degradation of an organic overlayer model of a dental composite analyzed by liquid chromatography...

1
Degradation of an Organic Overlayer Model of a Dental Composite Degradation of an Organic Overlayer Model of a Dental Composite Analyzed by Liquid Chromatography Mass Spectrometry Analyzed by Liquid Chromatography Mass Spectrometry Peter Koin, 2 Ayben Kilislioglu, 4 Manshui Zhou, 1 James L. Drummond, 3 and Luke Hanley 1 ,* University of Illinois at Chicago, Departments of 1 Chemistry, 2 Bioengineering, and 3 Restorative Dentistry, m/c 111, Chicago, IL 60607-7061 USA 4 Istanbul University, Department of Chemistry, Avcilar 34320, Istanbul, Turkey Motivation Goals Degradation Study Purpose •Dental Composites consist of a polymerizable resin matrix, reinforcing glass filler particles, and a silane coupler. •One of the most used resin monomer of dental composites is Bisphenol A glycerolate dimethacrylate (BisGMA) •Composites undergo property changes due to oral environment •Environment can weaken materials and reduce restoration longevity •Can release compounds into tissues and accumulate •Study materials that can leach out of composite New System of Analysis •Degradation studies of commercial composites too complex [1] •Monolayer system to understand degradation and erosion [2] Monolayer System •Dental composites made of resin matrix, glass particle filler, and a silane coupling agent •Resin matrix: Bisphenol A glycerolate dimethacrylate (BisGMA) •Glass filler: Nanoporous silicon chip •Silane coupling agent: MPS- 3- (trimethoxysilyl) propyl methacrylate •Glass particles used to reduce overall polymer shrinkage •Silane coupler covalently links resin to glass filler: improves mechanical properties and increases hydrolytic stability due to hydrophobic nature Dental Composite Model Experimental Methods Conclusions Funded by National Institute of Dental and Craniofacial Research, DE-07979 [1] MS Zhou, JL. Drummond, L Hanley. Dental Materials. 21 (2005) : 145-155. [2] MS. Zhou, CP. Wu, PD. Edirisinghe, JL. Drummond, L. Hanley. Journal of Biomedical Materials Research A. 76 (2006). Results •Study degradation of Dental Composite Model after aging in water for 2 weeks •Qualitative analysis to find degradation peaks using MS Fragmenter software and MS-MS analysis Silicon Wafer (N-Type 100) 24 (wt)% HF/EtOH 20 mA/cm 2 , 5 min Nanoporous silicon 31.6% H 2 O 2 50°C, 1hr Porous SiO 2 Surface (Stored in 1N HNO 3 Solution) Porous SiO2 2 (wt) % MPS/Toluene 60°C, 96hrs Wash Toluene Baking 80°C, 12hrs MPS-Silanized Substrate MPS-Silanized Substrate 2.0 mg/ml BisGMA/EtOH Initiator Solution Cure, UV light 20 min Polymerized methacryloyl BisGMA Overlayer Instrumentation •LCMS –Finnigan Mat LcQ •HPLC –SpectraSYSTEMS SCM 1000 vacuum membrane degasser –P4000 gradient elution pump –AS 3000 autosampler –UV 2000 dual-wave length detector Data Analysis Software ACD Labs (Toronto, Ont., Canada) •ACD MS Manager to analyze and process data •ACD MS Fragmenter- Program generates fragments and structures by using standard fragmentation rules HPLC Conditions •Mobile Phase: Gradient of MeOH/H20 •Flow Rate: 0.3 ml/min •Temperature: Room Temperature, 25°C •UV Wavelength: 250 nm •Column: Reverse Phase Water Symmetry C18 3.5 μm, 3.0 mm diameter, 150 mm length Injection volume: 10 μL Standards Analysis to find retention time Standards •Resin Material : BisGMA •Silane Coupler : MPS- not run because of adverse effect of MPS with columns •Photoinitiator solution : triethanolamine, vinyl pyrrolidinone, and eosin Y •Glass Filler : nanoporous silicon chip, prepared similar to DIOS chips –Possible Degradation Products : bisphenol A, methacrylic acid Aged Monolayer Samples 3 nanoporous silicon chips per sample 2 weeks aged in de-ionized water Also aged blank nanoporous silicon chip with no BisGMA or methacryloyl layer to determine nanoporous silicon background 40 35 30 25 20 15 10 5 0 Retention Time (min) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Relative Intensity 462 530 620 634 645 363 536 610 684 11.535 15.973 18.568 20.443 21.779 23.746 29.484 31.317 33.199 • TIC of Extract from Methacryoyl BisGMA monolayer on nanoporous silicon aged for 2 weeks in DI water. 