design for creep in pressure vessels

104
Lehigh University Lehigh Preserve eses and Dissertations 1-1-1976 Design for creep in pressure vessels. Antonio Serrano Perez Follow this and additional works at: hp://preserve.lehigh.edu/etd Part of the Mechanical Engineering Commons is esis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in eses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. Recommended Citation Perez, Antonio Serrano, "Design for creep in pressure vessels." (1976). eses and Dissertations. Paper 2027.

Upload: others

Post on 03-Jan-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design for creep in pressure vessels

Lehigh UniversityLehigh Preserve

Theses and Dissertations

1-1-1976

Design for creep in pressure vessels.Antonio Serrano Perez

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by anauthorized administrator of Lehigh Preserve. For more information, please contact [email protected].

Recommended CitationPerez, Antonio Serrano, "Design for creep in pressure vessels." (1976). Theses and Dissertations. Paper 2027.

Page 2: Design for creep in pressure vessels

DESIGN FOR CREEP IN PRESSURE VESSELS

by

Antonio Serrano Perez

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering

Lehigh University

1976

Page 3: Design for creep in pressure vessels

ProQuest Number: EP76300

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76300

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway

P.O. Box 1346 Ann Arbor, Ml 48106-1346

Page 4: Design for creep in pressure vessels

This Ther.is is accepted and approved in partial ful-

fillment of the requirements for the degree of Master of

Science in Mechanical Engineering.

(Date)

Professor in Charge

Chairman of Mechanical Engineering Department

11

Page 5: Design for creep in pressure vessels

ACKITCWLSGI.DINT ^

This work was conducted in the Department of Mechan-

ical Engineering and Mechanics of Lehigh University,

Bethlehem, Pennsylvania.

The author wishes to thank Dr.^Arturs Kalnins, Project

Director, for his patience, help, technical assistance,

and necessary guidance during the development of this proj-

ect, and for the permisson to use his computer program for

the stress analvsis of axisvmmetric shells.

111

Page 6: Design for creep in pressure vessels

T'ABIE OF CONTENTS

l TITLE PAGE

CERTIFICATE OF APPROVAL ii

ACKNOV/LEGFIENT ii5-'

TABLE OF CONTENTS iv

ABSTRACT 1

1. INTRODUCTION 2

1.1 Creer Behavior 2

1.2 Importance 3

1. 3 Applications 4

2. CREEP VARIABLES 6

2.1 Representation of Creep Data 6

3. CREEP STRESS ANALYSIS • 10.

3.1 Uniaxial Stress and General Conditions 10

3.2 Kultiaxial Stress 12

3.2.1 General Equations 13

3.2.2 Soderberg Approach 17

3.2.3 Bailey Approach 19

3.2.4 Maximun Shear Stress Approach 20

3.3 Creep Rates under Biaxial Stress ZZ

4. CREEP IN PRESSURE.VESSELS 24

4.1 General Considerations 24

4.2 Thin-walled Vessels under Internal Pressure 25

iv

Page 7: Design for creep in pressure vessels

.'.i-'.-inl 1 r^ "i ' ■ '" '"»

O 1 O - r-. ■ - ■

"* A"""." ^1!"

i,T-i rr\ i

? 1 •'.'. "■avarc■" a~o v,vnc;: 5 3";-.

no an

xi'3'' are .inn or-can't: an■• xnc

• vo ^- r' A '

'-. 9 ,"V,n"hlT,-'< ' a^ ^Vijj.cj.i v^irc

'Ov-crTicr: arc i":Oor':arn:

'o ,n i ii i o <■-• "] o*7") .''-' T 7~* >^~» ^" ^ .o o

■!■.?. 2 io-.l';:n Oontitionr'

;;-.2.2.1 Do-iren Gr

■'-.?.'?.? Qvor~^ Tn^o

h . 2 . ?..') A'^nroach

■;'-. "^ . 2 . ■'•:'' Gtrorr Stats

■• T n ,-i r : c< r> T A v;r r,'

p ,'-.; vi - T in - ■ r. -

)-->■- i - - -r ,-|i ,-1

'Q'^ !^~'" C\ '

1 -■

1 1

:s'.-.' o? ^A3Lt;::

v_ . ..' — u"'_ . L v..;

37

h. ->

k- 5

Page 8: Design for creep in pressure vessels

p p ~ 1 \ -~> '

(-• - ' ! O

111

'A 95

Page 9: Design for creep in pressure vessels

AT) i-<; 1 ^ i.',;

d'n'/• stuf-r o'ior^a'1 ar a result of './or1: ar

Art"ir"- lalr.ir.s, -ro:sf'"'or in the do""artneni cf

!iT"lnoerin;™ arf. ^ ochanlcs at ~:'eh;igh

1 p' ^ ^} ^~' ' ^ a 2

'i \rni ity, ir relation

• o T.ie ' er*;..~m or 3. 'orossurc vorrs.. uno'sr creep conriipions.

in the introduction, the croc:- phenomenon is explained,

bv:0 general behavior of the materials under croon conditions

is given, the view point is emphasised that a large number

of engineering applications require naieria" ancl design

that is based, wholly or martially, on creep conditions.

~i- i^ mi::;: erent tneo.nes are g:'.ven "ciiax have ooen pro po see.

:"or the representation of croe;;"1 data.

The rrocediure for creep stress analysis is given for

different stress states, which includes the fundamental as-

sumptions of the general eeiuations, the different ae'ToacIie.?

to calculate croon .-'train, and the effects of multiamial

"j^e' n—v/alie " Pressure vessels under crcs"; eondi—

fhen, the design for creep in thin-v/allcd pressure vec

sels ir discussed, v/here general conriderations, tempera-

tures and design stress and the specific design conditions,

such as- design criterion, creep type, approach, and stress

state are inc 1 ude .

7'inally, a specific design problem is considered in

detail v/ith ?."csPoct to a Pressure vessel that might be used

i n P e t r o c h o m i c a. 1 i n d u s t r y .

Page 10: Design for creep in pressure vessels

1. IKTRCDUCTIOI.

1.1 Creep Behavior

Creep is the name given to time dependent strain of

solid materials over long periods under load. V/hen a load

has "been applied (Fig. 1-1) the strain increases with time

to.the point where failure finally occurs.

After the initial instantaneous strain £© , materials

often undergo a period of transient response where the #

strain rate £ (d£ /dt) decreases with time to a minimum

steady-state value :v/hich persists for a substantial portion

of the material life. The final failure comes after the

creep rate increases during the final stage of creep.

