradiation

12
Defect kinetics in Epi/Cz silicon after Co 60 - irradiation I. Pintilie *, G. Lindstroem**, E. Fretwurst**, F. Hoeniger and B.G. Svensson*** * National Institute of Materials Physics, Bucharest, Romania ** Institute of Experimental Physics-University of Hamburg, Hamburg, Germany *** Oslo University, Dept.of Physics, Oslo, Norway

Upload: clint

Post on 24-Jan-2016

43 views

Category:

Documents


0 download

DESCRIPTION

Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation. I. Pintilie *, G. Lindstroem**, E. Fretwurst** , F. Hoeniger and B . G. S vensson ** * * National Institute of Materials Physics, Bucharest, Romania ** Institute of Experimental Physics - University of Hamburg, Hamburg, Germany - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

Defect kinetics in Epi/Cz silicon after Co60- irradiation

I. Pintilie*, G. Lindstroem**, E. Fretwurst**, F. Hoeniger and B.G. Svensson***

* National Institute of Materials Physics, Bucharest, Romania

** Institute of Experimental Physics-University of Hamburg, Hamburg, Germany

*** Oslo University, Dept.of Physics, Oslo, Norway

Page 2: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

Motivation- The divacancy annealing mechanisms proposed for STFZ after low irradiation doses cannot explain the results obtained in Epi/Cz diodes after high doses of irradiation

EPI-Silicon wafers: <111>, n/P, 50 Ωcm, 50 μm on 300 μm Cz-substrate, CiS process

Sample STFZ DOFZ EPI/Cz

SIMS [O]<5*1016 1.2*1017 (1.5- 30)*1016

Carbon concentration for all materials

at detection limit [C] 5.71015 cm-3

Irradiation source: Brookhaven National Laboratory for 60Co--photons

0 5 10 15 20 25 30 35 40 45 50

1E16

1E17

Oxy

gen

Con

cent

ratio

n (c

m-3)

Epilayer thickness (m)

SIMS

Page 3: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

Annealing experiments

80 120 160 200 240 280T [K]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

DL

TS

Sign

al [

pF]

as irradiatedas irradiated

VV(-/0)+X(-/0)VV(-/0)+X(-/0)

120 min 250oC120 min 250oC

E(140)E(140)

360 min 250oC360 min 250oC E(110)+X(=/-)+VV(=/-)14 h 250oC14 h 250oC39 h 250oC39 h 250oC215 h at 250oC215 h at 250oC

E(175)E(175) E(245)E(245)

Annealing DOFZ at 250oC

X defect – two acceptor states - Identified as V2O 1) Proposed formation mechanism1): V2 +Oi V2O(with DV2 = 3x10-3 exp (-1.3eV) instead of the former DV2 = 0.1 exp (-1.3eV) )

1) Monakov et al, Phys Rev B, Volume 65, 233207 (2002)

80 120 160 200 240 280T [K]

-0.01

0.01

0.03

0.05

0.07

0.09

DL

TS

Sign

al [

pF]

as irradiatedas irradiatedVV(-/0)VV(-/0)

2 h 250oC2 h 250oCVV(=/-)VV(=/-)

E(140)E(140)

6 h 250oC6 h 250oC14 h 250oC14 h 250oC30 h 250oC30 h 250oC65 h 250oC65 h 250oC113 h at 250oC113 h at 250oC212 h at 250oC212 h at 250oC

E(110)E(110)E(175)E(175)

Annealing STFZ

• low irradiation doses (4 Mrad) – the X defect is formed in oxygen enriched material via the annealing of divacancy for T> 2500C

Page 4: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

80 100 120 140 160 180 200

0

5

10

15

20

25

V2

=/-

X=/-

X-/0

V2

-/0

TS

C s

ignal (

pA

)

Temperature (K)

30min@200C 40min@300C 60min@300C 160 min@300C 240min@300C 440min@300C 1220min@300C

• high irradiation doses (>100 Mrad) – X center formed in concentration higher than of V2 for T> 2500C

80 100 120 140 160 180 200

0

5

10

15

20

V2

=/-

X=/-

X-/0

V2

-/0

TS

C s

igna

l (pA

)

Temperature (K)

30min@200C 60min@300C 80 min@300C 160min@300C 440 min@300C 560min@300C 1220min@300C

Dose = 315 Mrad±10% Dose = 520 Mrad ±10%

Epi/Cz material – T = 300 0C

[X]~3x[V2] [X]~5x[V2]

X defect – Identified as V2O2 2) via: V2 +O2 V2O2 and VO+VO

(with DV2 = 0.1 exp (-1.3eV) and DVO(T)=6Exp(-1.8eV/KT) cm2/s)

2) I.Pintilie et al- 6th and 7th RD50 workshops

Page 5: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

Which defect reactions at T>250 C can produce more V2O ?