880 800 720 640 560 480 400 320 240 160 80 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 495 513 530 CH 3 C H 3 O O O CH 3 O C H 2 O O H CH 3 O H C H 2 O NH 4 + CH 3 C H 3 O O O CH 3 O C H 2 O O H CH 3 O H C H 2 O CH 3 C H 3 O O O CH 3 O C H 2 O O H CH 3 C H 2 O •Electrospray ion trap mass spectra of BISGMA from TIC at 16.0 min with a main peak of m/z 530. 600 550 500 450 400 350 300 250 200 150 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 191 277 323 409 427 495 513 530 CH 3 C H 3 O O O CH 3 O C H 2 O O H CH 3 O H C H 2 O C + C H 3 CH 3 O C H 2 + OH 192 C + CH 3 C H 3 O O CH 3 O H C H 2 O 277 CH 3 C H 3 O O O CH 3 CH 3 C H 2 O O H O H 428 CH 3 C H 3 O O O CH 3 O C H 2 O O H CH 3 C H 2 O 494 M+NH4 • MSMS of BisGMA, m/z 530. Spectra shows the M+NH 4 peak at m/z 530, M+H peak at m/z 513, M-H 2 0+H at m/z 495, and main degradation products at m/z 191, 277, and 427 Retention Time (min) m/z Name # of run s Structure Method of ID peak Structure (# of runs) 16.014 +/- 0.546 530 BisGMA 26 MS of Standard- Obvious 20.623 +/- 0.517 634 (BisGMA)” 25 Unknown Structure MS/MS (14) 19.088 +/- 0.477 620 (BisGMA)’ 15 Unknown Structure MS/MS (4) 21.819 +/- 0.526 644 (BisGMA)” 12 Unknown Structure MS/MS (8) 11.343 +/- 0.547 462 BisGMA-MA 15 MS Fragmenter Software, MSMS (4) 24.115 +/- 0.304 363 BisGMA- 2MA 5 MS Fragmenter Software 880 800 720 640 560 480 400 320 240 160 80 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 87 161 444 488 532 576 620 708 752 796 840 Unknown Structure • Electrospray ion trap mass spectra of (BisGMA)’ Polymer at 18.6 min, which is a BisGMA polymer derivative with a m/z difference of 44 between peaks. 880 800 720 640 560 480 400 320 240 160 80 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 458 502 546 590 634 678 722 766 810 Unknown Structure •Electrospray ion trap mass spectra of (BisGMA)” Polymer at 20.4 min. 880 800 720 640 560 480 400 320 240 160 80 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 424 468 512 556 600 644 669 688 732 776 Unknown Structure •Electrospray ion trap mass spectra of (BisGMA)”’ Polymer at 21.8 min, which is a BisGMA polymer derivative with a m/z difference of 44 between peaks. 880 800 720 640 560 480 400 320 240 160 80 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 150 427 445 462 CH 3 C H 3 O O OH O O H CH 3 O H C H 2 O CH 3 C H 3 O O OH O O H CH 3 O H C H 2 O +H +H-H 2 O Electrospray ion trap mass spectra from TIC at RT= 11.5 min with a main peak at m/z 462 that corresponds to a BisGMA degradation product 880 800 720 640 560 480 400 320 240 160 80 m/z 8 16 24 32 40 48 56 64 72 80 88 96 Relative Intensity (%) 363 747 CH 3 C H 3 O O CH 3 CH 3 O H O H Electrospray ion trap mass spectra of BisGMA degradation product with a m/z 363, at a retention time of 23.8 min. 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 Retention Time (min) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Relative Intensity • TIC of Pure BisGMA run through HPLC, no aging. OH OH OH Si O O O O O Si O O O O OH O OH O O O OH O O OH O Si O O OH O OH O O O O O HO O O OH O MPS + + SiO 2 Surface M ethacryloyl overlayer Bis-GM A Bis-G M A-m ethacryloyl overlayer hv Eosin Y /TEA /V P •Unreacted BisGMA strongly adsorbs to surface of nanoporous silicon and slowly leaches out •Aging also causes hydrolysis of ester bonds and causes degradation products of BisGMA to appear •Oligomer peaks with unknown structures also appear after aging Si O H OH O H O O CH 3 O O CH 3 O OH C H 3 CH 3 O O OH CH 3 CH 2 O CH 3 C H 3 O O OH O O H CH 3 O H C H 2 O CH 3 C H 3 O O CH 3 CH 3 O H O H BisGMA-methacryloyl monolayer BisGMA-MA m/z 462 BisGMA-2MA m/z 363 A B •Reaction of BisGMA-methacryloyl monolayer in the presence of water. Hydrolysis of ester bonds causes degradation products of BisGMA to appear. Hydrolysis reactions can also occur at black arrows, but do not show up in sample data. CH 3 C H 3 O O O CH 3 O C H 2 O O H CH 3 O H C H 2 O 530 CH 3 C H 3 O O OH O O H CH 3 O H C H 2 O 462 CH 3 C H 3 O O CH 3 CH 3 O H O H 363

