depressurization under tertiary conditions in the near-wellbore region: experiments, visualization...

Upload: arisi

Post on 30-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    1/12

    1

    DEPRESSURIZATIONUNDERTERTIARYCONDITIONSINTHENEAR-WELLBOREREGION:EXPERIMENTS,VISUALIZATIONAND

    RADIALFLOWSIMULATIONS

    P.Egermann,S.BaniniandO.Vizika

    InstitutFranaisduPtrole(IFP)

    ABSTRACT

    Depressurizationcanbeaveryinterestingprocesstorecoverhydrocarbonsfromwaterflooded

    oil reservoir with high gas-oil-ratio. Most of the published results are related to depletion

    experimentsundersecondaryconditions(virginreservoir).Dataaremorescarceundertertiary

    conditionsafterwaterflooding[1,2,3].

    Thepresentpapertreatstheissueofthedepressurizationundertertiaryconditionsinthenear-

    wellbore region. Practically, this has been achieved by combining experimental results,

    obtainedonbothcoreandtransparentmicromodel,withradialflowdepletionsimulationsthatare representative of the conditions prevailing in the near-wellbore region. A validated

    methodologypreviouslypresented[4]hasbeenusedtodesigntheexperimentsoncore(the

    coreundertertiaryconditionswascontinuouslyflushedwithwateratafixedrate,whilethe

    pressureattheoutletwasdecreasedtoreproduceadrawdown).Thesaturationprofiles,the

    pressuresandthefluidproductionsasafunctionoftimewererecordedinthetwoexperiments

    that are presented. From the core experiments, critical gas saturation (Sgc) and relative

    permeability (kr) have been determined using a specific simulation code that takes into

    accountnucleation,diffusionandmobilizationprocessesrelatedtotheappearanceofthegas

    phasefromsolution.Constantdepletionrateexperimentswerealsoconductedonatransparent

    micromodeltostudytheprocessofconnectionofthegasphaseundertertiaryconditions.The

    specificityofthenear-wellboreregion(highdP/dtand radialflow) was then investigatedby

    conductinganumericalexperimentwithradialgeometry.

    Itisshownthatgasrelativepermeabilitiesobtainedundertertiaryconditionsarelowerthan

    the ones obtained under secondary conditions. This behavior is attributed to the double

    connectionprocessthatisneededforthegastogetmobilized:connectionofthedisconnected

    oilphaseandconnectionofthegasphaseitself.Thisphenomenonisalsoconfirmedbythe

    visualizationexperimentsconductedonmicromodel.Thenumericalexperimentrepresentative

    ofthenear-wellboreconditionswitharadialgeometrydemonstratesthatSgcisafunctionof

    thedistancetothewellbore,whichcanhavealargeimpactonreservoirsimulationresults.

    INTRODUCTION

    Depressurization under tertiary conditions is considered as an interesting process to extend

    economicallythelifeof maturewaterfloodedreservoirs[5, 6].Thesuccessof theprocess is

    mainlydependentontherecoverablefractionofthesolutiongascontainedinthetrappedoil

    and on the quantity of incremental oil that is possible to produce consecutively to the

    developmentofthegasphase[7].

    Realisticestimationsofthistertiaryrecoverycanonlybeachievedwithrelevantvaluesofboth

    Sgc (critical gas saturation) and kr (relative permeability). Unfortunately, most of the

    published data on depressurization are related to depletion experiments under secondaryconditions and are mainly focused on the evolution of the Sgc value as a function of the

    SCA2003-15

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    2/12

    2

    depletion rate (dP/dt). Secondary depressurization has been looked at with coreflood

    experiments[8,9,10],withporenetworkmodeling[11],orwithvisualizationontransparent

    micromodel[12,13].Theavailableresultsprovethatkrgvaluesunderinternalgasdriveare

    verylowevenatsignificantSgvalues.Thistrendwasobservedforbothlightandheavyoils

    [14,15].Morerecently,ithasbeenshownthatinternalgasdrivekrgvaluescanbeseveral

    ordersofmagnitudelowerthantheexternalgasdrivekrg[4,16].