For analytical convenience, researchers have separated

the creep curve into three stages "based upon the similar re

sponge- of many materials.

The creep strain occuring at a diminishing rate is

called primary creep; that occuring at a minimum and almost

constant rate, secondary creep; that occuring at an acceler

ating rate, tertiary creep (Fig. 1-1)(l) (2).

It is characteristic of creep that, if the specimen Is

unloaded during the test, some of the strain recovers, as

shown by the clashed line in Fig. 1-1. Thus, we find that

creep phenomena include both permanent and recoverable

strain. The permanent effects are analogous to the plastic

Page 11: Design for creep in pressure vessels

flow at high .-train rates which characterizes metal-working

processes.

Another test v/hich is characteristic of creep studies

is the "relaxation" test. A specimen is loaded rapidly to

a fiv:ed strain, and the load required to manintain that

strain is recorded. The result is shown in i'ig. 1-2. It

is natural that there snouxa be a close relation between

the earlier portion of the creep (primary creep) and the

relaxation curves.

Usually., creep is associated with high temperatures,

but whether the temperature required is high or not really

depends upon the application.

1.2 Importance

A large number of engineering applications require the

use of materials and design which must be based, wholly or

partially, on creep behavior.

It was believed for a long time that there e::ists a

limiting stress below v/hich creep and consequent dimensional

changes would not occur. But, with the improvement of the

accuracy of5 measurements, the undeniable fact has emerged

that such a limiting stress does not e::ist. Hence, it has

now become common practice to design for limited service

life at elevated temperatures.

The designers of power-plants are forced to consider

Page 12: Design for creep in pressure vessels

operations at higher temperatures in the interest of great-

er efficiency. This is seen most directly, of course, from

the formula for the efficiency 2 of conversion of heat into

work in ar ideal engine, operating between two absolute tern

;oeratures ?-, > '.?? (E = 1-Tp/T-, ). It is possible to raise T,

to make appreciable gains in efficiency, but this also

entails higher creep rates for given stresses.

Applying this argument, it is useful to realize that

the operr'jtiD>n, of steam turbines has steadily increased in

efficiency because it has been possible to increase the tern

peratures Mirough n:.v; heat-resistant materials. It is true

also of gas turbines, jet aircraft, and missiles that an

important limit on ^erfomance is set by the permissible

deformation of working ra.rts under high temperature and

stress.

Other basic reason why engineering design must allow

for stress analysis for creep at high temperatures is found

in the required strength of vessels, in which the high tem-

perature is^needed for chemical reactions. Quite often,

high presures are also required.

!•3 Applications

The fast growth of the automobile industry required

studies of mechanical behavior of steel in thermal cracking

equipment which is used for making gasoline, -and hence it

Page 13: Design for creep in pressure vessels

*r;nr a :ip.'c':r-:r O" -I-.TCT concern to on rc.j .merits xo '.-re

o c~* *; .'—- ^ ^ <~* *; *"•—; o <— p ~j — * o y» <~>. .o " ^

Alloys f'or the omhaust gar- turbines had to be produced.

: strength an ' ductility were required of those materi-

nl n

Higher operating temperatures of steam turbines have

forced metallurgists to look for new heat-resistant alloys.

duch problems also will become more urgent as nuclear power

plants gain greater importance. Additional problems arise

in such plants which are created by creep and consequent

distortion of uranium fuel elements and their cladding ma-

terial? . '

Jet aircraft and guided missiles have directed more

•attention to stress analysis for creep.

Aero 'dynamic heating at high speeds can lead to sus-

tained sd:in temperatures v/hich pose difficult problems for

the designer.

A vital problem of aircraft structural design is to

achieve optimun strength-to- v/eigth ratio while avoiding

the problems, of buckling in the skin supporting members,

iduch effort has been directed toward the development of

new ligth structural metals such as titanium and its alloys

in large part because of their creep strength.

The Pressure Vessel deseach Committee of the welding

Research Council has conduced investigations on the creep

rupture "^-o^ertier- of Pressure vessels for use in nuclear

and petrochemical industries (3).

Page 14: Design for creep in pressure vessels

2. c- ::LI VA^IABL^C

2 .1 Pe^rementation of Creep Jata

A number of different extxresions have been proposed for

the representation of creer> tensile curves.

The creep strain at constant stress in metals, at tem-

peratures far below the meJ.ting point, is written as:

Cc ~ £Q Lo3 Cai +-0 (2a)

in which a is a constant and 6e> is the initial creep strain,

some of which may be recoverable (•':•) (5)- Creep curves at

constant stress, at higher- temperatures, are written by ex-

pressions of the form: "^

. £c =, €a -i-JEZact"71' +■ JELkjt-'"./ (2b)

o < i^i < 1 nj > l

where y^'L/nj are constants. The coifficients 4-L , b> ^

contain the effects of temperature and stress (6) (7) {G).

Page 15: Design for creep in pressure vessels

_ one rcsearcr.crs nave trio:* TO ro^rorcnx tno creep rate

6 c ==• A 5/V7 A. /V_ "\ (2o;

v.'here A and ^ defend upon temperature (9)

Other v/orkei"\c' have been able to represent creep data of

almost all pure metals and many solid-solution alloys by

plotting:

• AH/RT €c versos iz e

(2") 4.H/KT

versus 6C £

v/here II may be interpreted as an activation energy, R is

the gas constant, and T the absolute temperature. The rep-

resentation is used above 0.6 the absolute melting temper-

ature (10).

Other researchers have found the stress depdr^.ence to

be given by a stress-dependant activation energy:

• UHtf U)1/*.T (2e) 6C = AC

7

Page 16: Design for creep in pressure vessels

where A i- a constant (11; (12).

i.anv worker1- have ~: is cussed the ^tress dependence of

creep, but the nort useful empirical generalization ir- that

minimum creeri rate-" (steady-°tate creep rater) are repre-

sented bv the expression:

where <£> Ir rtress and B and n are constants. The two con-

rtant depend upon temperature.

A useful approximation for .c'ome engineering purposes

is the representation of the entire creep by steady-state

flow:

£c = Bd ^ (2-2)

It is very important to indicate that small changes in

stress, temperature, composition, heat treatment, or method

of manufacture may greatly influence creep behavior, and

hence a simple empirical expression for the creep data may

be adequate for rational design.