Upload: jemimah-harper

Post on 16-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Degradation of an Organic Overlayer Model of a Dental Composite Analyzed by Liquid Chromatography Mass Spectrometry Peter Koin, 2 Ayben Kilislioglu, 4

Degradation of an Organic Overlayer Model of a Dental Composite Degradation of an Organic Overlayer Model of a Dental Composite Analyzed by Liquid Chromatography Mass SpectrometryAnalyzed by Liquid Chromatography Mass Spectrometry

Peter Koin,2 Ayben Kilislioglu,4 Manshui Zhou,1 James L. Drummond,3 and Luke Hanley1,*University of Illinois at Chicago, Departments of 1Chemistry, 2Bioengineering, and 3Restorative Dentistry, m/c 111, Chicago, IL 60607-7061 USA

4Istanbul University, Department of Chemistry, Avcilar 34320, Istanbul, Turkey

Motivation

Goals

Degradation Study Purpose•Dental Composites consist of a polymerizable resin matrix, reinforcing glass filler particles, and a silane coupler.•One of the most used resin monomer of dental composites is Bisphenol A glycerolate dimethacrylate (BisGMA)•Composites undergo property changes due to oral environment•Environment can weaken materials and reduce restoration longevity•Can release compounds into tissues and accumulate•Study materials that can leach out of composite

New System of Analysis•Degradation studies of commercial composites too complex [1]•Monolayer system to understand degradation and erosion [2]

Monolayer System•Dental composites made of resin matrix, glass particle filler, and a silane coupling agent

•Resin matrix: Bisphenol A glycerolate dimethacrylate (BisGMA)•Glass filler: Nanoporous silicon chip•Silane coupling agent: MPS- 3- (trimethoxysilyl) propyl methacrylate

•Glass particles used to reduce overall polymer shrinkage•Silane coupler covalently links resin to glass filler: improves mechanical properties and increases hydrolytic stability due to hydrophobic nature

Dental Composite Model

Experimental Methods

Conclusions

Funded by National Institute of Dental and Craniofacial Research, DE-07979

[1] MS Zhou, JL. Drummond, L Hanley. Dental Materials. 21 (2005) : 145-155. [2] MS. Zhou, CP. Wu, PD. Edirisinghe, JL. Drummond, L. Hanley. Journal of Biomedical Materials Research A. 76 (2006).

