definite and indefinite integration

18
7/23/2019 Definite and Indefinite Integration http://slidepdf.com/reader/full/definite-and-indefinite-integration 1/18 KEY CONCEPTS 1. DEFINITION: If f & g are functions of x such that g'(x) = f(x) then the function g is called a PRIMITIVE OR ANTIDERIVATIVE O R INTEGRAL of f(x) w.r.t. x and is written symbolically as f ci I f(x) dx = g(x) + c <=> — (g(x) + c) = f(x), where c is called the constant of integration, dx 2. STANDARD RESULTS : \n+l r (ax+b) n i) (ax + b)°dx= , \ +c n*-l J  a(n+l) iii) f  e ax+b  dx = - e ax+b  + c a v) f sin(ax+b) dx = -— cos(ax+b) + c a vii) j tan(ax + b) dx = —  In sec (ax + b) + c a ix) J sec 2  (ax + b) dx = —  tan(ax + b) + c a xi) J sec (ax + b) . tan (ax + b) dx = —  sec (ax + b) + c a xii) J cosec (ax + b) . cot (ax + b) dx = cosec (ax + b) + c a xiii) J secx dx =I n (secx + tanx) + c OR  In tan { + y j  + c xiv) J cosec x dx = In (cosecx - cotx) + c OR  In tan ^ + c OR - In (cosecx + cotx) xv) J sinh x dx = cosh x + c  (xvi) J cosh xdx = sinh x + c  (xvii) J sech 2 x dx = tanh x + c xviii) J cosech 2 x dx = - coth x + c (xix) J sech x. tanh x dx = - sech x + c xx) J cosechx. cothxdx= -cosechx + c (xxi) j" (ii) j =- /n(ax + b) + c ax+b a r 1 n  px+ q (iv) I aP x+ i dx = —  (a > 0) + c . p fna (vi) J cos(ax +b )dx= - sin(ax +b ) + c a (viii) f  cot(ax+b)  dx = - /n sin(ax+b)+  c a (x) j cosec 2 (ax + b) dx = _  1 cot(ax + b)+ c dx . , x , = sin  1  — + c xxii) J dx  „ = - tan -1  —  + c a 2 +x 2 (xxiii) J dx x-v/x 2 -a 2  a 1  -l  x  ^ = —  sec  1  —  +1 xxiv) J 7 =ln + ' J  L x 2  + a 2 x 2  + a 2 OR  sinh -1  - + c a xxv) J xxvi) | dx Tn x + OR  cosh" 1  - + c a dx l , a+x In 2 2 - a -x 2a a-x + c (xxvii) j dx 1 , x-a In + c x 2 -a 2  2a x+a <!SBansal Classes Definite & Indefinite Integration [2]

Upload: skj6272

Post on 18-Feb-2018

289 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 1/18

K E Y C O N C E P T S

1. D E F I N I T I O N :

If f & g are functions of x such that g'(x) = f(x) then the function g is called a PRIMITIVE O R

ANTIDERIVATIVE O R INTEGRAL  of f(x) w.r.t. x and is written symbolically as

f ciI  f(x) dx = g(x) + c <=> — (g(x) + c) = f(x), where c is called the  constant of integration,

dx

2. STANDARD RESULTS :

\ n + lr (ax+b)n

i)  (ax + b)°dx= , \ + c n * - lJ  a(n+l)

iii) f   eax+b dx = - eax+b + ca

v) f sin(ax+b) dx = -— cos(ax +b) + ca

vii)  j tan(ax + b) dx = —   In sec (ax + b) + ca

ix) J  sec2 (ax + b) dx =  —   tan(ax + b) + ca

xi) J  sec (ax + b) . tan (ax + b) dx =  —   sec (ax + b) + ca

xii) J  cosec (ax + b) . cot (ax + b) dx = cosec (ax + b) + ca

xiii)  J  secx dx=In (secx + tanx) + c  OR   In tan { + y j  + c

xiv) J  cosec x dx = In (cosecx - cotx) + c  OR   In tan ^ + c  OR -  In (cosecx + cotx)

xv) J  sinh x dx = cosh x + c  (xvi) J  cosh xdx = sinh x + c  (xvii) J  sech2x dx = tanh x + c

xviii) J  cosech2x dx = - coth x + c  (xix) J  sech x . tanh x dx = - sech x + c

xx)  J cosechx. cot hxd x= -co se chx + c  (xxi)  j"

(ii)  j =-  /n(ax + b) + cax+b a

r 1 n px+q

(iv) I  aPx+i dx =  —   (a > 0) + c. p fn a

(vi) J  cos(ax+b)dx= - sin(ax+b) + ca

(viii) f   cot(ax+b) dx = - /n sin(ax+b)+ ca

(x)  j cosec2(ax + b) dx = _  1  cot(ax + b)+ c

dx . , x ,= sin  1 — + c

xxii) J „dx

  „ = -  tan-1 —  + ca2+x 2

(xxiii) Jdx

x-v/x2-a2  a

1  -l   x  ^=  —   sec  1 —   +1

xxiv) J 7 =ln +' J  Lx2 + a2

x 2 + a 2OR   sinh-1  - + c

a

xxv) J

xxvi) |

dxTn x + OR   cosh"1  - + c

a

dx l , a+xIn2 2 -a - x 2a a - x

+ c (xxvii)  jdx 1 , x - a

In + cx 2 - a 2  2a x+a

<!SBansal Classes Definite & Indefinite Integration [2]

Page 2: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 2/18

(xxviii)  j  .y]a2-x2  dx = -  A / a2 - x

2  + — sin"1 - + c2 2 a

(xxix) {  *Jx2+a2  dx=  —  ^x2 +a 2  + — sinlr 1 - + c

2 2 a

(xxx) j  J x 2 - a 2  dx= -  J x 2 - a 2  - — cosh"1 - + c

v  2  v  2 a

f e3*

(xxxi) I  eax. sin bx dx = —-—x- (a sin bx -  b cos bx) + ca +b

f ax

(xxxii) J  eax. cos bx dx = — — - (a cos bx + b sin bx) + ca +b

3. TECHNIQUES OF INTEGRATION:

(i) Substitution  or change ofindependent variable.