    Data aremore scarceon tertiary depressurization process.Lighthelm et al.[1] have mainly

    studiedtheevolutionofSgcasafunctionofdP/dtusingcoresandfluidsfromtheBrentfield.

    TheyshowedthatSgcincreaseswithdP/dt(sametrendasundersecondaryconditions),but

    theSgcvaluedependsontheinitialsaturationstateforagivencoreandagivensetoffluids.

    The connection process of the gas phase under tertiary conditions was also studied in

    micromodel by Hawes et al. [17]. Only Grattoni et al. and Naylor et al. [2, 3] tackled

    simultaneously the issues of Sgc and kr under tertiary conditions. Grattoni et al. [2, 18]

    conducteddepletionexperimentsonamodelporousmediumcomposedoftransparentpacked

    beadsthatenabledalsoflowvisualization.Themainresultofthisstudyistheextremelylow

    valuesofkrgmeasured,whichwerefoundaround10-5

    -10-3

    evenat23%Sg.Thisparticular

    behaviorwasattributedtotheintermittentflowofgasthatwasobservedexperimentallyduring

    thedepletionprocess.Naylor etal.[3] conducted several depletion experiments atdifferent

    ratesonrealagedcores.Thekrgcurveswereobtainedbynumericalhistorymatchingtaking

    into accountthe specific shapeof the localSg profiles. The results obtainedwere in good

    agreementwiththeexistingliterature.SgcincreaseswithdP/dtandkrgvaluesareextremely

    low,around10-4

    .

    Inthispaper,wewillfocusonthetertiarydepressurizationinthenear-wellboreregion.Thispartofthereservoirisparticularlyimportantfor hydrocarbonproductionbecauseitcontrols

    the well productivity / injectivity, whereas the far field region accounts for the overall

    recovery.MostofthepublisheddepressurizationexperimentsareconductedatafixeddP/dt,

    sothatthepressuredropalongthecoreremainsmoderate,evenathighdP/dt.Thismakesthis

    kindofexperimentsonlyrepresentativeofthefarfieldregion.Inthefirstpartofthepaper,we

    presenttwocorefloodexperiments using a specificdesignand methodology that enablesto

    reproducetheconditionsthatprevailinthenearwellboreregion[4]:highpressuregradient.

    Theexperimental resultsareinterpreted using a tertiary depletionsimulator. The related kr

    curvesarepresentedandcomparedwithotherpublishedresults.Thegasmobilizationprocess

    undertertiary conditions is studied in the second part usingvisualizations obtained from a

    highpressuremicromodel.Inthethirdandlastpart,thespecificityofthenear-wellboreregionisinvestigatedbyperformingnumerical experiments witharadialgeometry toevaluatehow

    theflowingpropertiesvaryasafunctionofthedistancefromthewell.

    COREEXPERIMENTS

    Rock/fluidsystem

    Alltheexperimentswereperformedona Vosgessandstonecore,whosemainpropertiesare

    gatheredinTable1.Thischoicewasmainlymotivatedbythehighdegreeofhomogeneityof

    thissandstoneandalsobyitsfairabsolutepermeability.

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    3/12

    3

    Table1:Vosgessandstonecoreproperties

    PermeabilitymD Porosity% Lengthcm Areacm2

    PVcm3

    58 24 34.5 14.5 120

    ThesamebinarymixtureC1C7wasusedfortheoleicphaseinbothexperiments.Thebubblepointofthemixturewasequalto21bar,whichcorrespondstoamolarfractionofC1equalto

    0.107.Thetablehereafterprovidestheassociatedpropertiesin termsof IFTandviscosityat

    Pband20C.DatawerederivedfromIFPdevelopedPVTsoftware.

    Table2:fluidpropertiesofthebinarymixtureC1C7

    Pbbar %C1molar IFTmN/m OilviscositycP Oildensitykg/m3

    21 10.7 17.25 0.402 672

    Thebrineiscomposedof50g/lNaCland5g/lCaCl2.Thiscompositionprovedtobeefficient

    instabilizingclayscontainedinthesandstoneandingettinga goodcontrastbetweentheoilandthewaterphaseduringtheacquisitionoflocalsaturationmeasurements.

