derivative module 2 september 2011

Upload: pirawin92

Post on 03-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Derivative Module 2 September 2011

    1/69

    30/09/2011 Techniques of differentiation 1

    Computing Derivative

    by using the techniques/rules ofdifferentiation.

    basic functions.

    MODULE 2

  • 8/12/2019 Derivative Module 2 September 2011

    2/69

    30/09/2011 Techniques of differentiation 2

    Learning Objective

    At the end of the module, students should beable to compute differentiation using suitabledifferentiation technique such as

    power rule, product rule,

    quotient rule, sum rule and difference rule constant multiple rule. basic functions.

  • 8/12/2019 Derivative Module 2 September 2011

    3/69

    30/09/2011 Techniques of differentiation 3

    Introduction

    Computing derivatives using definition canbe tedious, since the evaluation ofthe limit can be difficult.

  • 8/12/2019 Derivative Module 2 September 2011

    4/69

    30/09/2011 Techniques of differentiation 4

    Fortunately, several formulas or rules havebeen developed in finding derivativeswithout having to use the definitiondirectly.

  • 8/12/2019 Derivative Module 2 September 2011

    5/69

    30/09/2011 Techniques of differentiation 5

    DIFFERENTIATION TABLE andTECHNIQUES

  • 8/12/2019 Derivative Module 2 September 2011

    6/69

    30/09/2011 Techniques of differentiation 6

    1. Derivative of a constant function

    Givenf(x) = c, then

    0)()( cdx

    d

    dx

    dfxf

  • 8/12/2019 Derivative Module 2 September 2011

    7/69

    30/09/2011 Techniques of differentiation 7

    1. Derivative of a constant function

    Givenf(x) = c, then using definition

    h

    xfhxfxf

    h

    )()(lim)(

    0

    Proof:

    00lim0

    limlim000 hhh hh

    cc

  • 8/12/2019 Derivative Module 2 September 2011

    8/69

    30/09/2011 Techniques of differentiation 8

    2. The Power Rule

    Givenf(x) =xn, then

    1)( nnxxf

  • 8/12/2019 Derivative Module 2 September 2011

    9/69

    30/09/2011 Techniques of differentiation 9

    Proof

    h

    xfhxfxf

    h

    )()(lim)(

    0

    f(x) =xn

    h

    xhxxf

    nn

    h

    )(lim)(

    0

    Recall: )...)(( 1221 nnnnnn yxyyxxyxyx

    h

    xxhxxhxhxxhxxf

    nnnn

    h

    )))(...)())(()(((lim)(

    1221

    0

  • 8/12/2019 Derivative Module 2 September 2011

    10/69

    30/09/2011 Techniques of differentiation 10

    h

    xxhxxhxhxhxf

    nnnn

    h

    )))(...)())(((lim)(

    1221

    0

    )))(...)()((lim)( 12210

    nnnn

    hxxhxxhxhxxf

    )))(...)()((lim)( 12210

    nnnn

    hxxxxxxxf

    )...()( 1111 nnnn xxxxxf n times

    1)( nnxxf

  • 8/12/2019 Derivative Module 2 September 2011

    11/69

    30/09/2011 Techniques of differentiation 11

    3. The constant multiple rule

    Given a constant c and f(x), then

    )()]([ xfdx

    dcxcf

    dx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    12/69

    30/09/2011 Techniques of differentiation 12

    The derivatives of basic

    trigonometric function

    3.

    2.

    1.

    xxdx

    d

    xxdx

    d

    xxdx

    d

    2sec)(tan

    sin)(cos

    cos)(sin

    xxxdx

    d

    xxdx

    d

    xxxdx

    d

    cotcsc)(csc

    csc)(cot

    tansec)(sec

    2

    6.

    5.

    4.