Integral 1= j f(x) dx is changed to }  f(4> (t)) f'(t) dt, by a suitable substitution

x = (J) (t) provided the later integral is easier to integrate.

(ii) Integration by part: {  u.vdx=u  j" vdx- {

(a) J v dx is simple & (b) /

0)

d U  f A. vd?r1Y  J

f vdxr)v J

du

dx

function. Note: While using integration by parts, choose u & v such that

du

dx

dx where u&varedifferentiable

dx is simple to integrate.

This is generally obtained, by keeping the order of u & v as per the order of the letters in ILATE,

where ; I-Inverse function, L-Logarithmic function,

A-Algebraic function,  T-Trigonometric function  & E-Exponential function

(iii) Partial fraction,  spiliting a bigger  fraction into smaller  fraction  by known methods.4. INTEGRALS OF THE TYPE:

 j  [f(x)]"f'(x)dx  OR {  dx putf (x) = t & proceed

(") j > 1 I ,  dX  > f Vax2 + bx + c <kJ  ax' + bx + c yax + bx + c  J y

Express ax2 + bx + c in the form of perfect square & then apply the standard results.

("0 f —?PX

  ^— dx, f i =  q

= dx .J

  ax

2

 + bx + c '

  J

  /ax

2

 + bx + cExpress px + q=A (differential co-efficient of denominator) + B.

(iv) j ex [f(x) + f'(x)] dx = e

x. f(x) + c (v) J  [f(x) + xf'(x)] dx - x f(x) + c

f   dx(vi) J n s N Take xn  common & put 1 + x

  n = t .J  x(xn+l)

r dx(vii) J  (n l) /  n e N , take xn  common & put 1+x n = tn

2(x

n+l)

n"^x

2'

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]

Page 3: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 3/18

(viii)dx

c»(l +  x f n

take xn common as x and put 1+x  n = t.

dxOR J

dxOR J

dx

a+bsin  z

 x " a+bcos  2

 x asin  2

  x+bsin xcos  x + ccos  2

 x

r r

Multiply N" & D by sec2x & put tanx = t .

00 dxa+bsin x

OR dxa+bcos x

OR i dxa + bsin x + ccos x

xi)

(xii)

(xiii)

(xiv)

(xv)

Hint: Convert  sines & cosines into their respective tangents of half the angles, put tan — = t

a.cos x + b.sin x + c ^ Express Nr = A(Dr) + B — (Dr) + c & proceed . Lcos x + m.sin x + n dx

x2+ l

x 4 + K  x 2 +1dx  OR |

x2

- l —; dx where K  is any constant .x + K x + 1  J

Hint:  Divide Nr & Dr by x2  & proceed .

dx „ r dx1  & J  7 —t—; \— i   ; put px + q = t .

(ax + b) Vpx + q (ax2 + bx + cj ^px + q

dx

(ax + b) J- px + qx + r

• j-u  1  ( dx • 1, put ax + b = - ; . , , p u t x = -

1  (ax + bx + cj yj px + qx + r   1

x - a

 p - x

 —^ ° r   I V(x ~ a ) (x ~ P) > put x = a sec2 0 - 0 tan2 0

dx or J - a) (p - x) ; put x = a cos2 0 + P sin2 0

dx

J(x - a) (x - p); put x - a = t

2  or x -  P = t

2

(ilZ?a«sa/   Classes Definite & Indefinite Integration [18]

Page 4: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 4/18

DEFINITE INTEGRAL

1 .  f f(x) dx = F(b) - F(a) where J f(x) dx = F(x) + ca

 b

VERY IMPORTANT NOTE  : If   F f(x) dx = 0 =>  then the equation  f(x) = 0  has atleast onea

root lying in (a, b) provided  f  is a  continuous function in (a, b) .

2 . PROPERTIES  O F  DEFI NITE INTEGRAL  :

 b  b b a

P-L  j  f(x) dx = J f(t) dt provided  f  is same  P - 2  f  f(x) dx = - J f(x) dx

a  a • a b

 b  c bP-3  J f(x) dx= J f(x) dx+ J f(x) dx, where c may lie inside or  outside the interval [a, b] . This property

a  a c

to be used when f  is piecewise continuous in (a, b).

a

P-4  J f(x) dx = 0  if  f(x) is an odd function i.e.  f(x) = -f(-x) .

= 2 j f(x) dx  if  f(x) is an even function  i.e. f(x) = f(-x) .0

 b  b a a

P-5  J f(x) dx = j f(a + b - x) dx, In particular  J f(x) dx = J f(a - x)dx

P-6  j f(x) dx  - J f(x) dx + J f(2a - x) dx = 2 J f(x) dx  if   f(2a - x) = f(x)0 0 0  0

= 0 if   f(2a - x) = - f(x)na  a

P-7  J f(x) dx = n Jf(x)dx  ;  where'a'is the period ofthe function  i.e. f(a+x) = f(x)0  0

 b+nT  b

P-8  j  f(x) dx = J  f(x) dx where f(x) is periodic with period T& n e l .

a+nT  a

na  aP-9  j  f(x) dx = (n - m) j  f(x) dx  if  f(x) is periodic with period 'a'.

ma  0

 b  b

P-10  If  f(x) < ())(x) for a < X < b  then  J f(x) dx < J 4> (x) dx

P - L L Jf (x)dx <  ]  I f(x) I dx.

P-12  If  f(x) >0 on the interval [a, b], then  J  f(x) dx > 0.