    Experimentalset-up

    It is mainly composedof a Hassler type core holder made with composite material, which

    enables acquisitionof localsaturationmeasurementsalongthecore with CT-scanner.In the

    inlet,thebinarymixtureorthebrinecanbeinjectedintothecoreatafixedratewithapump.

    Downstream,theoutletpressureiscontrolledbyabackpressurevalveremotelyoperatedbya

    PC,sothatthedrawdowncanbemonitoredveryeasily.Attheoutlet,adensimeterisused

    mainlyduringthecorepreparationtocheckthecoresaturationwiththemixture.Duringthe

    experiment,thedensimeterisalsousefultodetecttheveryfirstapparitionofthegasphasedownstream.Fluidsarecollectedintoaseparatorsothatbothliquidsandgasquantitiescanbe

    measured.Evolutionoftheoutletpressureisdirectlyrecordedbyapressuregauge.Theinlet

    pressureisdeducedfromadifferentialpressure gaugemeasurement.Only thetotalpressure

    dropalongthecoreisavailable(nopressureports).Allthedataareautomaticallyrecordedon

    aPC.

    CTscanner

    acquisition

    C1C7reservoir

    PumpDensimeter

    DP

    PCAutomaticacquisition

    Outletpressurecontrol

    Gasometer

    Separator

    Pressureregulator

    Brinereservoir

    Figure1:corefloodexperimentalset-up

    Experimentalprocedure

    Residualoilsaturation(tertiaryconditions)wasestablishedwiththefollowingprocedure: PreliminarysettingofS wiconditionsusingaviscousoil(Marcol52,10cP)

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    4/12

    4

    MisciblefloodingofMarcolbyC7 MisciblefloodingofC7bythebinarymixtureC1C7underpressure(abovePb) SettingofSorwbyinjectionofbrineatfixedrateTheprincipleofthedepletionexperimentisdescribedinearlierpublication[4].Undertertiary

    conditions, the brineis injected upstream ata fixed rate with the outlet pressure originally

    abovethebubblepoint. Pressureat theoutlet isprogressively decreaseddownto a definedvaluebelowthebubblepointofthemixture.Alltheexperimentswereperformedwitharate

    of30cc/htosimulateconditionsinthewellboreofaproductionwell.Thedrawdowncaused

    theformationofthegasphasestartinginthedownstreampartofthecore.Transientevolution

    ofgassaturationthroughthecoreisfollowedbyCT-scannerandimpactofgasapparitionon

    thepressuredropisdetectedontheinletpressurevariations.

    Productiondataresults

    Twoexperimentswereconducted(M1andM2).Theoutletpressurewasdecreasedbelowthe

    bubblepressureintwosteps(17and14bar)inthefirstexperiment,whereasitwasdecreased

    directly down to 14 bar in the second experiment. For both experiments, the pressureevolutionsareverysimilarandalsoingoodagreementwithpreviousexperimentsperformed

    undersecondaryconditions(Figure2).Atthebeginning,theinletandoutletpressuresremain

    parallel.Thispartcorrespondstoaconstantpressuredropalongthecoreduringtheflowof

    waterwhentheoutletpressureisabovethebubblepoint(residualoil immobile).Assoonas

    thegasappears downstream, thepressure dropincreaseswith increasinggas saturation,and

    then it stabilizes, while the outlet pressure is maintained constant (17 or 14 bar). The

    experimentalresultsaresummarizedinTable3.

    Secondaryconditions

    65

    70

    75

    80

    85

    90

    0 2 4 6 8Timehour

    Pressurebar

    Inletpressure

    Outletpressure

    Tertiaryconditions

    10

    15

    20

    25

    30

    35

    40

    0 1 2 3 4

    Timehour

    Pressurebar

    Outletpressure

    Inletpressure

    17ba rste p 14ba rste p

    Figure2:inletandoutletpressureevolutions(secondaryconditionsandM1)

    Oneinterestingfeatureconcernstheevolutionoftheinletpressure.Areboundwasmeasured

    under secondary conditions and was associated to a recompression along the core

    consecutively to the development of the gas phase and its effect on kro (the oil was the

    injectedfluid).Theinletpressureonly decreasesorstabilizesundertertiary conditions.This

    result suggests that the development of the gas phase has a less pronounced effect on the

    permeabilityoftheinjectedfluid(krw).Thismaybeaconsequenceofthetertiaryconditions,

    wherethegasappearswithintheoilphase,whichisnonmobileandtrappedinthelargepores

    sincetherockiswater-wet.