The treatment of creep based on data obtained from

Page 17: Design for creep in pressure vessels

constant-stress creen test in uniaxial tension can be used

to 'oredict the creen strain in another tyne of loading.

Cn the _v -r hand, relaxation test data (Fig. 2-1)

(1") (14) and rupture stress data (Fig. 2-2) (15) (16) (17)

can correlate with constant-stress creep laws for the calcu

lation of creen strains and stresses for the general case

of steady-state and no:.isteady state multiaxial creep (13)

(19) (2").

o

Page 18: Design for creep in pressure vessels

ANALYSIS

°. 1 Uniaxial .gtrer-r an-' General Coniitionr

The treatment of creep, in general, har been bare:: on

data obtained from constant-stress test in uniaxial tension.

This is the most co'inon type of creep test and enables the

cree" properties of a naterial to be studied in the simplest

possible manner.

Practical design problems usually involve a more com-

plex stress state than constant-stress uniaxial tension,

and thus it is necessary to use the creep data in tension

for,the general case of steady-state and nonsteady-state

multiaxial creep.

It is assumed that tension tests are available for the

temperature at v/hich v/e wish to make the stress analysis

and that the data have been extrapolated, if necessary, to

the time duration of interest. Unless otherwise stated,

the temperature is taken as constant.

The procedure to be followed is basically that of fitt

ing an empirical expression to represent the experimental

constant-stress tension-creep data and v/ith certain as-

sumptions applying it to problems of varying combined

stresses. As a first step v/e must decide upon the accuracy

v/ith v/hich the exppression will represent the data.

As v/e indicated in the Section 2.1,small changes in

Page 19: Design for creep in pressure vessels

the variabler nay greatly influence creep behavior, and „

hence a ^im^lo empirical expression for "the creep data nay

be adequate for rational design.

If the creep curves show a well-defined region of

steady-state creep, as illustrated in Pig. 3-1, design nay

often be based on only steady-state creep and a relation-

ship can be written for the strain rate in terns only of

stress. In this case the strain rate is assuned to be a

function only of stress, and the creep curves are represent

ed by the lines A and £ shown in Fig. 3-1. Expressions for

the dependence of creep rate on stress have bee.r: indicated

in the Section 2.1 (Eqs: (2a), (2b), (2c), (2d), (2e),

(2-1) and (2-2) ). Attempts have been made to justify all

these equations on physical grounds, but 2q. (2-2) is usu-

ally the easiest to use and normally gives a satisfactory

fit to the data execpt Perhaps at low stresses.

The Fq. (2-2) has formed the basis for most creep cal-

culations in the literature. '.7hen creep data follow the

general shape of Fig. 3-1» and when steady-state creep

constributes most of the strain, this type of representation

should be quite adequate. An additional simplification is

made in many cases by neglecting elastic strain, but this

cannot be done im problesms involving the relaxation :of in-

itial strains by creep.

An upper limit for the creep strain at a given time

can be obtained by using the lines C and D in Fig. 3-1 as

Page 20: Design for creep in pressure vessels

approximation- to the ere or: curve. ?hi- approach er~on-

tially treat transient strain a*- an instantaneous effect

an"1 combine-' it with any initial plastic strain (Fig. ?-2).

Trie total initial '"train can then be represented in the

same manner ar creep rater, for example, as a power func-

tion of rtrers. </e can conclude that, this method will

improve the accuracy of Prediction at longer timer and

will Provide an upper limit for the displacement but will

not be '"•atirfactory for accurate predictions in the region

of TJrimary creep (Fig. 3-2).

If the steady-state type of representation is ina-

dequate, we murt lool.: for another relation (time hardening,

strain hardening, recoverable strain included)which will

predict the creep rate in terms of other variables in ad-

dition to the stress. This relation, which will be obtain-

ed from constant-stress tension tests, should also predict

the creep rate after a period of varying stress (18).

■liven for materials which do show a region of steady-

state creep, an accurate strain prediction may require

consideration of initial elastic and plastic strains as

well as transient creep (Fig. 3-2).

3 • 2 I.Iultiaxial Stress Analysis

In the stress analysis of elastic systems in equilib-

rium, the effects of separate stresses can be evaluated

12

Page 21: Design for creep in pressure vessels

separately and then added to find the effect combine''!

stress' system, (method of superposition), under creep con-

ditions, on the other hand, the relationship between

rtrerp and strain rate is generally nonlinear and the

method of supperposition cannot be used. The stresses

must be considered as a combined effect, rather than sepa-

rat ily, which greatly complicates the creep-stress analy-

sis. In this analysis we consider solutions for the case

of steady-state creep (strain rates depending only on the

stresses) and assume an isotropic material (the same mate-

rial properties in all directions). The method of calcu -

1ation is fairly well confirmed by experiment and is ade-

quate for a large number of engineering applications.

? • 2.1 General Equations \ I

In. calculations of elastic deformation the history

of loading is not important, and the strain at a given time

may be related to the stress at that time. however, in

nonelastic deformation the history of loading is important,

and it is preferable to relate stress to increments of

strain. It is convenient, therefore, in development a ■;

creep analysis, to work with the strain increments in u-

nits time or, in other words, in units; of strain rates.

During elastic deformation of most materials (the

outstanding exeoption being rubbery materials), the volume

Page 22: Design for creep in pressure vessels

is not maintained constant. The largely plastic deform-

ation, charasteristic of rteady creep is found in constrast

not to involve appreciable volume changes. If the princi-

pal axes of strain -"o not rotate during the creep, it is

possible to express the volume constancy by the relation:

-' plastic

Taich can be written B.V. , ( 6 , +■ e2 +■ €2~) u,f — ° » ^-

the strain are small compared with unity, which is usually

the case. Since we have assumed that the principal strain

a::es do not rotate during deformation, the preceding expres,

si on nay be differentiated directly with respect to time to

obtain:

£. +" €z +■ U = O (-2)

where., €,, £2 and £3 are the creep strain rates. Although

the equations in this 2J.ialysis apply strictly only to

cases in which the Principal strain directions do not ro-

tate, it seems likely that they will be good approximation;

even if this is not the case, e,g., in torsion.