(ilZ?a«sa/   Classes Definite & Indefinite Integration  [18]

Page 5: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 5/18

WALLI'S FORMULA:

 ji/2J sm-x. co s ^ dx - [Q -l )( n- 3) ( n -5 ) . . . . lot 2X(m-1)(m-3) . .. . l o r 2j   K

(m+n)(m+n-2) (m+n-4) . . . . lo r2

7CWhere K = if both m and n are even (m, n e N)

2

- 1 otherwise

4. DERIVATIVE OF AN TIDERIVATIV E  FUNCTION :

If h(x) & g(x) are differentiable functions of x then,

m

- p 1 m d t - f [ h (x)]. h'(x) - f [g (x)]. g'(x)dx g(x)

5. DEFINITE INTEGRAL AS LIMIT OF A SUM :

 b

J f(x) dx = Lmut h [f (a) + f (a + h) + f (a + 2h) + + f ( a + n-1T»)]a

= h I f (a + rh) where b - a = nhf=0

If a = 0 & b = 1  then, Limit  h f ( r h )  =  J  f (x) d x  .  w h e r e n h = l 0 R

Limitv n ; r=i

2 f f- -  ] = J f(x) dx .v

ny o

6. ESTIMATION OF DEFINITE INTEGRAL:

 b

(i)  For  a monotonic decreasing function in (a , b) ; f(b). (b - a) < J f(x) dx < f(a). (b - a) &a

 b

(ii)  For a monotonic increasing function in (a, b) ; f(a).(b - a) < j f(x) dx < f(b).(b - a)a

7. SOME IMPORTANT EXPANSIONS :

. . . , 1 1 1 1 , „ , .. .. 1 1 1 1 7T0)

  00 = In 2  (u) - 5 - + — T + ~ T

+ — T

+  00 :

2 3 4 5 l2  2

2  3 4 6

1 1 1 1 7 t2  , . , 1 1 1 1 7 t

2

(iii) — - + — - + 00=7— (iv) - r - + — + — + . — + co=-1 2 3 4 12 1 3 5 7

, v 1 1 1 1  71  2

(v) —2~I 2-"

1

22  42  6 2  8 2  24

(ilZ?a«sa/ Classes  Definite & Indefinite Integration  [18]

Page 6: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 6/18

 EXERCISE-I

Q l l

Q.4 J

Q.6 j

Q.9 j

tan 20

Vcos6 9 + sin6 0

dx

d0 Q 2 f5x4 + 4x5

(x5 + x + l)2

K - ' f

Q.5 Integrate j

dx

dx

cos  X

1 + tanxdx

X ^X2  + 2 X - 1

 by the substitution z=x + /x'2 +2x-1

I s

eJ  + l x^nxdx

a2 s in2x+b2  cos2x4 - 2 i 4 2

a sin x+b cos x

Q.7 | cos 20 . Incos 9+sin 9

cos 0-sin 9d0 Q-8 f - y ^

J sin x +

dx

sin ^x + sin 2x

dx Q.IO Jdx

Q.12 f sin(x-a) dx

V sin(x+a)

(x + Vx(l + x) )2

Q.13 J (sinx)"11/3

 (cosx)"1/3

dx Q.14 j

Q.l l J V x ^ + 2 dx

cot xdx

(1-sin x)(sec x+1)

Q.15 j

Q.17 |

1-Vx dx

!l+Vx

^/x2+l[ln(x

2+l)-21nx]

Q.16 j sin"-l

l + X

dx

X

dx Q.18 j ln(lnx)+(lnx)

dx Q.19 jx+1

Q.20 Integrate ^ f'(x) w.r.t. x4  , where f(x) = tan -1x + /n^/l+x - / n ^ l ^

Q.21 j

(Vx + l)dx

Vx(Vx+1)Q.22 f -

dx

sin^ ,/cos3 ^J:

4+xe*)2

dx

dx

Q.27 j

^Q-30 \

cosec x-cotx secx

 ]j  cosec x+cotx /l+2secx

dx

cosx-sinx

7-9sin2xdx

Q-23 J  3V(x + l )2 (x-l)

„  _  , r dxQ.26 j dx

sinx+secx

\ 2

x cosx-si nxdx

VQ.33 f ^ S m X  dxV sinx + V cosx

r ecosx (x sin3 x + cosx)Q.36 j •

  v  '

Q.3'9 j

Q.28 J tan x.tan 2x.tan 3x dx

r 3+4sinx+2cosxQ.31  :J  3+2sinx+cosx

Q.34 f — ^J  sin x +1

secx+cos ecx

dx

dx

Q.29 j —   f  —sinx Jsin(2x + a)

. ^n(cosx+Vcos2x]Q.32 [ —^ ~ dxJ  sm x

-tan x

2

Q 35 \3x2 +1

(x2- l )

3 dx

sin2 xdx

r (ax -b) dxQ

'3 7

  J xVc2x

2-(ax

2+b)

2

r e \z—aQ.38 /=

(l-x)Vldx

 ,„  2\3/2  dx(7x-10-x )

Q.40 J xlnxdx

Q.42 j2 - 3 x j1+x

2 + 3x

(^J

} E i x  q.43 f f " " dx Q.44 {1-x  J  1 + 3sm2x  J

Q.41 f J i z * dxv J  Ali+x  X

4x5 - 7x4 + 8x3 - 2x2 + 4x - 7

x2(x2  +1)2dx

^Bansal Classes  Definite & Indefinite Integration m

Page 7: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 7/18

Q 4 5

  1  ( 2XI 2  V> r~T Q.46  j  ^ - x - x 2  dx Q.47  J(x  +3x+3 j^/x+1  J  x2 J  (x-a)V(x-a)(x-(3)