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    5/12

    5

    Table3:tertiarydepletionexperimentsresults

    Exp Sorw% DPwater/oil Step1/DP1 Step2/DP2 KrwatSorw So%OOIP

    M1 28.1 6.1bar 17bar/8.7bar 14bar/9.8bar 0.057 42

    M2 29.0 6.4bar 14bar/9.1bar 0.054 35

    Figure3showstheevolutionofthedifferentialpressureandtheincrementaloilproductionas

    afunctionoftime.Inbothexperiments,theappearanceofthegasphasemakesthepressure

    dropalongthecoreincrease,andisassociatedwiththeproductionofasignificantquantityof

    oil,whichrepresentsaround10%PV(34-42%OOIP).Inthetwostepexperiment(M1),the

    break in the slope of the oil production curve strongly suggests that this incremental oil

    productionisdirectlyconnectedwiththeextensionofthethree-phaseareaintothecore.

    M1

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 1 2 3 4

    Timehour

    Oilproductioncm3

    0

    2

    4

    6

    8

    10

    12

    Differentialpressurebar

    Experimentaloilproduction

    ExperimentalDP

    M2

    0

    2

    4

    6

    8

    10

    12

    14

    0 1 2 3 4 5 6

    Timehour

    Oilproductioncm3

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Differentialpressurebar

    Experimentaloilproduction

    ExperimentalDP

    Figure3:Experimentalpressuredropandoilproduction(M1andM2)

    Saturationprofilesresults

    Theaboveobservationsmadeontheproductiondataarecompletelyconfirmedbythein-situ

    saturation measurements. Figure 4a illustrates the extension of the gas region upstream

    dependingontheoutletpressurevalue(17and14bar).TheshapeoftheSgprofilesisvery

    typicalwithagassaturationjumpaheadthegasregionfollowedbyalesspronouncedincrease

    of Sg. This shape was found common in all experiments and very similar with the results

    obtainedundersecondaryconditions[4].AnotherinterestingfeatureconcernstheevolutionoftheSwprofilesduringM1(Figure4b).

    TheSwvalueremainsveryuniformandconstantwithinthethree-phaseareasuggestingthat

    the non wetting phasesaturation (Sg+So) value isaround 35%, close to the original Sorw

    value,whatevertheexperimentalconditions.

    17barstep 14barstep

    Gasphase

    a earance

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    6/12

    6

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 50 100 150 200 250 300 350

    Distancefromtheinletmm

    Gassaturation%

    17barstep:experimentalM1

    14barstep:experimentalM1

    14barstep:experimentalM2

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 50 100 150 200 250 300 350

    Distancemm

    Watersaturation%

    Swbeforedepletion

    Sw:end17barstep

    Sw:end14barstep

    Figure4:(a)Sgprofiles(M1andM2);(b)SwprofilesM1

    The conservation of the overall non-wetting phase saturation also explains why the

    developmentofthegasphasehasalesspronouncedimpactontheinletpressure,andon the

    injectedphasepermeabilitythanundersecondaryconditions.

    Interpretation

    Numericalsimulator

    Thein-housedepletioncodethatwasdevelopedtosimulatetheexperimentsundersecondary

    conditionswasused[19].ThegeneralstructureofthecodeisremindedinFigure5.Themain

    advantagesofthiscodearelistedbelow:

    Account of the physical phenomena involved in the gas formation (nucleation,diffusion) Controlofthegasmobilizationprocess.Dependingontheexperimentalconditions,thecodecanhandlebothdispersedorcontinuousgasflow.

    Initialization

    t=t+dt

    Waterrate

    Pressureprofile

    Nucleation

    Bubblegrowth

    Gasmobilization Connection Dispersed

    Oilsaturation

    Solutiongasconcentration

    Upstream

    Qw

    Downstream

    Poutlet

    Figure5:codearchitecture

    Somemodificationshavebeenintroducedintheoriginalcodeinordertotakeintoaccountthe

    specificityofthetertiaryconditions.