  • 8/12/2019 Derivative Module 2 September 2011

    13/69

    30/09/2011 Techniques of differentiation 13

    cos)(sin xxdx

    dProve

    h

    xhxh

    xfhxfxf

    h

    h

    )sin()sin(lim

    )()(lim)(

    0

    0

    Proof:

  • 8/12/2019 Derivative Module 2 September 2011

    14/69

    30/09/2011 Techniques of differentiation 14

    h

    xx

    hxxx

    h

    xxxh

    xhxxf

    h

    h

    h

    h

    cossinh)1(coshsinlim

    cossinhsincoshsinlim

    sincossinhcoshsinlim

    )sin()sin(lim)(

    0

    0

    0

    0

  • 8/12/2019 Derivative Module 2 September 2011

    15/69

    30/09/2011 Techniques of differentiation 15

    xxf

    hx

    hx

    hh

    cos)(

    cossinhlim)1(coshsinlim00

  • 8/12/2019 Derivative Module 2 September 2011

    16/69

    Derivative of Exponential Function

    30/09/2011 Techniques of differentiation 16

    1. Given then,xby

    dx

    dybbx ln

    2. If b = e xey

    dx

    dyeex ln

    xe

  • 8/12/2019 Derivative Module 2 September 2011

    17/69

    30/09/2011 Techniques of differentiation 17

    10ln1010.1

    xx

    dx

    dy

    y

    3.0ln)3.0()3.0(.2 xx

    dx

    dyy

  • 8/12/2019 Derivative Module 2 September 2011

    18/69

    Derivative of Logarithmic Function

    30/09/2011 Techniques of differentiation 18

    bxx

    dx

    db

    ln

    1)(log1.

    0,1

    )(ln xx

    xdx

    d2.

    Also known asNatural Logarithm

  • 8/12/2019 Derivative Module 2 September 2011

    19/69

    30/09/2011 Techniques of differentiation 1930/09/2011Techniques of differentiation 19

    )(log xdx

    db bx ln

    1

    Proof

    )(log xdx

    db )

    ln

    ln(

    b

    x

    dx

    d

    )(lnln1 x

    dxd

    b)1(

    ln1

    xb bx ln1

  • 8/12/2019 Derivative Module 2 September 2011

    20/69

    30/09/2011 Techniques of differentiation 20

    2ln

    1

    )(log1. 2 xxdx

    d

    10ln

    1

    )(log2. xxdx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    21/69

    30/09/2011 Techniques of differentiation 2130/09/2011Techniques of differentiation 21

    Theorem

    0everyfor

    everyfor)(log

    logxxa

    Rxxa

    x

    x

    a

    a

    1.

    2.

  • 8/12/2019 Derivative Module 2 September 2011

    22/69

    30/09/2011 Techniques of differentiation 22

    TheoremTheorem

    If a > 1, the functionf(x) = logax is a

    one-to-one, continuous, increasing function

    with domain and range R. Ifx,y > 0

    and ris any real number, then

    ),0(

    yxxy baa loglog)(log.1

    yxy

    xbaa loglog)(log.2

    xpx ap

    a log)(log.3

  • 8/12/2019 Derivative Module 2 September 2011

    23/69

    Hyberbolic Function

    30/09/2011 Techniques of differentiation 23

    1. Hyperbolic sine ofx2

    sinhxx ee

    x

    2. Hyperbolic cosine ofx 2cosh

    xx eex

    3. Hyperbolic tangent ofxxx

    xx

    ee

    eextanh

  • 8/12/2019 Derivative Module 2 September 2011

    24/69

    30/09/2011 Techniques of differentiation 24

    Graphs of some Hyperbolic

    Functions

  • 8/12/2019 Derivative Module 2 September 2011

    25/69

    30/09/2011 Techniques of differentiation 25

    Graphs of some Hyperbolic

    Functions

  • 8/12/2019 Derivative Module 2 September 2011

    26/69

    30/09/2011 Techniques of differentiation 26

    Graphs of some Hyperbolic

    Functions

  • 8/12/2019 Derivative Module 2 September 2011

    27/69

    Derivative of Hyperbolic Function

    30/09/2011 Techniques of differentiation 27

    1. xxdx

    dcosh)(sinh

    xxdxd sinh)(cosh2.

    xhx

    dx

    d 2sec)(tanh3.

  • 8/12/2019 Derivative Module 2 September 2011

    28/69

    Continue

    30/09/2011 Techniques of differentiation 28

    hxxhxdx

    dsectanh)(sec4.

    hxxhxdx

    d csccoth)(csc5.

    xhhx

    dx

    d 2csc)(coth6.