^ r dx  f   Jcos2x <• (l + x2)dxQ.48  Y  Q.49 f — dx Q.50 I S — rae(0 , TC)

x3V(l + x)3 v J si n x v J  l - 2 x 2 c o s a + x 4 V J

 EXERCISE-II

71

q'!^™   Q2IV TH3I dx QJ  ! /n3xdx0

 ji/2 TI/2 TI/4x dx

Q.4 J sin2x. arctan(sinx)dx Q.5 J cos43x. sin26xdx Q.6 j _o o • o  c o s x  (cosx + sinx)

Q.7 Let h (x) = (fog) (x) + K where K is any constant. If (h(x)) = ^ ^ — then compute thedx cos (cos x)

f(x)

value of j (0) where j (x) = j"  ——  dt; where f and g are trigonometric functions.

g(x) S W

n/2

Q.8 j 7(cos2n_1x - cos2n+1x) dx where n e N

- i t / 2

Q.9 Evaluate the integral: J  (jx   + 2 yflx  - 4 + Jx-2 ^2x^4  j dx3

00 00 oo

i x2  r xdx r dxQ.10 IfP= -dx ; Q = and R =  T  then prove that

 j   l +x  J   1+ X  j   1+ X

0 0 0

(a) Q =  (b) P = R, ( C ) P - V5 Q + R = ^

Q.ll Provethat ? . ( n - l K a , h)x + n a h ) ^ ^  b n . _ an-!Ja  (x+ a) (x-t- b) 2(a + b)

l  x(l-x)

4  f x2 .In x , f   x 2 " xrx i i - x ,  f v2 l n v  r yQ.12 J , dx q.13 J 2LJE2L dx  Q. 14 Evaluate: J 7  2

0  1+X  0 Jl-x2  _2"VX +4

n/2 271

Q.15  f ^ - f j d x    Q . 1 6  J  d x  Q. 17  j0

  1 + x  0 sm(f+xj ^

  J0

dx

2-n ,

dx2+sin2x

2ti / \' 7T X

  N

Q . 1 8  J ex cosf  — + —  dx  Q 1 9  f   2X7+3X

6-1 0X5-7X

3-1 2X2+X+1

V2 X2

+ 2

dxv 4 2/

Q.20 If  for  non-zero x, a f(x) + bf —j = f  — I -  5; where a ^ b then evaluate j  f(x) dx.vx

 ji/4

Q.21 J  c o s x - s m x d x Q.22 f   ( a X + b ) s £ C X t a n X  dx (a,b>0)0  10 +sin 2x  v J

0  4 + tan x  V '  7

(ilZ?a«sa/  Classes  Definite & Indefinite Integration  [18]

Page 8: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 8/18

Q.23 Evaluate: f ( 2 x + 3 ) f x d x .I  (1 + cos x)

3/2

 p+qn

Q.24 J |x. sinTtxl dx

Q.25 Show that J | cos x| dx = 2q + sinp where q s N & -— < p <—o 2 2

"5 2/3Q.26 Show that the sum ofthe two integrals J e

(x+5^dx+3 J Q9(x-2/3f  dx is zerQ

it/4

Q.27 Ismx+cosx

"o cos2x+sin4x

1 + x x 3

1/3

71/2

dxr sin x

Q.28 J 2— 72  — dx (a > 0, b > 0)* q <am V4.h rr\c y  v

  ' '0

n/2 _ f . I -t- X  X.

Q.30  j

a sin x+b cos x

Vl+sinx+ .^1-sinxtan"

/l+sm x - ,/l-sin xdx

x .dx p « .1.UAQ.31 (a) J Vto^dx ; (b) J //  2 2v,2  H

^ Vlx -a Ab )2

1

Q.3 2 j  | x - t ! .cos7it dt where 'x' is any real numbero

Q.34 Provethat J = J - J * (n> 1)0  1 + x 0 ( l- x n )

X X

Q.35 Showthat Je"-e" z i  dz = e x ^ 4 f e ' ^ 4  dzo o

Q . 3 7 ( a ) | l ^ ,  J

» - , (b) f   d x

2a

Q.33 j x sin-1 1 2 a - x

2  V  adx

Q.36  Jr x

2  sin 2x,sin (y.cos x )

2x-7 tdx

o l+x'Vx+x^x3  ' 0 1 + x 2 ' ^

OO 1 1

Q.38 Showthat f — — =2o x + 2 x c o s 9 + 1 n

d x

0  x2  + 2xcos9 + 1

sinBif 0 s (0,ic)

9 - 2 7i .

sin 9if 0 g  k,2k)

? dx  271 (a+b)

Q.39 Prove t h a t j (x2+ax+a2) (x2+bx+b V V^ab (a2+ab+b2) '

Q.40  jx2(sin2x-cos2x)

(1+sin 2x)cos2 x

dxX , s, Xr 

  u

Q.41 Prove that J f f (t) dtn  J

VO  J

Q.42 Jd x

o (5 + 4 cos x)2

16

du= J f(u).(x-u)du.o

Q.43 Evaluate J /n(Vl-x + Vl + x)dx

16 27t .  2

Q.44 (a) j t a n " 1 d x , (b) Evaluate J d0 a > b > 0

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]

Page 9: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 9/18

 A

Q.45 Let  f(x) = - j /n cos y dy then prove that  f(x) = 2fv4 2,

- 2 f71 X

4  _ 2-x/n2.