Results

•Study degradation of Dental Composite Model after aging in water for 2 weeks•Qualitative analysis to find degradation peaks using MS Fragmenter software and MS-MS analysis

Silicon Wafer(N-Type 100)

24 (wt)% HF/EtOH

20 mA/cm2, 5 min

Nanoporous silicon 31.6% H2O2

50°C, 1hr

Porous SiO2 Surface (Stored in 1N HNO3 Solution)

Porous SiO22 (wt) % MPS/Toluene

60°C, 96hrs

Wash

Toluene

Baking

80°C, 12hrs

MPS-Silanized Substrate

MPS-Silanized Substrate2.0 mg/ml BisGMA/EtOH

Initiator Solution

Cure, UV light

20 min

Polymerized methacryloyl BisGMA Overlayer

Instrumentation•LCMS

–Finnigan Mat LcQ•HPLC

–SpectraSYSTEMS SCM 1000 vacuum membrane degasser–P4000 gradient elution pump–AS 3000 autosampler–UV 2000 dual-wave length detector

Data Analysis SoftwareACD Labs (Toronto, Ont., Canada)

•ACD MS Manager to analyze and process data•ACD MS Fragmenter- Program generates fragments and structures by using standard fragmentation rules

HPLC Conditions•Mobile Phase: Gradient of MeOH/H20•Flow Rate: 0.3 ml/min•Temperature: Room Temperature, 25°C•UV Wavelength: 250 nm•Column: Reverse Phase Water Symmetry C18 3.5 μm, 3.0 mm diameter, 150 mm length•Injection volume: 10 μL

Standards Analysis to find retention timeStandards

•Resin Material: BisGMA•Silane Coupler: MPS- not run because of adverse effect of MPS with columns•Photoinitiator solution: triethanolamine, vinyl pyrrolidinone, and eosin Y•Glass Filler: nanoporous silicon chip, prepared similar to DIOS chips–Possible Degradation Products: bisphenol A, methacrylic acid

Aged Monolayer Samples3 nanoporous silicon chips per sample2 weeks aged in de-ionized waterAlso aged blank nanoporous silicon chip with no BisGMA or methacryloyl layer to determine nanoporous silicon background

4035302520151050Retention Time (min)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re

lative

In

ten

sity

462

530

620634

645

363

536

610 684

11

.53

5

15

.97

3

18

.56

8

20

.44

3

21

.77

9

23

.74

6

29

.48

4

31

.31

7

33

.19

9

• TIC of Extract from Methacryoyl BisGMA monolayer on nanoporous silicon aged for 2 weeks in DI water.

88080072064056048040032024016080m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lativ

e In

ten

sity

(%

)

495513

530

CH3CH3

O

O

O

CH3

O

CH2

O

OH

CH3

OH

CH2

O

NH4+

CH3CH3

O

O

O

CH3

O

CH2

O

OH

CH3

OH

CH2

O

CH3CH3

O

O

O

CH3

O

CH2

O

OH

CH3

CH2

O

•Electrospray ion trap mass spectra of BISGMA from TIC at 16.0 min with a main peak of m/z 530.

600550500450400350300250200150m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lativ

e In

ten

sity

(%

)

191 277 323 409427

495

513

530

CH3CH3

O

O

O

CH3

O

CH2

O

OH

CH3

OH

CH2

O

C+

CH3 CH3

O

CH2+

OH

192

C+

CH3CH3

O

O

CH3

OH

CH2

O

277

CH3CH3

O

O

O

CH3

CH3

CH2

O

OH

OH

428

CH3CH3

O

O

O

CH3

O

CH2

O

OH

CH3

CH2

O

494

M+NH4

• MSMS of BisGMA, m/z 530. Spectra shows the M+NH4 peak at m/z 530, M+H peak at m/z 513, M-H20+H at m/z 495, and main degradation products at m/z 191, 277, and 427