  • 8/12/2019 Derivative Module 2 September 2011

    29/69

    30/09/2011 Techniques of differentiation 29

    1. xxdx

    dcosh)(sinh

    Proof:

    )

    2

    ()(sinhxx ee

    dx

    dx

    dx

    d

    2

    )1(xx ee

    2

    xx eexcosh

  • 8/12/2019 Derivative Module 2 September 2011

    30/69

    30/09/2011 Techniques of differentiation 30

    Inverse Trigonometric

    functions

    The trigonometry functions are not

    one-to-one.Thus they do not have inverse function

  • 8/12/2019 Derivative Module 2 September 2011

    31/69

    30/09/2011 Techniques of differentiation 31

    To make the trigonometry function one-to-one, we restrict the domains ofthese functions.

    Therefore, now, they have inversefunction.

  • 8/12/2019 Derivative Module 2 September 2011

    32/69

    30/09/2011 Techniques of differentiation 32

    Illustration

    http://en.wikipedia.org/wiki/Image:Sine_cosine_plot.svg
  • 8/12/2019 Derivative Module 2 September 2011

    33/69

    30/09/2011 Techniques of differentiation 33

    The function22

    ,sin)( xxxf

    is one-to-one.

    Thus, the inverse of this restrictedsine function exists and is denoted

    byxxf 11 sin)( xxf arcsin)(1or

  • 8/12/2019 Derivative Module 2 September 2011

    34/69

    30/09/2011 Techniques of differentiation 34

    Example

    Evaluate

    )21(sin 1

    )3

    1

    tan(arcsin

    i.

    ii.

  • 8/12/2019 Derivative Module 2 September 2011

    35/69

    30/09/2011 Techniques of differentiation 35

    Properties of sine inverse

    22-for,)(sinsin 1 xxx

    11for,)sin(sin 1 xxx

    i.

    ii.

    Cancellation Equation

  • 8/12/2019 Derivative Module 2 September 2011

    36/69

    30/09/2011 Techniques of differentiation 36

    Example

    Evaluate

    )6.0sin(sin 1

    )12

    (sinsin 1

    )3

    2(sinsin 1

    1.

    2.

    3.

  • 8/12/2019 Derivative Module 2 September 2011

    37/69

    Derivative of Inverse Trigonometric

    Function

    30/09/2011 Techniques of differentiation 37

    2

    1

    1

    1)(sin.1

    xx

    dx

    d

    2

    1

    1

    1)(cos.2

    xx

    dx

    d

    2

    1

    1

    1)(tan.3

    xx

    dx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    38/69

    Continue

    30/09/2011 Techniques of differentiation 38

    1

    1)(csc.4

    2

    1

    xxx

    dx

    d

    1

    1)(sec.5

    2

    1

    xxx

    dx

    d

    2

    1

    1

    1)(cot.6

    xx

    dx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    39/69

    Derivative of Inverse Hyperbolic

    Function

    30/09/2011 Techniques of differentiation 39

    2

    1

    2

    1

    2

    1

    1

    1)(tanh.3

    1

    1)(cosh.2

    1

    1)(sinh.1

    xx

    dx

    d

    xx

    dx

    d

    xx

    dxd

  • 8/12/2019 Derivative Module 2 September 2011

    40/69

    Continue

    30/09/2011 Techniques of differentiation 40

    2

    1

    2

    1

    2

    1

    1

    1)(coth.6

    1

    1)(sec.5

    1

    1)(csc.4

    xxh

    dx

    d

    xxxh

    dx

    d

    xxxh

    dx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    41/69

    30/09/2011 Techniques of differentiation 41

    Derivative of functions

    +

    All the rules of differentiation such as

    constant rule, sum rule, difference rule, product

    rule and quotient rule.