    The pressure drop along the core results from the injection of the water phase(krw(Sg))

    The three-phase flow was handled like a pseudo two-phase flow. As the localsaturation measurements showed that the non wetting phase saturation remains

    a b

    Sgjump

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    7/12

    7

    constantwithinthethree-phaseregion,theoilsaturationineachcellwascalculated

    from the gas saturation value using the conservation of the non wetting phase

    saturation:

    SgSSo NWR = , whereSNWRwaskeptconstantandequalto35%

    HistorymatchingA very good agreement was reached between the simulation and the experimental data in

    termsofproductiondataandSgprofiles(Figure6),whateverthevalueoftheoutletpressure.

    Theconsistencyofthishistorymatchingwasalsocheckedbycomparingtheexperimentaland

    the simulated gas production a posteriori. Here again, an excellent matching is obtained

    (Figure7a).

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 1 2 3 4

    Timehour

    Oilproductioncm

    3

    0

    2

    4

    6

    8

    10

    12

    Differentialpressure

    bar

    Simulatedoilproduction

    Experimentaloilproduction

    SimulatedDP

    ExperimentalDP

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 50 100 150 200 250 300 350

    Distancefromtheinletmm

    Gassaturation%

    17barstep:experimental

    14barstep:experimental17barstep:simulated

    14barstep:simulated

    Figure6:historymatchingofM1(productiondataandSgprofiles)

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    0 1 2 3 4

    Timehour

    Gasproductioncm3

    Experimentalgasproduction

    Simulatedgasproduction

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    0 0.1 0.2 0.3 0.4 0.5Sg

    krg

    Tertiarykrg

    Secondarykrg

    Grattonietal

    Drummondetal

    Figure7:gasproductionhistorymatching(a)andkrgresults(b)

    Krgcurveshape

    The tertiary krg curve deduced from the history matching procedure is compared with the

    secondarykrgcurvethatwasobtainedon anotherrocksampleinFigure7b[4].Bothcurves

    show that the mobility of the gas phase is limited under depletion, but this trend is more

    pronounced under tertiary conditions. It suggests that one part of the gas formed into theporousmediumdoesnotparticipateinthegasflowundertertiaryconditions,whichleadstoa

    a b

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    8/12

    8

    lowerkrgvalueatagivenSg,comparingtothesecondaryconditionscase.Asthegascomes

    fromsolutionwithinthetrappeddisconnectedoil,itissuspectedthattheonepartof thegas

    formedinnonaccessibleoilgangliacanmisstheconnectionprocessandexplainthisresult.

    Althoughtheexperimentsundertertiaryandsecondaryconditionshavenotbeenconductedon

    the same rock, it is interesting to observe that a lower Sgc value is found under tertiary

    conditionsforsimilardrawdownrate(evenifkrgarelower).Thismaybeaconsequenceofthewaterwettabilityoftherock,whichfavorstheentrapmentoftheoilphaseinthelargest

    pores.Hence,itmakesthegasphaseappearsundertertiaryconditionsintheclassofporesthat

    accounts for the porous mediumconnectivity leading to lower Sgc value comparing to the

    secondarycase,wherethegasbubblescanbecreatedineveryclassesofpores.

    Thetertiarykrgcurveisalsoingoodagreementwiththeotheravailablepublishedresultsfrom

    Grattonietal.[2]andNayloretal.[3](correspondingkrgcurveinDrummondetal.[6]).All

    curveshaveacommonpartaround10-4

    ,whichconfirmsthegasmobilityisverylimitedunder

    tertiaryconditions,whatevertheexperimentalconditions.

    VISUALIZATIONEXPERIMENTS:GASMOBILIZATIONPROCESS

    Apressurizedmicromodelwasusedtovisualizethegasmobilizationprocessundertertiary

    conditionsandexplainthelowvaluesofkrgmeasuredoncorefloodexperiments.Thegeneral

    principleoftheexperimentalset-upispresentedinFigure8.Themicromodelcanbeoperated

    up to 100 bar and 60C using a circulating device of the heated confining fluid. The

    establishmentofthetertiaryconditionswithC1C7wasachievedusingtheprocedurefollowed

    withcorefloodexperiments.Thedepletionwasconductedatfixeddepletionrate(dP/dt)by

    closing the inlet valve and decreasing progressively the pore pressure through the back

    pressurevalve.