Page 23: Design for creep in pressure vessels

Cti.er v;av" °- *. (^--; ?.:;•

.me

: 'ho rocoir a"r,irrH;jo

b^t'voon. "tro^.'"' art rtraiii .:• 10,^.1

p."!;70—'r iT'tG'" a'^G 'r''0"~ort"'.0]"";':'"^

'/;?. C'C'7 1'

^?:o'

■lovc-ho;: ro-La"Gior.r

lat tho ;^rinc:V':al -]

dt — d 2 <o2. — ^3 (» 3 - <^ / (3-;

-1 r = o /-• pi7*1 '—roriV Q *r n T'i ■fro""! "in "i "^7" l ^ T M ,......, .-*/■> <-- C' .-^, GO. Do::^r DV.Z

roi'i roruit to ;o~:!.nt :".?.! the bo-:]"/ and nay change

:o.r ~.:ir "G;ie ~G GG fho validity of *. (3-3), "GO

?.ir incro'Gentr ('elasticity) rather Li 1 ■• l/J. Ci-l-ii .:. Cl i

0^011 ': .".!"' Cl1 naii?r txnor in tho literature

:.r, a"G ~iiG "'.io'".ionx, r-uir. j.ciont.Ly accurate for a

C !'' ":■ O"" ,? An additional arrun-etion ronot. 1 vi,-, c. rear1 "i

that hohr'r circlor of ntrs.::.=: and strain rate are similar

Page 24: Design for creep in pressure vessels

o"" ~i ^ T"' "i t^i" (o_2^ an-! r-~) :

The problem is now one of identifying C, and this requires

rome knowledge of the creep behavior of the material.

One procedure is to follow the methods developed for

the plastic deformation of ductile metal? at temperature?

below the creep range and define the ouantity:

r -\'/2

(~-5)

It i? often assumed and fairly well confirmed by experiment

that d determine? the ability of a multiaxial stress state

to produce yielding and subsequent Plastic,flow (21).

Corresponding quantities in terms of strain rate? and

Page 25: Design for creep in pressure vessels

strains can "be ■■efinod af:

l* = fs./3 [_C £>-k2f+ C€z-€*)*+■ Ce3-€,^2J fc

(-',

**= /a/3 [ct,-€02+ C€z-€3/+<:t3-€j2J M Or;

and it has been shown by experiment (22) that in steady-

state multiaxial ereen:

6* = f C^J (3-;

This is the first nlace at which the analysis has been re-

stricted to steady-state cree^ (strain rate depending only

on stress)

3.2.2 Soderberg Approach

This approach is based on Liises invariant 3qs. (3-

5) and (3-6) according to the follov/ing considerations (23)

The numerical factors in 3qs. (3-5) and (3-6) are cho-

sen '"O that in a tension test with stress 4t and strain rate

£, ^ dt =. d and 6, ■=* £ , and thus the relation

Page 26: Design for creep in pressure vessels

sxrams can no ciinc; ar:

'/z £+ = /a/3 |_Ce,-eO2^C^-6 3;2-4-c<f3-€02J (■'■■-

<r* = /a/3 L^-^2+ C€z-£3y+C€3-€j2J (■•-'

and it hap been shown by experiment (22) that in steady-

state multiaxial creep:

; * r> , J *■ = f C<^J> (3-?

This is the first Place at which the analysis has been re-

stricted to steady-state creep (strain rate depending only

on stress)

"3.2.2 Soderberg Approach

This approach is based 021 I.iises invariant 2qs. (3-

5) and (3-6) according to the following considerations (23)

The numerical factors in 3qs. (3-5) and (3-6) are cho-

sen so that in a tension test with stress d, and strain rate

£, ^ 4i — d and £, « 6 » and thus the relation

17

Page 27: Design for creep in pressure vessels

of Lo. (°-7) can be obtaine'I directly fror: a tension tert.

Then, combining .2o_r. (?-''•) and (3-7), C = 36*/^^*

anr1 hence

^r* -"-— ■ -'V (?-) ^2 = _6^ /'^-//z <^3 W,J)

£ 3 _£_£ ^3- //2(^^))

Before Ear. (3-?) can be used to calculate cree'o

"train,?, a definite relationship has to be inserted in-

stead of i:q. (3-7). As a multiaxial counterpart of Eq. (2-

2) we take:

(3-9)

although an expression corresponding to either Eq. (2c) or

(2e) could be taken if it gave a better fit to the data.

i '••

Page 28: Design for creep in pressure vessels

r\ _,-,. \ ombining . Jqs. ('--'.'} an"! (~-9) load? to

6k =. St*11 ' ( d,- 1/2. C<**+ <0

6z =■ B^*" /^z- //2 (^3 -hd,)

6 3 = S^*" f^-//2(^W«J

where <^ is defined by 3q. (3~5)> a-ncl v/e &re finally in a

■position to calculate nultiaxial creep strain.0. The solu-

tions are limited in the same way as the constant-strain

rate uniaxial analysis indicated in Section 3«1- They are

accurate only when steady-state creep predominates. In

statically indeterminate Problems they will not give infor-

mation about the relaxation of initial elastic stresses

with time but will enable to carry out the calculation of

the steady-state stress distribution after relaxation has

occured.

3.2.3 Bailey Approach

This approach presents another method of obtaining

creep rates under multiaxial stress. Bailey's equation

Page 29: Design for creep in pressure vessels

(20) corresponding to ths fi-.^'t of "'ar. (3-1")

v/here m is determined from a creep tert in torsion.

The method,? of Soderberg and Bailav differ very little

and are in reasonable agreement with experiment. A compar-

ison of the predictions of Zqs. (3-10) and (3-11) has been

made by some authors (2l-r) who showed that the difference

between them is, snail and hence the simpler set of 3qs. (3-

10) is to be preferred.

3.2.••!- uaximun O'hear Stress Approach

This approach relates stresses and strain rates in

some other manner than by Eq. (3-5) sncL {3-6). It follows

the theory which states that only the ma::imun shear stress

determines the ability of a multiaxial stress system to

cause yielding and plastic deformation.

Page 30: Design for creep in pressure vessels

.'r i t t ' n '~r i

v/here d, > ^ > i*3 , we have, instead Zq (3-'-0» (1- ) :

3 d*' v 7

65 = 2 fc* 3 <^*

' ^3- /2 C*'+-*0)

In problems v/here the other d,)> dz J> <»3 does not

change during the test, -i)qs. (3-13) ^ay be easier to handle

The evidence indicates that the strain rates in steady-

state nultiaxial stress test correlate better on the basis

of the invariant (Soderberg Approach) than by using the

xtaxiinun shear stress condition.