• V2 +O → V2O

• V+VO → V2O

Should exists a source of V

• Most probable VO can be the V source – it dissociates during annealing at T >250 C

• VO → V + O

Page 6: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

Defect reactions

Vacancy-Oxygen related defect reactions

Diffusion reactions• V + O → VO• V+VO → V2O• V+V → V2

• V2 +O → V2O• V2 +O2 → V2O2 • V+O2 → VO2 • VO+O→ VO2

• V +VO2 → V2O2 • VO+VO → V2O2 Dissociation reactions• VO → V + O • V2O → V +VO• V2O2 → VO+VO• V2 → V +V

Defect reactions with other impurities*

Diffusion reactions• VO+H→ VOH• V2 +H → V2H• V +H → VH• CiOi+H→ COH• V+CiOi → CsOi• Ci+V → Cs• Ci+Oi → CiOi• V+ CiCs→ CsCsDissociation reactions• VOH → VO + H • V2H → V +VH• VH → V+H• CiCs → Ci+Cs

*Do not affect the V-O defect reactions as long as [H]<1015 cm-3

Page 7: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

Parameters used for simulations

• [Oi] = profile from SIMS • [VO] = 1.1x1012 x Dose (Mrad) x cm-3

• r = 5x10-10m

Diffusion parameters(updated to nowdays literature)

• DVO(T)=6Exp(-1.8eV/KT) cm2/s; • DVV(T)= 3x10-3exp(-1.3eV/KT) cm2/s; • DOd(T)=3x10-4exp(-1.3eV/KT) cm2/s; • Doi(T)=0.17exp(-2.54eV/KT) cm2/s• DV(T)= 4.5x10-4exp(-0.3eV/KT) cm2/s; • DCi(T)= 4.4x10-1exp(-0.87eV/KT)

cm2/s;

Dissociation• K

VO = 1 x 1013exp(-2.1eV/KT) s-1;

• KV2O2 = 1.5 x 1013exp(-2.1eV/KT) s-1

• KV2O = 2 x 1013exp(-2.1eV/KT) s-1

Page 8: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

0 5 10 15 20 25 30 35 40 45 50

1E16

1E17

Oxy

gen

Con

cent

ratio

n (c

m-3)

Epilayer thickness (m)

SIMS

Oi profile - from SIMS measurements

Page 9: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

0 5000 10000 15000 20000 25000

0.0

2.0x1012

4.0x1012

6.0x1012

8.0x1012

1.0x1013

1.2x1013

1.4x1013

1.6x1013

520 Mrad - Tannealing

=3000C

Def

ect

conc

entr

atio

n (c

m-3)

Annealing time (min)

V2O

2- numerical

distance from the surface (m)

Oi<5x1016 cm-3 5 10 15 20 25 30

Oi:(5x1016-1017) cm-3 35 40

Oi>1017 cm-3 45 50

Xexp

0 5000 10000 15000 20000 25000-1x1012

0

1x1012

2x1012

3x1012

4x1012

5x1012

6x1012

7x1012

8x1012

9x1012

1x1013

520 Mrad - Tannealing

=3000C

Def

ect c

once

ntra

tion

(cm

-3)

Annealing time (min)

V2O- numerical

distance from the surface (m)

Oi<5x1016 cm-3 5 10 15 20 25 30

Oi:(5x1016-1017) cm-3 35 40

Oi>1017 cm-3 45 50

Xexp

520 Mrad - T=3000C

V2O2 V2O

0 5 10 15 20 25 30 35 40 45 50

1E16

1E17

Oxygen C

oncentr

ation (

cm

-3)

Epilayer thickness (m)

SIMS

Page 10: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

-100 0 100 200 300 400 500 600 700 800 900 1000

0.0

5.0x1011

1.0x1012

1.5x1012

2.0x1012

2.5x1012

520 Mrad - Tannealing

=3000C

Def

ect c

once

ntra

tion

(cm

-3)

Annealing time (min)

V2 exp V2 average

0 5000 10000 15000 20000

0.0

2.0x1012

4.0x1012

6.0x1012

8.0x1012

1.0x1013

520 Mrad - Tannealing

=3000C

Def

ect c

once

ntra

tion

(cm

-3)

Annealing time (min)

V2O2 average Xexp V2O average

520 Mrad - T=3000C

Page 11: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

0 200 400 600 800 1000

0.0

5.0x1011

1.0x1012

1.5x1012

2.0x1012

2.5x1012

3.0x1012

570 Mrad - Tannealing

=3200C

Def

ect c

once

ntra

tion

(cm

-3)

Annealing time (min)

V2 average V2 exp

570 Mrad - T=3200C

-1000 0 1000 2000 3000 4000 5000 6000 7000

0

2x1012

4x1012

6x1012

8x1012

1x1013

1x1013

570 Mrad - Tannealing

=3200C

Def

ect c

once

ntra

tion

(cm

-3)

Annealing time (min)

V2O2 average X exp V2O average

Page 12: Defect kinetics in Epi /Cz silicon after Co 60 -  irradiation

• Simulations based on a more complex system of defect reactions show that both V2O and V2O2 defects should form at elevated temperature.

• With VO as single initial source for vacancies and for the irradiation dose range investigated here: V2O2 can be produced in a similar concentration with X center V2O can be produced in a concentration higher than V2 but in a much smaller concentration than of the X center

• Further studies are under discussion regarding the existence of additional single V migrating from Cz substrate.

Conclusions