    Pressurepumps

    (doublebody)

    Saphircell

    N2

    Pressure gauges

    Oven

    Highpressuremicrodel

    (100b,60C)

    Accumulator

    Monitor

    Video

    recording

    Vizualizationdevice

    Transfercells

    C1C7

    Confining

    fluid

    Pump

    N2

    Water

    Videocamera

    Figure8:Experimentalset-upforMicromodelvisualization

    AsequenceofthegasphasedevelopmentisgiveninFigure9.Onthefirstpicture,thegas

    bubbles(white)startappearingfromtheoilganglia(blue)disconnectedbythewaterphase

    (red).Dependingonthesizeofthegangliaandtheavailablequantityofsolutiongasinthe

    vicinity of the bubbles, the growingratecan bevery different from one bubble toanother.

    Several connection events between two adjacent bubbles are also observed, whereas somebubblesremaindisconnectedduringthewholeexperiment.Attheendofthesequence,alarge

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    9/12

    9

    gas bubble isobtained, whereas a significantfractionof thegas phase is still disconnected

    withinthedisconnectedoilganglia.Fromtheseobservations,thelowvaluesofkrgmeasured

    from coreflood experiments can be qualitatively explained by the double mechanism of

    connectionneededforthegastogetmobilized:reconnectionoftheoilphaseandconnection

    ofthegasitself.Thismechanismisalsoverysimilartowhatisobservedundertertiarygravity

    assistedinertgasinjectionasshownbyKantzasetal.[20].

    Figure9:Developmentofthegasphaseundertertiaryconditions

    RADIALGEOMETRYEFFECTINTHENEARWELLBORE

    Principle

    Thenearwellboreregionischaracterizedbyahighdrawdownandradialgeometry.Thehigh

    drawdown is reproduced in our experiments by injection of the producing fluid at a

    sufficiently high rate, but the flow is linear, which makes the pressure gradient (dP/dx)

    uniformalongthecore.Astheflowisradialnearthewell,bothdP/dxandU(fluidvelocity)

    increasefromthefarfieldtothenearwellboreregion,sotheequivalentdepletionratedP/dt,

    equal to UdP/dx, also increases [4]. As the flowing parameters (Sgc, kr) are strongly

    dependent on dP/dt, we have designed a numerical laboratory experiment with a radial

    geometrytoinvestigatetheevolutionoftheflowingpropertiesasafunctionofthedistance

    fromthewell.

    Rmax=60cm

    Rmin=10cm e=10cm

    QoilPhi=20%

    Angle=30

    Qoil=800cm3/h

    Figure10:principleoftheradialnumericalexperiment

    Gas

    Oil

    Water

    Connection

    events

    1 2 3

    4

    987

    65

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    10/12

    10

    The simulations were performed under secondary conditions. The numerical experiment

    principle is shown in Figure 10 and is the same as the one followed for the coreflood

    experiments. The depletion simulator was first calibrated on an existing experiment with a

    linear geometry to fix the parameters controlling the nucleation, the diffusion and the gas

    mobilization.ItisworthremindingthatourcodeenablestoevaluatethelocalSgcvaluefrom

    thebubble population properties (size,number)anda shape factor totake intoaccountthebubble ramifications for connection criterium. After calibration, the code was slightly

    modifiedtohandleradialgeometryandthenumericalexperimentwaslaunched.

    Results

    Figure11showsthepressureprofileswithbothgeometries.Asexpected,thepressuregradient

    dP/dxincreasesneartheoutletwhenaradialgeometryisconsidered,whereasdP/dxremains

    uniformalongthecorewithalineargeometry.TheassociatedSgprofileshaveasimilarshape

    with a gas saturation jump followed by a less pronounced increase of Sg, whatever the

    geometryconsidered(Figure12).Themobilizationofthegasphasecanbedetectedfromthe

    break in the slope of the Sg profiles (when the increase is less pronounced). With linear

    geometry, the break occurs always at the same saturation, whereas the break is clearly a

    functionofthedistancewithradialgeometrysuggestingSgcvaluevariesfromtheoutletpart

    ofthecoretotheinlet.