Retention Time (min)

m/z Name# of runs

StructureMethod of ID peak

Structure(# of runs)

16.014 +/- 0.546 530 BisGMA 26MS of Standard-

Obvious

20.623 +/- 0.517 634 (BisGMA)” 25 Unknown Structure MS/MS (14)

19.088 +/- 0.477 620 (BisGMA)’ 15 Unknown Structure MS/MS (4)

21.819 +/- 0.526 644 (BisGMA)”’ 12 Unknown Structure MS/MS (8)

11.343 +/- 0.547 462BisGMA-MA

15MS Fragmenter

Software, MSMS (4)

24.115 +/- 0.304 363BisGMA-

2MA5

MS Fragmenter Software

88080072064056048040032024016080m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lative

In

ten

sity (

%)

87 161444

488

532

576

620

708

752

796840

Unknown Structure

• Electrospray ion trap mass spectra of (BisGMA)’ Polymer at 18.6 min, which is a BisGMA polymer derivative with a m/z difference of 44 between peaks.

88080072064056048040032024016080m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lative

In

ten

sity (

%)

458

502

546

590

634

678

722

766

810

Unknown Structure

•Electrospray ion trap mass spectra of (BisGMA)” Polymer at 20.4 min.

88080072064056048040032024016080m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lative

In

ten

sity (

%)

424

468

512

556

600644

669688

732

776

Unknown Structure

•Electrospray ion trap mass spectra of (BisGMA)”’ Polymer at 21.8 min, which is a BisGMA polymer derivative with a m/z difference of 44 between peaks.

88080072064056048040032024016080m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lative

In

ten

sity (

%)

150 427445

462

C H 3CH 3

O

O

O HO OH

C H 3

OH

CH 2

O

CH3CH3

O

O

OHO OH

CH3

OH

CH2

O

+H

+H-H2O

Electrospray ion trap mass spectra from TIC at RT= 11.5 min with a main peak at m/z 462 that corresponds to a BisGMA degradation product

88080072064056048040032024016080m/z

8

16

24

32

40

48

56

64

72

80

88

96

Re

lativ

e In

ten

sity

(%

)

363

747

CH3CH3

O

O

CH3CH3

OH

OH

Electrospray ion trap mass spectra of BisGMA degradation product with a m/z 363, at a retention time of 23.8 min.

302826242220181614121086420Retention Time (min)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re

lative

In

ten

sity

• TIC of Pure BisGMA run through HPLC, no aging.

OH

OH

OH

SiO

O

O

O

O

Si

O

O

O

O

OH

O

OH

O

O

O

OH

OO

OHO

Si

O

O

OH

O

OH

O

O

O

O

O

HO

O O

OH

O

MPS

+

+

SiO2 Surface Methacryloyl overlayer

Bis-GMA

Bis-GMA-methacryloyl overlayer

hv

Eosin Y / TEA / VP

•Unreacted BisGMA strongly adsorbs to surface of nanoporous silicon and slowly leaches out•Aging also causes hydrolysis of ester bonds and causes degradation products of BisGMA to appear•Oligomer peaks with unknown structures also appear after aging

Si

OH

OHOH

O

O

CH3

O

O

CH3

O

OH

CH3

CH3

O O

OH

CH3

CH2

O

CH3CH3

O

O

OHO OH

CH3

OH

CH2

O

CH3CH3

O

O

CH3CH3

OH

OH

BisGMA-methacryloyl monolayer

BisGMA-MAm/z 462

BisGMA-2MAm/z 363

A

B

•Reaction of BisGMA-methacryloyl monolayer in the presence of water. Hydrolysis of ester bonds causes degradation products of BisGMA to appear. Hydrolysis reactions can also occur at black arrows, but do not show up in sample data.

CH3CH3

O

O

O

CH3

O

CH2

O

OH

CH3

OH

CH2

O

530

CH3CH3

O

O

OHO OH

CH3

OH

CH2

O

462

CH3CH3

O

O

CH3CH3

OH

OH363