    +

    Functions Identities

  • 8/12/2019 Derivative Module 2 September 2011

    42/69

    30/09/2011 Techniques of differentiation 42

    4. The Sum Rule

    Given functionsf(x) andg(x) which areboth differentiable, then

    )]()([ xgxfdx

    d

    )()(

    )()(

    xgxf

    xgdx

    dxf

    dx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    43/69

    30/09/2011 Techniques of differentiation 43

    Proof)()()( xgxfxF

    h

    xFhxFxF

    h

    )()(lim)(

    0

    h

    xgxfhxghxfxF

    h

    )]()([)]()([lim)(

    0

    h

    xghxgxfhxfxF

    h

    )]()([)]()([lim)(

    0

    hxghxg

    hxfhxfxF

    hh

    )]()([lim)]()([lim)(00

    )()()( xgxfxF

    Let

  • 8/12/2019 Derivative Module 2 September 2011

    44/69

    30/09/2011 Techniques of differentiation 44

    6. The Product Rule

    Given bothdifferentiable,then

    )]()([ xgxfdx

    d

    )(and)( xgxf

    )]([)( xgdx

    dxf )]([)( xf

    dx

    dxg

    or])()([ xgxf )()( xgxf )()( xfxg

  • 8/12/2019 Derivative Module 2 September 2011

    45/69

    30/09/2011 Techniques of differentiation 45

    5. The Difference Rule

    Given functionsf(x) andg(x) which areboth differentiable, then

    )()(

    )()()]()([

    xgxf

    xgdx

    dxf

    dx

    dxgxf

    dx

    d

  • 8/12/2019 Derivative Module 2 September 2011

    46/69

    30/09/2011 Techniques of differentiation 46

    Let F(x) =f(x)g(x)

    then,

    0

    0

    ( ) ( )'( ) lim

    ( ) ( ) ( ) ( )lim

    h

    h

    F x h F xF x

    hf x h g x h f x g x

    h

  • 8/12/2019 Derivative Module 2 September 2011

    47/69

    30/09/2011 Techniques of differentiation 47

    In order to evaluate this limit, we would

    like to separate the functionsf andgas

    in the proof of the Sum Rule.

    We can achieve this separation by subtracting

    and adding the termf(x + h)g(x) in the numerator, as

    follows.

  • 8/12/2019 Derivative Module 2 September 2011

    48/69

    30/09/2011 Techniques of differentiation 48

    0

    0

    0 0 0 0

    '( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim

    ( ) ( ) ( ) ( )lim ( ) ( )

    ( ) ( ) ( ) ( )lim ( ) lim lim ( ) lim

    ( ) '( ) ( ) '( )

    h

    h

    h h h h

    F x

    f x h g x h f x h g x f x h g x f x g x

    h

    g x h g x f x h f xf x h g x

    h h

    g x h g x f x h f xf x h g x

    h h

    f x g x g x f x

    7 Th Q ti t R l

  • 8/12/2019 Derivative Module 2 September 2011

    49/69

    30/09/2011 Techniques of differentiation 49

    7. The Quotient Rule

    Given thatfandgare differentiablefunctions,then

    ])(

    )(

    [ xg

    xf

    dx

    d2)]([

    )]([)()]([)(

    xg

    xg

    dx

    dxfxf

    dx

    dxg

    [Order of differentiation is important]

  • 8/12/2019 Derivative Module 2 September 2011

    50/69

  • 8/12/2019 Derivative Module 2 September 2011

    51/69

    30/09/2011 Techniques of differentiation 51

    Proof

    )(

    )()(

    xg

    xfxQLet where Q,fandgare differentiable.