Jt/2

Hence evaluate J  s e c  t dt

~  . ^  , r x. lnx , , r a x. dxQ.46 Showthat J f ( -+ - ) . dx = ln a. Jf (- +- ).

x  a  x x  a  x

Q. 47 Evaluate the definite integral,  j

1-(2x332 +x99 8  +4x1668-sinx69 1)

-l 1 + x666

dx

Q.48 Prove that

( a ) } V(x -a ) ( P- x) 0» IM p

(c)5d x

{ x A / (x-a) ( )3-x) V^P

 px.dx

Q.49 If f(x) =

4 cos x 1 1

(cosx-1)2  (cosx + 1)2  (cosx-1)2

(cosx + 1)2  (cosx + 1)2  cos2x

1/ n t a n

- 1x -1,

, find Jf( x) dx

Q.50 Evaluate:  Je/ntan_   x-sin _1(cosx)dx.

o

 EXERCISE-III

Q.l If the derivative of f(x) wrtx is — - then show that f(x)is a periodic function.

f (x )

Q.2 Find the range of the function,  f(x)= f   Sm X  —7 .1 —   2t cosx + t

Q.3 A function  f is defined in [-1,1] as f (x) = 2 x sin —   - cos —  ; x ^ 0 ; f(0) = 0 ;X X

f (I/71) — 0 .  Discuss the continuity and derivability of f at x=0.

-1 if - 2 < x < 0Q.4 Let f(x) = [ I and g(x) = J  f(t) dt. Define g (x) as a function of x and test the

x -* 1  if 0 < x < 2 _2

continuity and differentiability of g(x) in (-2,2).

Q.5 Prove the inequalities :

(a) 0 < J0

2s

x7dx_ 1/3 8

M l(b) 2 e~1/4  < } ex2"x  dx < 2e2.

(c) a< f — < b then find a & b. (d) ^ < Ji 10+3cosx — 2  0

dx

2 + x2  " 6

Q.6 Determine a positive integer n<5, such that J e x (x- l)n  dx= 16 - 6e.

(ilZ?a«sa/ Classes  Definite & Indefinite Integration  [18]

Page 10: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 10/18

Q.7  Using calculus

(a) If   | x | < 1 then find the sum of the series _ L  +  2 x  +

  4 x 3  +  8 x ?  +  QO .1 + X  1 + X

2  1 + x4  1+x8

/UN 1,1 I / ! .U * l - 2 x 2x-4x 3  4x 3 -8x7  1 + 2X(b) If |x | <1 provethat - + r   r   + r +  .00 = - .1 - x + x  1 —  x  + x 1 - x + x l +x + x2

x 1 x l x l x(c) Prove the identity f  (x) = tanx + - tan + tan^j + + 77 tan = — 7 cot ^77 - 2cot 2x

Q.8 If   (j)(x) = cos x - J (x -1)  cj)(t) dt. Then find the value of   <|>" (x) + cj)(x).

2

a  0  " dxX

 jlntdt

Q.10 If y = x1  , find 7^- at x = e.dx

1 x  d2

Q.9 If  y = - f f  (t) • sin a(x - 1) dt then prove that —^ + a2y =/(x).9 *  A^t*

1

Q. 11  If  f(x) = x + j [xy2+x2y] f(y) dy where x and y are independent variable. Find f(x).

dxQ. 12  If f (9) = —

w  de  I -~ COS0 cosx

. Show that f ' (9) . sin 9 + 2 f(9). cos 9 = ~

r f' fx")Q. 13(a) Let g(x) = xc. e2x & let f(x) = J e2t . (312 + 1)1/2  dt . For a certain value of'c', the limit of — ^

0 g' (x)

as x ->• 00 is finite and non zero. Determine the value of'c' and the limit.

f t2  dtJ JaTt(b) Find the constants 'a' (a > 0) and 'b' such that,  Lim  : — = 1.

x-»o b x - si nx

Q. 14  If f: R -> R is a continuous and differentiable function such that,

x O x 2 x

J  f (t) dt + f ' " (3) | dt -  j  (t3) dt - f ' (1) J  (t2) dt + f " (2)  J  (t) dt-1 x 1 X 3

then find the value of f ' (4).

Q. 15  Given that Un = {x(l - x)}n &  n > 2 prove that - n (n - 1) Un _ 2 - 2 n(2n - l)Un _  p

1

further  if Vn - J ex. Un dx, prove that when n > 2, Vn+ 2n(2n- l). Vn _ r  n(n- 1) Vn _ 2 = 00

J?nt  %£n2.2

equation.

" 1 - x if 0 < x < l

Q.17 Let f(x)= 0 if l < x < 2 • Define the function F(x) = J f(t) dt and show that F is

(2-x)2  if 2 < x< 3 °

continuous in [0, 3] and differentiable in (0,3).

f Ait 71 2Q. 16  If   J —2—2  =  (x > 0) then show that there can be two integral values of 'x' satisfying this

X  ~F~ T  40

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]

Page 11: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 11/18

Q.18 Let f  be an injective function such that f(x) f(y) +2 = f(x) + f(y) + ffay) for all non negative real x&

y w ±th  £' (0) - 0 &  f'' (1) = 2 # f(0). Find f(x) & show that, 3 J f(x) dx - x (f(x) + 2) is a constant.

Q.19 Evaluate : (a) ^  A1/n

(b)  L i m1 + - 1 + - 1 + - 1+ -

l/n

(c)Lim I 1 2 3n+ +  + —

n+1 n+2 4n. . . . .  b

f   dx 1 1(d) Using ab initio prove that J — = —  - —

Q.20 Prove that sinx + sin 3x + sin 5x + .... + sin (2k-  1) x : sin 2kx

k e N and hencesinx

71/2

 prove that, j1 1 1 1£ H L ^ d x = : i + - + _ + ^ + +

sin x  3 5 7 . 2k-l

"J? • 2Q.21 If Un=  dx, then show that U,, U2, U3, , Un  constitute an AP .

q  sin x

Hence or otherwise find the value of Un.

Q. 22  Solve the equation for y as a function of x, satisfying

 X X

x • J y (t) dt = (x +1) j t •• y(t) dt, where x > 0.o o

1

Q.23 Prove that: (a) Iffl n = j xm. (1 - x)n dx =m!n!