    Lineargeometry

    70

    75

    80

    85

    90

    0 100 200 300 400

    Distancemm

    Pressurebar

    Radialgeometry

    70

    72

    74

    76

    78

    80

    82

    84

    86

    88

    90

    0204060

    Radiuscm

    Pressurebar

    Figure11:pressureprofileswithlinearandradialgeometry

    Lineargeometry

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0 100 200 300 400

    Distancemm

    Sg

    Radialgeometry

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0102030405060

    Radiuscm

    Sg

    Figure12:Sgprofileswithlinearandradialgeometry

    SgclineSgcline

    increasingtimeincreasingtime

    increasingtime increasingtime

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    11/12

    11

    ThisbehaviorisconfirmedinFigure13,wheretheSgcvaluescalculatedbythecodeineach

    cell are plotted as a function of the distance. When a linear geometry is considered, the

    calculatedSgcvaluesareveryuniformalongthecore,equalto24%,whichisinlinewiththe

    experimental data and the theory(high equivalent dP/dt is constant along the core, several

    metersawayfromthewell).

    0.10

    0.15

    0.20

    0.25

    0.30

    0 10 20 30 40

    Distancefromtheinletcm(linear)

    CalculatedSgc

    010203040Radius(cm)

    Linearcase

    Radialcase

    1

    10

    100

    1000

    0.10 0.15 0.20 0.25 0.30

    Sgc(fraction)

    dP/dt(psi/hr)

    Radialcase

    Linearcase

    Figure13:calculatedSgcvaluesalongthecoreinlinearandradialgeometry

    When a radial geometry is considered, the calculated Sgc value varies from 26% near the

    outlet,wheretheequivalentdP/dtismaximum,downto20%atthegasfront,wherethedP/dt

    valueislower.ThecalculatedSgcvaluesareclearlya functionofdP/dt(Figure13)andfall

    alongalineartrendinsemi-logscaleasalreadypointedoutbyScherpenisseetal.[9].This

    studyconfirmstheroleplayedbytheflowgeometryinthespatialdistributionoftheflowing

    propertiesunderdepletion.Whensignificantdrawdownvaluesareobservedinthefield(high

    productionratesorheavyoilproduction)thisdependencehaslimitedeffectsontheoverall

    field recovery [21]but mayimpacttheproductionperformances significantly andshouldbe

    takenintoaccountinreservoirsimulations.

    CONCLUSIONS

    Itisshownthatthegasrelativepermeabilitycurveobtainedundertertiaryconditionsislower

    than theone obtainedunder secondaryconditions.This behavior isattributed tothedouble

    connectionprocessthatisneededforthegastogetmobilized:connectionofthedisconnected

    oilphaseandconnectionofthegasphaseitself.Thisphenomenonisalsoconfirmedbythe

    visualizationexperimentsconductedonmicromodel.Thenumericalexperimentrepresentative

    ofthenear-wellboreconditionswitharadialgeometrydemonstratesthatSgcisafunctionof

    thedistance,whichcanhavelargeimpactonreservoirsimulationresults.

    ACKNOWLEDGEMENTS

    ThisworkwaspartlyfundedbyARTEP,a researchassociationbetweenTOTAL,ELF,Gaz

    deFranceandIFP.

    NOMENCLATURE

    dP/dt: depletionrate

    dP/dx: pressuregradient

    IFT: interfacialtension

    kri: relativepermeabilityofphasei

    OOIP: oiloriginallyinplace

    Pb: bubblepressure

    Q: totalinjectionrate

    Si: saturationofphasei

    Sorw: residualoilsaturationtowaterflood

    U: fluidvelocity

    REFERENCES

    Sgc=6%

  • 8/14/2019 DEPRESSURIZATION UNDER TERTIARY CONDITIONS IN THE NEAR-WELLBORE REGION: EXPERIMENTS, VISUALIZATIO

    12/12

    12

    1 Ligthelm D.J., Reijnen G.C.A.M. et al: Critical gas saturation during depressurisation and itsimportance in the Brent field, SPE 38475, Offshore Europe Conference, 9-12 Sept 1997,

    Aberdeen.