A coriparision of experimental strain rates and predict!

ed strain rates by preceding approaches for biaxial stress

state can be seen in the Table 3-1 (2.5) •

21

Page 31: Design for creep in pressure vessels

3. 3 Groe") ?.ates under 3ia::ial .Ctress

The effcctr of combined stress can be reen more clear-

ly by considering bia::ial crecn v;ith £3 — o md— l^.t*/J/£. I

rather than the general care of tria::ial stress ds^da.^. <£/

Actually little loss of generality in involved, since a

hydrostatic component, which does not influence plastic

flow, can be .subtracted from a stress state to give

(_d,~ d3} , (.dz-dz} > an^ :-;» a- "t^e principal stresses used for

calculation of pl-.stic strains (13) .

?or d-3 =■ o in Eqs. (3-10) we obtain :

6 , = B (f d, Z- d, dz + d* J 2 ( d, -dz. )

6 * = & (TV,2- d, £2. ■+■ dz) ~^ [d2 -dj_ J

£3 = 3C4*-4S*+^^^(=&Zjt*.>)

(3-l;:0

writing the stress ratio 4>z/d/ •=■ <=< Cohere. —/^c< ^ /J)

and the strain rate produced by the stress di acting in

Page 32: Design for creep in pressure vessels

Tor.nor. as £ = Bi,n £..:c. (2.-2)), ;ar. (—!•''-) become :

k

I _ =<

n- I s £ / - «KL +- -< 2^) 2 ( *i -_L

= £/-<< 4- °<2J) n- / 2 _/— °<r

C3-:

/h:aminlng -Jos. (3-15) v/e see that largest strain rats

(numerically) is £, -for —/ ^ °< -^ '/^ while £3 is

the largest for '/£^T<=>< ^. / . This latter strain rate is

negative i:f di is a. tensile stress. These results follow

directly from the assumption of constant volume that is

made in obtaining "~iq. (3-2).

The large changes in strain rate which may be produced

by changes in«<^shov; the importance of estimating correctly

the state of multiamial stress if strain "predictions are of

importance in the design.

91

Page 33: Design for creep in pressure vessels

^ 11'"' ~~ O" ° ' ,.. J. ^ .'. _1 abo—l; "th:

1 r^

ft.'. -. • -- tr

0 0-

■ » i,- - (rs.y

■■I p,_. i '1 * *n" ~ ■■ * ^ ~n -' ~ o

P ^' r; p ~ ^ "" "'~ P "*'" PO^*1^ ^ T: *;"-" P V'*"1 ' ^ -'-r ~i Q ->i -r^. '-' '-*

~] -n «."rp 1 "I o ' v^n , ! r' --■-,-*/~\ - ^ - p o " P~ r ""' "^ "1 * ^ "''' "

1 0"" 'r'O"0O OP"! rl "^ C G; ( O^VI ' ? tr.~: "' "

^ity, cr

p --i i-> ',--1 T - — ---, " p ~. ' "1 I-J -^ ^ -^ -^ o ' p -~*. ' , OT r •: p --»

^llO | (~« I •: ^i -- ^ --■—\ o ; ' p-» ^ -- r' - T ■•--> o ci ~" ". ." p I "-^ ^' ~ -'^ P < I P > r* . ">

''.ho outriic rail, .1' mall con""?.rs^. v.'lth tho cthor tv/o

P-I

o

orationr' c:il"r, an" h";ior arc tnio "or olar o._i

■ ~ --•> r c-ma " oo near.ecxor.

.'■or'i'iblc to "cvolor local r'ir?j:: concontratiom- in tho momuro ver'c-2?r ao a r

tho cor.r"i;r?.i;'iJ; irmco'c". b;_ the clor,rro. i'o cloo~ a mo"-

r,,;"^r'. ~r ^ ^' r p ! ^ --, r ^ o "'" ^ '"> ^:* H*l -~\ "-* ri -i^ p —. r. p -p -"" ^ -'- ~ o~. n ^- "7 ^ c ^ ■"■ ■ - ~I

". 'oall'r, avoi"^. '-train concontration b;/ natcj^ina; tho croon

rato<" of -roll ana cloor.ro. At tho rare tioio, to avoi ' •;:•:

rai^ro ""'.""trro, tho na::i::rro tonrils 5'tror,o in tho olo'-irre

'"lo"1! " no-!"/ b" o"" o r'" o"" *' ■"■■

2'-:-

Page 34: Design for creep in pressure vessels

("-;■

* ; n r- -- ■ (-, . ^ • (21:

>~> 'i i"!""*"'1'^ ] p, ~I* O r ' '"O 1 '

, to;

;; TVO?."';:"r rtrp:nr ( '.Zn . (

t1:.^ "rr/i^'TG "nts. ror "rclrilo "lot,?.!"' ?."!; roo:'.i torroor3.trr'_

.L.., r.-J.,-, -'-,--< V,--- -■--;-"1 -. ■-, ^ !-o,--.-• n ^ - r O """ ~' O ' o - -> -

■Minf -f1-,^ -'o ] :^ 1 1

i Cl '-• <"• '1 -r r>" :cn\ .. _ . \, .-I..- . v_. -.<-., / ..... g. ........ u -. .J.... .

ir» i or . ,~V", -- -J ■ -> 0 -

;jroa"V/.ion*;j, anf *.*i

ith th;

TO'1.'

o p V "' O^"1'" '■ ^ ""1

,1...-.

.0";

^ O'' ° " '0 P "OT "■■ '■' ocrc^ro

.'3 '"Oo'1'' " rnvo r3r10"."V3"t' or

'11;::-p.::oo.;

0—*'.'a. ''* .'~\ ",^"l "> o "^

<"■■~: -••rn

>pl Hr rr'i.oora'ciLOii:'

-rr, ^ ->--. >?.r-t V

nr.cr p. ^* c* "■ ™ p ^1 p '"' o-p f "t ,!

? <

Page 35: Design for creep in pressure vessels

— _n steam turbines, ■"-' 'nil clearances must bs maJn-

taine " throughout a long operating life an-'! design, "-.v.rt

bo or the basis of very "■nail cree"> rater.

-'•or high tennerature Piping, 021 the other hand, di-

mensional tolerance if- relatively unimportat and the con-

dition to be avoided ir rupture within the design life.

-The efficient choice of high-temperature bolting

steels require,0 relaxation test data or their prediction

from constant-stress creep data.

-The design stress for slender members carrying a

coppressive load may have to be based on buckling consid-

eracions.

In all cases, except perhaps those in which rupture is

the basis of design, the alloawable stresses will have to

be based on creep data combined to some extent with stress

analysis.