( b> I m ; I 1 =jxm . ( lnx)n dx = (-l )n

(m+n+1)!

n!

m, n s N.

m, n s N.n+io (m+1

Q. 24 Find a positive real valued continuously differentiable functions/on the real line such that for all x

 f

 X

!(x )= / ( ( / ( t t f+C/ 'W^jd t+e 2

Q.25 Let f(x) be a continuously differentiable function then prove that, J [t] f ' (t) dt = [x], f(x) - V f (k)i k=i

where [• ] denotes the greatest integer  function and x > 1.

Q.26 Let f be a function such that  | f(u) - f(v) I < | u - v | for  all real u & v in an interval [a, b]. Then:

(i) Prove that f is continuous at each point of  [a, b].

(ii) Assume that f is integrable on [a, b]. Prove that,

7t f dxQ.27 Establish the inequality : — < I 7  =  = f

6  o V 4 - x - x

f f(x) dx - (b -a) f(c)

(b-a)2

, where a < c < b

<

Q. 28 Show that for a continuously thrice differentiable function f(x)

f (x) -f (0 ) = x f ( 0 ) + ® ^ - + i}f "' (t )(x- t)2dt

2 o

n / v I  m  1Q.29 Prove that £ ("l) k   k 1 —T = S ( " ^ ( i f ) ,k = o  VK/  k + m + 1  k  = o  \ k / k + n + 1

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]

Page 12: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 12/18

Q.30 Let / and  g   be function that are differentiable for all real numbers x and that have the following

 properties:

(1) / ' (x )= /( x) -g (x )

(ii) g'(x)=g(x)-/(x)

(iii)  f ( 0 ) = 5

(iv)  g(   0 ) = 1

(a) Prove that/(x) + g  (x) = 6 for  all x.

(b) Find/(x) and g  (x).

 EXERCISE-IV

Q  1  Ftad  S J s n , i f : S n = ^  + T ^  + 7 4 =  +  +  — = = = =  .  [REE'97,6]V4n -1 y4n -4 V

3n'+2n-l

X

Q.2 (a) If g (x) = J c o s 4 t d t  , then g (x + %) equals :

(A)g(x) + g(7C)  (B) g(x)-g(7C) (C)g(x)g(7C> (D) [g(x)/g(7l)]

(b) Limit i g _ ^ e q u a l s :

r=l Vn2+r 2

(A)l + V5 (B) - 1 + VJ ( Q - 1 + V2 (D)l + V2

e"(c) The value of J ————— dx is

I

H esinx 4

  ?(d) Let — F(x) =  , x > 0 . If f — dx = F (k) - F (1) then one ofthe possible

dx x ' x

values ofki s .

(e) Determine the value of J  2 x  0 + s i n x)  d x  [JEE '97,2 + 2 + 2 + 2 + 5]„  1 + COS  X

Q.3 (a) If ff(t)dt = x+ft f ( t )dt , then the value of /( l) is

(A)° 1/ 2  (B) 0 (C) 1 (D) - 1 / 2

i f   Y   \ i(b) Prove that f tan"1  dx = 2 f tan  1 x dx . Hence or otherwise, evaluate the integral

i U-x+x 2 ; i

iJtan _1(l-x+x2)dx [JEE'98,2 + 8]

Q 4 E r a l u a t e [ R E E ' 9 8 - 6 1

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]

Page 13: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 13/18

Q.5 (a) If for al real number  y, [y] is the greatest integer less than or equal to y, then the value of the

371/2integral j [2 sinx] dx is:

(b)

(A) - n (B) 0

3,1/4  rlYf ——— is equal to :

L 1+ cosx

(A) 2 (B) - 2

(C)2

(C)

(D) *2

/  N  T R   x3 + 3x + 2 ,(c) Integrate: J — dx

(x2+l ) (x + 1)

ii

(d) Integrate: J„cosx . -cosxe +e

-dx

71/6

Q.6\\ Evaluate the integral J V3 c o s 2 x

cosx

[JEE '99, 2 + 2 + 7 + 3 (out of200)]

[REE'99, 6]

Q.7 (a) The value of the integral jlogex

dx is:

(A) 3/2 (B) 5/2 (C) 3 (D) 5

 x r 1 ' 1

(b) Let g(x)= J f(t ) dt, where f is such that - < f( t) < 1 for t £ (0, 1] and0< f(t) < -o  2 2

for t  G  (1,2]. Then g(2)  satisfies the inequality:

( A ) - | < g ( 2 ) < I (B) 0 < g (2) < 2  ( C ) ^ < g ( 2 ) < | ( D) 2 <g ( 2) <4

(c) If f (x) = {

(A) 0

ecosx  . sin x for |x| < 2

2 otherwise

, (B) 1

 j

Then j f(x)dx :

(C) 2(D)3

x  t>  t

(d) For x > 0, let f (x) = j dt. Find the function f(x) + f (1/x) and show that,

f(e) + f( l/ e) = 1/2.

Q.8 (a) Sn - — l~r= +

1 1+t

+ +

[JEE 2000,  1 + 1  + 1 +5]

n + VnFind

  L i m i t  S_

f sin t r u(b) Given  d t = a , find the value of —   d t in terms of a .