    2 Grattoni C.A. et al.:Relative permeabilitiesfor the production of solution gas from waterflood

    residualoil,SCA9817,TheHague,14-16Sept1998.3 Naylor P. et al. :Relative permeability measurement for post-waterflood depressurisation of the

    Millerfield,NorthSea,SPE63148,ATCE,Dallas,1-4Oct2000.

    4 Egermann P. and Vizika O. :A new method to determine critical gas saturation and relativepermeabilityduringdepressurisationinthenear-wellboreregion,SCA2000-36,AbuDhabi,

    18-22Oct2000(publishedinPetrophysics,July-August2001).

    5BraithwaiteC.I.M.,SchulteW.M.:TransformingthefutureoftheBrentField:Depressurisation-The next developpement phase, SPE 25026, European Petroleum conference, 16-18

    November1992,Cannes.

    6 Drummond A. et al. :An evaluation of post-waterflood depressurisation of the Soth Brae field,NorthSea,SPE71487,ATCE,NewOrleans,30Sept-3Oct2001.

    7 Christiansen S.H., Wilson P.M.,: Challenges in the Brent field: implementation ofdepressurisation,SPE38469,OffshoreEuropeConference,9-12Sept1997,Aberdeen.

    8KortekaasT.F.M.,VanPoelgeestF.:Liberationofsolutiongasduringpressuredepletionofvirginandwatered-outoilreservoirs,SPE19693,ATCE,8-11Oct1989,SanAntonio.

    9 Scherpenisse W., Wit K. et al: Predicting gas saturation buildup during depressurisation of aNorth Sea oil reservoir, SPE 28842, European Petroleum Conference, 25-27 Oct 1994,

    London.

    10 Kamath J., Boyer R.E.:Critical gas saturationandsupersaturationin lowpermeability rocks,SPEFormationEvaluation,pp247-253,December1995.

    11 Du C., Yortsos Y.C.:A numerical study of the critical gas saturation in a porous medium,Transpporousmedia,V35,n2,pp205-225,May1999.

    12 Danesh A. et al.:Pore level visual investigation ofoil recovery bysolution gas drive and gasinjection,SPE16956,ATCE,Dallas,27-30Sept1987.

    13BoraR.etal.:Flowvizualisationstudiesofsolutiongasdriveprocessinheavyoilreservoirswithaglassmicromodel,SPEReservoirEvaluationandEngineering,pp224-229,June2000.

    14 Tang G-Q., Firoozabadi A.: Gas and liquid phase relative permeabilities for cold productionfromheavyoilreservoirs,SPE56540,ATCE,3-6Oct1999.

    15 Kumar R., Pooladi-Darvish M.: An investigation into enhanced recovery under solution gasdriveinheavyoilreservoirs,SPE59336,IORSymposium,Tulsa,3-5April2000.

    16 Poulsen S. et al. :Network modelling of internal and external gas drive, SCA 2001-17,Edinburgh,UK,17-19Sept2001.

    17HawesR.I.etal.:Thereleaseofsolutiongasfromwaterfloodresidualoil,SPEJournal,Volume

    2,Dec1997.18 Grattoni C.A. and Dawe R.A. :Gas and oil production from waterflood residual oil: effect of

    wettabilityandoilspreadingcharacteristics,WettabilityConference,Tasmanie,2002.

    19 Egermann P. and Vizika O. :Critical gas saturation and relative permeability duringdepressurisationinthefarfieldandthenear-wellboreregion,SPE63149,ATCE,Dallas,1-4

    Oct2000.

    20KantzasA.,ChatzisI.,DullienF.A.L.:Mechanismsofcapillarydisplacementofresidualoilby

    gravity-assisted inertgasinjection, SPE17506,Rocky MountainRegional Meeting,Casper,

    11-13May1988.

    21SahniA.etal.:Experimentsandanalysisofheavyoilsolutiongasdrive,SPE71498,

    NewOrleans,30Sept3Oct2001.

    This paper was prepared for presentation at the International Symposium of the Society of Core Analysts held in Pau, France, 21-24 September 2003