"./hen rupture, rather than excessive strain, is the con

dition to be avoided, the design is faced with the predict-

ion of rupture life under multiaxial stress.

Ihe design stress chosen.for a part may depend greatly

on the opportunity for inspection and the convenience of

replacement or repair if required. The hazards and inconven

iences associated with failure must also be evaluated. For

example, we may compare the operation of power station with

that of an oil refinery or a chemical plant. Periodic

shutdowns in refineries and chemical plants usually Permit

2''

Page 36: Design for creep in pressure vessels

ir.r-~~Pction, ar;" p-irtr- r'howins G.".co."rivo crce"' car; be removed

or ro'"airoi. -ower-station shutdowns, on the other liar.;,

arc urually at less freauent interval.0. Furthermore, a:',

interrxPtlon of service by failures would be more critical

in a Public rov/er station ths.n in a private slant. As a

remit of there considerations, the oil industry uses les-

conservative stresses than power Plants. Potential hazard

is also of importance in this connection. it is clear that

failure in an oil cracking furnace or superheated steam tube

would be a great deal less dangerous than one in an external

oil transfer line or main steam ;oi_oe, and hence the allow-

able stresses should be modified accordingly.

The lifetime for which a unit is designed is of obvi-

ou- importance in choosing allowable "'tresses and materials.

?or units with a short design life, a considerable increase

in design stress can often be obtained by adequate heat

treatment. A similar increase for units with an expected

life of, say, 100,000 Hrs. is limited by the uncertainty

in predicting material behavior over an extended period.

The design life will also influence the extent to

which short-time properties, such as yield strength or ten-

sile strength, are important compared with long-time pron-

erties, such as creep or rupture life.

Fluctuating stress and temperature conditions are en-

countered in many applications (18) (26) (27). For example,

the pressure and temperature in a power Plant may fluctuate

27

Page 37: Design for creep in pressure vessels

to ~uit load rocjuiremonts or Mie rtrorr in a furnace tube

ur/.or constant 'rer-rure but will increase if the wall

thickness is reduced by corrosion.

There are many other factors to be considered in ma-

terial selection and choice of design stresses for ele-

vated temperature applications, which nay have possible

interrelation with creep.

In many cases elevated temperatures introduce the re-

lated problem of thermal stresses. In this case, thermal

conductivity, short-time tensile strength, termal-expansion

coefficient, surface heat-transfer coefficients, and elas-

tic constants may govern the choice of materials (15) (28)

(29) (30).

The resistance of a material to mechanical shock, or

impact, must be adequate at the operating temperatue and on

subsequent cooling (1G) (.31). This is important for metals

which may show embritlement after extended periods at high

temperature.

Three other factors, corrosion and oxidation (18) (32)

(33) (31'-) fatigue and damping capacity (13) (35) (36) (37)

(33) and irradation (18) (39) (/,IQ) (41), while important in

themselves, may also influence to some extent the creep

behavior of- a m a 13 r i a 1.

The availability of materials and their cost are impor

tant, and there may be cases where economic considerations

and availability of creep-resistant materials may dictate

2 8

Page 38: Design for creep in pressure vessels

t^o I'loicvO'1 ; patorial and design rtrsr^er ('.'-2) (';-"; (''-',)•

In addition "to meeting cost requirements and having

suitable high-temperature Properties, the choren material

must be possible to fabricate by the appropiate forming

operations » Including welding, if necessary. Generally,

the Problems of fabrication increase as the material be-

comes more creep-resistant.

U-. 2 .1.2 Temperatures and Design Stresses

In msst applications of steel, creep is not Important

in design at ambient temperatures, while at sufficiently

high temperatures the design may have to be based wholly on

creep considerations. For the intermediate range of tem-

peratures the designer must decide on the relative impor-

tance of short-time properties (yield point, ultimate

strength) and creep properties ( rupture life, creep rate).

An analysis of the temperatures and design stresses

can thus be based, rather arbitrarily, on three temperature

range in which:

-Short-time properties are important.

-Doth short-time and creep properties are important

-Creep Properties are important.

Page 39: Design for creep in pressure vessels

2.1." FomPeraturcs at which .Short-tine .ro ^r-

r>~ P ire J .mpor'carit ar.c, xneir Jeci~i'

."ij^sr'^^^

Xerhhcf ('.'5) -an analyzed the allowable membrane

stresses .for welded carbon-steel boilers and pressure ves-

rn.lr i^nd ha° given 575"'- a.i.- uhe upper temperature limit fo: i- -f-i

whicn snort-Time ^ro^orxiep are important,

this range ir often tahen a? 65r' ? rather t

ie limit o:

nan the value

o:° ^75"^ previously indicated, but Clark (^6) has stated

that for lo".'-alloy steels this is very conservative and

rihort~time properties Predominate in importance well above

650*.';'. A German Code for Creep Testing of Steel V-7)

states that the yield point determined in a short-time test

giver dependable information on the behavior under static

tensile loads only up to about 662°F for plain carbon steels

and possibly up to about C42 F for alloy steels.

The AFFFI "Unfired pressure Vessel Code" (Z!-F) and the

AFFF "Boiler Code" both specify that below the creep range

the allowable stresses are the lowest obtained from:

-25 "Jor cent of the specified minimum tensile

strength at room temperature

-25 ^er cent of the minimum expected tensile

s t r e ng t r i i t t e m P e r a t lire

-62 1/2 per cent of the minimum expected yield

strength for 0.2 per cent offset, at temperature

Page 40: Design for creep in pressure vessels

dhe r.bov^ value" a"Tl".'r to the range in v;

~hcrt-ti""e TO ""or*!;:.!, or nee'* bo considered. Oho tort results

for each specific material help to establish bottcr the up-

per limit of the temperature range in which only short-time

properties arc important. For enample, in the test realized

(<-!-6) on a carbon steel (0.15.'' C), on an 10-" stainless steel

("'.%'.' offset strain), and on a ho steel (50 Gr}, under the

following test conditions:

-Carbon Steel at 600°? and 00,000 psi

—10—C Stainless steel at 00 0°? stressed to the yield

point

-ho steel at 0-T° ? and at 1,0?" ? and 50,00 0 psi,

the following results were obtained :

fhe carbon rteel elongated to ''.39 par cent but showed,

no measurable creep rate at 1, .00 Hrs.

'["he 10-0 stainless steel gave a strain of 0.32<v per

cent after 5 Hrs and no appreciable elongation thereafter.