0  1 + t  471 - 2 4 7C + 2 t

[ REE 2000, Mains, 3 + 3 out of 100]

471 sm

n—> co  n

t

2x + 2Q.9 Evaluate f sin  1

W4X2+8X + 13

IT/:

Q.10 (a) Evaluate }

dx.

i t/2 9  51

cos x r xdx —5 r r ~ d x . (b) Evaluate J :

0  cos3 x + sin

3 x / 0 1 + cos a sinx

[REE2001, 3+ 5]

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]

Page 14: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 14/18

X

Q. 11  (a) Let  f(x) =  j  ^ 2 - t 2  dt Then the real roots ofthe equation x2 - f ' (x) = 0are

(A)±l (B) ± -"" (C) ±- (D) 0 and 1

(h) Let T > 0 be a fixed real number. Suppose/ is a continuous function such that for  all x e RT  3+3T

/ ( x + T) = /(x) . If I = f /fx; dx then the value of J ' j W dx is0  3

(B)21 (C) 3 I (D) 61(A) | I

(c)  The integral JI  [x] + / n j j - ^ J dx equals

( A ) - - (B)0 (C)l (D) 2/n

(d) For  any natural number  m, evaluate

J (x3m  + x2m  + xm) (2x2m  +3xm  + 6)m  dx, wher ex>0

[JEE 2002(Scr.), 3+3+3]

[JEE 2002 (Mains),4]

n/2 n/4

Q.12 If f is an even function then prove that J f (cos2x) cosx dx= V2 J f (sin2x) cosx dx0 0

[JEE 2003,(Mains) 2 out of 60]

l

Q-i3 (a) f ^ d x =

o

(A)f    + 1 ( B ) f - . (C)7t (D)l

0

(b) If jx f( x) dx =- ^t 5 , t>0, thenf

5

r  4 \

v25y

2( A ) 7 (B) ( O - f

2

(c) If y(x) =  f   c o s x c

°s  ®  DQ  ^en find at x = TC.

2J, i+sin2 Ve  d x

(d) Evaluate J -dx.

-it/3 2- co s X + -TC

Q.14 (a) If Jt2(f(t))dt =(1-sinx),then/sinx

(A) 1/3 (B) i/V3

vV3yis

(C)3

(D)l

[JEE 2004, (Scr.)]

[JEE 2004 (Mains), 2]

[JEE 2004 (Mains), 4]

[JEE 2005 (Scr.)]

(D)V3

 feBansal Classes  Definite & Indefinite Integration  [15]

Page 15: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 15/18

(b) J (x3 + 3x2 + 3x + 3 + (x +1) cos(x + l))dx is equal to- 2

(A )- 4 (B)0 (C)4

 f(c) Evaluate: fe |cos^ 2sin

0 V

-cosxv2 ,

+3 cosx' N

 —  cosxv2  j j

sin x dx.

[JEE 2005 (Scr.)]

(D)6

[JEE 2005, Mains,2]

Q15  ^W5?^T

dXisequalt0

( A ) V 2 x 4 - 2 x 2+ l + c

(B)

(C)x -2x z + l

+ CD)

V2X4-2X2+1

2x2+ C [JEE 2006,3]

Comprehension

^ ^Q.16 Suppose we define the definite integral using the following formula (f(x)dx = (f (a)+f(b)), for

more accurate result for c e (a, b) F(c) = ^ (f (a) + f (c)) + — - (f (b) + f (c)). When c = p p ,2 2 ^

 b  i_ b - aJf (x)dx = ( f ( a ) + f ( b ) + 2f (c>)

a

i t / 2

(a) |  sin xdx  is equal too

(A) | ( l + V2) + ( C ) ^71

(D)71

4V2

 j f ( x ) d x _ i _ i ( f ( t )  + f (a))

(b)  If/(x) is a polynomial and if Lim—t->a

0 for all a then the degree of   f  (x) can

atmost be

(A)l  (B)2  (C)3  (D)4

(c) If /"(x) < 0, V x s (a, b) and c is a point such that a < c < b, and (c,/ (c) ) is the point lying on the curve

for which F(c) is maximum, then/'(c) is equal to

(A)f(b)-f(a)

 b - aB)

2(f(b)-f(a))

 b - a(C)

2f(b)~f(a)

2b-a

5050 } ( I - x 5 ° R dx

Q. 17  Find the value of

J ( I - x 5° R <

(D)0

[JEE 2006, 5 marks each]

[JEE 2006,6]dx

(ilZ?a«sa/   Classes  Definite & Indefinite Integration [18 ]

Page 16: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 16/18

 ANSWER KEY

 EXERCISE-I

Q.l  Inl + Vl + 3cos

2 20

cos 20+ C

^ _ x + 1Q.2 -

  7 C

x + x + 1

1 x j o x 3

Q.3  - /n(cosx + sinx) + - + - (sin 2x + cos 2x) + c  Q.4  - tan

-1

 x - ——   7 - —   In2 o  0

Q.5 2 tan-1

  (x+Vx2+2x-l) + c

 —   I all  X - / . \ - —8 4(x -1) 16

 f   iNx - 1

VX + V + c

Q.6 I*.e/

- - +c

Q.7  (c) - (sin 20) Incos9 + sinG ]  1

cos9 - sin9j 2

1- - /n( sec20) + c  Q.8  - In

tanx

tanx+2+ c

f /

x + tan

V

Q.ll J (x+V^")'

Q.12  cos a. arc cos

-1 a tanx

 JJ+ c  Q.IO + w hent = x + V ^

(x+VX2+ 2

1/2 C

f \cosx

vcosay

- sin a 1 ( • 2 2"" , ^ 3(l+4tan x)In sinx + Jsin ^x-sin + C  Q.13 —^ tt t1

Q.14  - In tan-, 1 , x x+ - sec2  - +tan - + c

Q.16 (a + x) arc tan - ^ax + c

Q.18 xln (lnx) -  ——   + clnx

8(tan x)

Q.15  V^Jl^x-2-Jl^  + arc cos Vx+c

(x2

+ l  \l

+ c

Q.17

Q.19  In

/x 2 +1

9x

xe"

vl+xex  j

2-31nfl+-^

l+xex

V x

+ c

Q . 2 0 - / n ( l - x4 ) + c Q.21  6t4  t2  1

 — - —  +1 + ~/n( l + t  z  ) -  tan-1 1

4 2 2

Q1 + -yjcOSj

. 2 2  . +2tan"1 Jcosf   -Inycosf 

  v  1  - ycosi

+ C where t = x1/6

+ c  Q.23 -vx- ly

+ C  Q24. sin"1 —sec —v.2  2 j

C

~ 1 , (4+3sin x+3cos x)Q.25 —In- —+c24 (4-3sin x-3cos x)