  • 8/12/2019 Derivative Module 2 September 2011

    52/69

    30/09/2011 Techniques of differentiation 52

    )()()( xgxQxf

    Now, rewrite as below, to use Product Rule

    By the Product Rule

    )()()()()( xgxQxgxQxf

    Replace by)()()(

    xgxfxQ

  • 8/12/2019 Derivative Module 2 September 2011

    53/69

    30/09/2011 Techniques of differentiation 53

    )()(

    )(

    )()()( xgxg

    xf

    xgxQxf

    )()()()()()( 2 xgxfxgxQxfxg

    )()()()()()( 2 xgxfxfxgxgxQ

    )(

    )()()()()(

    2

    xg

    xgxfxfxgxQ Proof

  • 8/12/2019 Derivative Module 2 September 2011

    54/69

    30/09/2011 Techniques of differentiation 54

    Example 1

    Find ify

    x

    xy

    xxy

    sin

    4.2

    .sin)4(1.3

    3

  • 8/12/2019 Derivative Module 2 September 2011

    55/69

    30/09/2011 Techniques of differentiation 55

    Example 2

    Given ,1

    1)(

    t

    ttf find ).1(f

  • 8/12/2019 Derivative Module 2 September 2011

    56/69

    30/09/2011 Techniques of differentiation 56

    Solution

    2)1)((

    )1)(()(2

    1)1)(()(

    2

    1

    )( 21

    21

    21

    21

    21

    t

    tttt

    tf

  • 8/12/2019 Derivative Module 2 September 2011

    57/69

    30/09/2011 Techniques of differentiation 57

    2

    )1)((

    ))]1()1(()[(2

    1

    )(21

    21

    21

    21

    t

    ttttf

    22 )1(

    1

    )1)((

    )2()(2

    1

    )( 21

    21

    ttt

    t

    tf

  • 8/12/2019 Derivative Module 2 September 2011

    58/69

    30/09/2011 Techniques of differentiation 58

    2)1(

    1)(

    tttf

    2)11(1

    1)1(f

    4

    1)1(f

  • 8/12/2019 Derivative Module 2 September 2011

    59/69

    30/09/2011 Techniques of differentiation 59

    Example 3

    cos1

    cos)(

    )(

    f

    f

    if

    Evaluate

  • 8/12/2019 Derivative Module 2 September 2011

    60/69

    30/09/2011 Techniques of differentiation 60

    Solution

    2)cos1(

    )sin(cos)sin)(cos1()(f

    2)cos1(

    )cos1)((cos))(coscos1()(f

    2)cos1(

    cossincossinsin)(f

  • 8/12/2019 Derivative Module 2 September 2011

    61/69

    30/09/2011 Techniques of differentiation 61

    Solution

    2)cos1(

    cossincossinsin)(f

    2

    )cos1(

    sin)(f

  • 8/12/2019 Derivative Module 2 September 2011

    62/69

    30/09/2011 Techniques of differentiation 62

    Example 4

    Evaluate tttgg sec)()4

    ( 2if

  • 8/12/2019 Derivative Module 2 September 2011

    63/69

    30/09/2011 Techniques of differentiation 63

    Solution

    ttttttg tansec)2(sec)( 2

    ttttttg tansecsec2)( 2

    )4

    tan()4

    sec()4

    ()4

    sec()4

    (2)4

    ( 2g

  • 8/12/2019 Derivative Module 2 September 2011

    64/69

    30/09/2011 Techniques of differentiation 64

    Solution

    2)

    4

    (2)

    2

    ()

    4

    ( 2

    g

    )

    8

    1(

    2

    ]

    8

    1[2)

    2

    ()

    4

    (g

  • 8/12/2019 Derivative Module 2 September 2011

    65/69

    30/09/2011 Techniques of differentiation 65

    Example 5

    Compute the derivative of each of the

    following;

    tetg

    f (x)

    t

    x

    sin)(

    4

    ii.

    i.

    )tan21()(

    1)( 3

    ef

    xexf

    x

    iv.

    iii.

  • 8/12/2019 Derivative Module 2 September 2011

    66/69

    30/09/2011 Techniques of differentiation 66

    Example

    Find the derivative for each of the following:

    xxy ln.1 1

    ln

    .2 2t

    t

    y

    ty 2log

    3

    1.3 )(log.4 2

    2 xxy

  • 8/12/2019 Derivative Module 2 September 2011

    67/69

    30/09/2011 Techniques of differentiation 67

    Example 6

    Evaluate the first derivative of each of the

    following:

    xxxf tanh)(.1 2

    1sinh)(.2 f

    sinh)(.3 f

  • 8/12/2019 Derivative Module 2 September 2011

    68/69

    30/09/2011 Techniques of differentiation 68

    Example 7

    xxy 12 tan)1(.1

    1

    tan.2

    2

    1

    t

    ty

    Evaluate the derivative of each of the

    following:

  • 8/12/2019 Derivative Module 2 September 2011

    69/69