The ho steel (at 800 Paid 5°, 000 psi) gave a strain of

0.25 pel" cent, most of which had ocurred in the first few 0

hours and the creep rate was not measurable.

In the Ho steel (at l,000°Paid 50,000 psi), failure

occured in 1.10 hrs.

As the stresses for all three materials are well above

the values given by the "AS*-07, Unfired Z-ressure Vessel Code",

we would conclude that design could be based only on short-

Page 41: Design for creep in pressure vessels

tine "Torortios u"^ to at loss't 6r " ? for the Carbon Steel

air. at least ."■" f for tne other two materials.

fiisro short-tino properties, an for cxari-lc the ulti-

mate tensile strength, must bo determined at the design ten

feratu.ro. Che foregoing analysis applies to boilers and

■Torrurc vessels. In applications involving higher stress—

or. and shorter live:: than "orescure vessels, it nay not be

"^-e-ssiblc to neglect creep properties at the temperatures

•j.vor. aoovo 1 )

A'-.2.1.'.'- Temperatures at which Both Short-fine and

Croon Properties Are Important BJI'' Their

Design Stresses.

ferhhof (A'-5) has discussed the allowable membrane

stresses for welded carbon-steel boilers and pressure ves-

sels' and has. found that beyond 575°P to 750°?, the stress-

strain curve for carbon steel shows no real yield point,

and hence, both short-time and creep properties are impor-

tant.

The intermediate range in which both elastic and plas-

tic properties are important is more difficult to define.

The "ASI-IS Unfired Pressure Vessel Code", specifies that:

-In the transition range of temperatures, the stress

allowances were limited to values obtained from

a smooth curve, joining the values for the low and

high temperature ranges, the curve lying on or

°2

Page 42: Design for creep in pressure vessels

:lo'.v the curve- of 62 1/2 nor cent of

->---->(-! r>T ^ •,-•1 r, 1 cccc: y;1. e.'.-'.:. s"crong*cn ax oGn^cra^iirc.

'''!•• 2.1.5 -Oonneraturos at fhich 0roo'~ -rc'ertios

Are Ir.nortant and Their design Stresses

ferc^'of (•'.'• 0N| "'icT d.iscussod the allowable membrane

stresses for welded carbon steel boilers and pressure vos-

rc-j.r and rias noun.:, "ciax aoovo /5J ...■ complete rolanati-on o::

socondar?" stresses will 'ccur i:i a short-tino, and design

can be bared on ere on properties.

ddic "ACOOO dnflred drossurc Vessel Code" don the unncr

of tonneratr.ror, at whic!

bo considered, specifies that:

-At high temperatures, the stress valuer: are bared

on 100 per cent of tho "trees to produce a creep

rate of l/lOO nor 1,000 hours; the valuer so chosen

being based on a conservative average of many re-

ported tests as evaluated by the subcommittee; great-

ter weight being given to longer tine tests in eval

uating data. In addition to the above-stated creep

strength .requirements, stress values were also lim-

ited to 1000' of the stress to produce rupture at the

end of 100,000 hours; the values so chosen being

based on a conservative average as evaluated by the

subcommittee.

Page 43: Design for creep in pressure vessels

U ci Th 3 " AZ'.. .0 Boiler Go ~" e " a 12 o'.'.'r the . s an3 stror

on ere?'.' strain but only 60 per cent of the average, or 0 0

ner cent of the minimum -tress to caire nrotue in 100,000

hourr. As the creep-stress limit ir urually considerably

lower than for ru.Ptupe, the two code- often lead to the

-ame design valuer.

The choice of the above valuer doe? not neces ariiy

mean if •.-■-'-. the vessel will show 1 per cent of strain or rup-

ture in 100, OOC hourr. .Service temperature,0 and pressures

are urually .'< e-s than design valuer-; v/all t hie ■metres are

often increased by corrosion allowance, and material prop-

ertirs are usually above those specified, all of which re-

suits in an increased factor of steady,

To illustrate some of the preceding analysis, the

change in tensile strength, yiel strength, rupture strength

and creep strength with the Oemperature and the AS'i-jJl code

allowable stress for a 5 Cr-0.5f-- ^-o steel are drawn in Fig.

k--l (18) from the data g iven by Clark (^-6). It is interest

ing to note the decrease in the allowable stress given by

the code which take place above the temperature at which

long-time and short-time properties coincide.

The code requirements: apply to vessels and boilers with

an expected life of at least 100,000. hours. The general

method might also be applied to the design of a unit in-

tended for a shorter life of, say, 1,000 hours.

In the low-temperature range the elastic stresses are

Page 44: Design for creep in pressure vessels

I'he r,t1."'r,'~r"r in the u.P'"er temperature rango arj br.r"

en long-time "-ropcrtics (permissible strai/\or ruvtu:"~: :n

1 '"'', '\'.'" hourr ).

In the Iiiterme/:,.iatc-tempcrature range the stresses arc

obtained by drav/ing a smooth curve between the hi r;]i an:- lo".

temperature valuer.

The type of application '.'/ill, of course, infl'. ence th'

choice o:" a ~afoty factor in the lovz-tenpcrature range and

U.i':: 'a. . u cnt to v/hich croee strain or rupture is important

•'-'-.2.2 Dosi2ii ConcIitions

^.2.2.1 Deeign Oriterion

.1. i L

It is assumed that the operating temperatures are in

he upper range of tenperatures, at v/hich only creep prop-

eties need be considered, and hence, design ha'" to be bared

wholly on creep conriideratione.

Design nu^t be ba^ed on the naximun permissible creep

rate^, and thus the stresses are ba^ed on the permissible

^train or rupture life in 1-';^:,"?C hours.

It is considered that constant-stress tension-creep

data arc available for the temperature at which we v/irh to

mahe the stress analysis and that the data have been extra-

Page 45: Design for creep in pressure vessels

polated, if necc^'ar;, to the tine 'Miration of interest. Tn!e~s otherwise "tated, the temperature i" tahen a" con-

-*tant.

k. 2. 2 .2 Creep Type

It is assumed that the creep curves from test data

rhov/i well defined region of rteady-rtate creep, and that

thir latter contribute,0 most of the strain; hence, design

may ho based on only steady-state creep.

As we have seen, small changer1 in such variables as

stress, temperature, composition, heat treatment, or method

of manufacture may greatly influence creep behavior, and

hence a ^imP.le empirical - expression for creep data nay be

adenuate for rational design.