Q 27 1  VT+sin x-cos x

Q . 2 « 2 sin x - cos x —p=ln tanV2

F  X  71  ^C

2V3  V3 -sm x+cos x+ arc tan (sin x+cos x)+c  Q.28 -^n(secx) - ^ ^n(sec2x) +^n(sec3x) + c

Q.29-1

 InV sina

Q.31  2x-3arctan

cotx+cota+^/cot2x+2cotacotx-lx sin x +cosx

+ c  Q.30  — + cxc os x - s m x

' x ^tan—+1

v 2 ,+c Q.32

Vcos2x

smx- x - cotx  . In (e (cosx + Vcos2x)j +  c

(ilZ?a«sa/   Classes  Definite & Indefinite Integration [18]

Page 17: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 17/18

1 „ 1 t2 -  -Jit   + 1  1 . - , —

Q.33 /n(l +1) - - /n(l +1*) + ^ /n  t2 + + 1  - j  t a n

  *  + c w h e r e 1 =

  Vco tx

 _ 1, X 1 2X

Q.34 —lntan tan —+c2 2 4 2

Q.35 c -(x

2- l )

2

Q.36 c - ecos x

 (x + cosec x) Q.37 sin-1 ax +b

cx  J

+k Q.38 ex J ^ + c Q.39

  20>>  +c

 _ lnxQ.40 arcsecx—, +c

i

I  2

 —Q.41 In , ' + V3tan

Vu4+u

2  + l

/r l+2uV3tr~  1

9^7x-10-x2

V3+ c where u = 3

V 1+x

Q.42 -1 . f  V51 - 1

tan t + —r=  ~7=2V5 vv5t + 1

- |sin  1

 x  - ^/l-x2  j  + c where t = h^-

1+x

x

Q.43 tan. 2 sin 2x

vsinx + cosxy

+ c7 6x

Q.44 4/nx+-+6tan-1( x) + j +C

X  I  T X

2 x  J 2 - X - X2  V 2 „ f 4 - x + 2 V 2 J 2 - x -

Q.45 —i=arctan—p —+c Q.46 + —V3 V^+i)

  x 4

x

x

. (2x+lsin

^ 3+ c

-2 x ^Q.47 —-J—-+c

a-p  y x- a

1 4 - - 2 15 ,Q.48

  n x x 2  + —   In

4x2 y l + x  8

VT+x- i

7 1 + X + 1+ c

Q.49V2

  nl V2-t

- —/n2

' 1 - 0

vl + tywhere t = cos9 and 9 = cosec'(cotx)

Q.50acosec—2

tan-1\

v ,  2 x

  y

acosec—2

/

 EXERCISE-II

2 ^Q.l — Q.2 /n2 Q.3 6 - 2e Q.4 - - 1 Q.5 Q.6 £ In2

ft 2 64 8

Q.7 1  - sec(l) Q.8 — Q . 9 2 V2 + | (3 V3 - 2V2) Q.122n + l

f  22  ^7t

17 J

7tQ . 1 3 - ( l - l n 4 )

Q.14 4V2-4/n(V2  +  l) Q.15 ^ Q.16 Q . 17 ^ = Q. 1 8 - ^ ( e2

* + l )

 _ 71 16V2 _ (aln2-5a+^)

Q.22(a7t + 2b)7t

3V3Q.23

7t(7t + 3)Q.24

Q.21 i3

371+1

7t2

V2 l"arc tan arc tan-

3 3

Q 27

(ilZ?a«sa/ Classes  Definite & Indefinite Integration  [18]

Page 18: Definite and Indefinite Integration

7/23/2019 Definite and Indefinite Integration

http://slidepdf.com/reader/full/definite-and-indefinite-integration 18/18

Q.2871

2a(a+b)

57t

3Q.29 Q.30 ^ L Q.31 (a) ^=[rc+21n(V2-l)] (b)

16 12

2 2 2 2Q.32—5-cos7ixforO<x< 1; for x>  1  & — 2

f o r x^ ° Q-

3 3  —

71 71 71 4

Q . 3 6 -%

Q.37( a)f ( b ) ^ Q.40 ^ - 7 /n2 Q.42 ^16 4 27

Q.43 - In 2 +  12

167t _   rr   271Q.44 (a) — 2V3 (b) i - J ^ b 2 Tt

Q.45 - / n 2 Q.4771 + 4

666

32Q.49 -2ti - — Q.50  — - - ( l + / n 2 )  +  -

8 4 2

 EXERCISE-III

, 71  TC  ,

Q.2 - - , -  (•  Q.3 cont. & der. at x = 0

Q.4 g(x) is cont. in (-2, 2); g(x) is der. at x = 1  & not der. at x = 0 . Note that;

-( x + 2) for -2 < x < 0

g(x) =2  2TI 27T

-2 + x - ^ - for 0 <x<  1  Q.5 a= — & b = — Q. 6n = 3

^ - - x - 1 f o r    1 <x< 2

Q.7 (a) -—- Q.8 - cos x Q . lO l+ e Q.ll f(x) =x+1—x 119 119

 RQ.13 (a) c = 1  and Limit  w i l l b e  (b)a = 4andb =1 Q.14 10

if 0<x<l

2

x2

X - TQ.16 x = 2 or 4 Q.17 F(x)= \ if l<x<2

k if 2<x<3M .3  1 2

Q.18 f(x) = l +x 2  Q.19 (a) - (b)2e(1/2)("-4) (c) 3 - / n 4 Q.21 Un= ^e 2

Q.22  y = ^ e"1/x  Q.24  f  (X) = ex+1

  Q.30  f (x) = 3 + 2e2x; g (x) = 3 - 2e2x

(ilZ?a«sa/   Classes  Definite & Indefinite Integration  [18]