^•.2.2.3 Approach

":1s use the Soderberg Approach based on Ibises invariant

('ios. (3-5) and (3-6)) , which is accurate only when

steady-state creep predominate. The mothods of Soderberg

and Bailay differ very little and are in reasonable agree-

ment with experiment. However the Soderberg approach is to

be preferred because it lias simpler equations.

The evidence also indicates that the strain rates in

steady-state m.ultiaxial stress tests correlate better on the

Page 46: Design for creep in pressure vessels

""t"^o■■"'" a.p ~roach.

. • -~ • -^ • * : ,v l;J. Vi > • -^ wCi V w

In a thin-walled vsrrs.l trie radial stress ( »i },

which equals -P (internal pressure) at the inside v/all and

?,o:;o at the outride v/all, is snail compared with the other

two principal stresses and nay usually be neglected. Hence,

we have the care of n thin-walled vessel under a biaxial

stress state.

Under creep conditions, the relationship -"between stres;

and strain rate is generally nonlinear, and hence the

stresses must be considered as a combined effect, rather

than separately, which greatly complicates a creep analy-

sis. In some cases the stress analysis is simple while in

other cases it may "Tor:.I the main problem of creep analysis.

The effect of biaxial stresses can be seen more clear-

ly by considering biaxial creep with ^j ^ o and | ^r ^z/di^s I

rather than the general case of triaxial stress £3^ ^z~^/

hence, the creep rates under biaxial stress states may be

governed ^j 3qs. (.3-15) •

7

Page 47: Design for creep in pressure vessels

Table 5-1 cho':;c the rocultr obtained of the analyr.i r

realized in the ^receding rectior.r;.

The curvec of :'J3- 5-1 v/ere slotted fir on the da"' ■

rhov/n in the table 5-1 • Thene curves may be u.red for the

design of thin-v/alled verselr under internal prerrure and

v.'itii the conrideration of rteadv-.^tate creer).

Page 48: Design for creep in pressure vessels

(:-

n

d2/d, = «=<

"> '"O i - n

■ r\ - --i T>

■-----»*-] •>--«, ? r-| ~- ~ "' n T ;~>

Page 49: Design for creep in pressure vessels

ZJL. /O.

Ac cor

** - "i .-•: ■ ■

; r>. T;ln ' :.r- of rer-ult'' (la-

"oroco iM'"r *~'octtori, v*o rose1'! the

ri - _ co

V 1 H PV;

C O V (" 1 - i <- • OH'

— The lare'e chan^ee j.n rtrain rate ",'h.ich

r*ia'* ha ^iro',i.icn^ h'r ^'"iisl]. ohar|':*'ar' jn the

r,i;rc!rr ratio C <^»/^/ =• c><0

i'l^ortance of correct."!.'* catiriat:' n

•~ r^--r ■.- n rv

r■ + ,1t o o "^ '".i ■" ~! t i n'. *'' a 3.

oar o '. oil rxram

" T"» ,c -; /-i <~t -. "~<--^-i

icxion::

"be cone iiicroaatnf If iar'crtant, a a ti

incroaaer v/liica. ahov/a the irirortance of

c*"'tl:aatina; correct!'* the valuer' of n fro:

cree^ -ata or fro:a the extrapolate '; crec

nate .

h.e curve*"' o~r "ti,a;. 5-1 na." he or

p. p' "I p*"!-"! ■"")' !*>■*» "Pp

m

-!-Vi i p„-'-n 1 1 r"..~! -r.^ rr-^ I c

"L,^ao.*---"-uaT0 cre(

Page 50: Design for creep in pressure vessels

.c'.'A

P

6

■fc

r, T, , r2

6C

6c

&o

^ »

AH

R

<^ / ^ ^2 , ^3

6/ , €2. , 63

• • •

^*

k* 6*

.0 3.

Instantaneous Strain ( or initial

c^eon st'^a^ 21

6 or </£/</*• Strain -late

-£ r Susture .life or :iunture 1'

p Sufficiency

Absolute Ser.rserautre

Cree'o Strain

Green Hats

Constant Initial Stress

Stress

Activation Snor^y

Gar: Constant

Principal Stresse-

Croon Strains

Creep Strain rates

Stress in uuitianial Stress state

Strain rates in terms of d *

. Strain in terms of <£ *

Page 51: Design for creep in pressure vessels

L...' '._'A;.

:"-,-!'•> ~.-l •on o.\ rinci^al Or'

or a.:. Tor-it A ■■■"> r~> o ^ - "> O '

:La:::i.a.L v» r* f r~* i ]-^iTi r\". r* ~ ' ";"s;~i "^.-

.'able -_i

Oort Oat a o .Va'"roll anO J'ohnron

(25/ for 0.17 r>or cent carbon

■op"! p t ° ^ o

'■'train nation a" a function of

Otrecr Oatior for thin-Y/alleO.

/orro 1 r"< unfor -in.xori"al Orsr.FU"^^

ana uonai.tionr of

'ee"o,

"coao^r-oxaxo

ho

Page 52: Design for creep in pressure vessels

<D a>

+> 1 CO p, < c

v-r-

-p ,0 c Si a L, o o

<M -p CH c •H <u n o

>> ^ X 0) - - p.

cd

CO

n

o

CD o

O

a

o

o o M o

o»o CH rH

CM I *— M

CO

c o -H CO -C< CO

CC Cd

5, o

<M

o

CO

co a .M-H

o ox

-p •H

o -p

rH a a M C. &C CJ •H E^ Cti

u CM -P O to

<H Cd • i K -p r-< ^ O Cd

X-dC (DO VPN

>H cd -p cc r£ o co cd r. o -P

E-1 P.E-t cd

r-t O r*"\ J*

CO -^ o <—•

; i cv • • • • • • ,| A r^ r^\ ■■ c c ■;_

?~~ v~_* C C- a •^ .-.- « 1 1 1 1 1 1 u. •

■-*-'

+■> r— 1 CN CN CN rH r> r~« c. 0". O

03

i VTN.

-V CN- -^ -*■ CO -*• CN-

t_ O *\ r^ o /- c ?"■■ »—^ o c. a) u , « -■> • 1 1 1 T i 1 1 1

a 'Ml • c .c . i. i C; CC NO -4. CN Cv. r*\ CO CO < i CO CVJ NO -S" ^J" o -^» CN-

. C O rH N.' ' c^ c c c.

s •>• c •

o ON vn NO o CN- r^> r-i CJ l-\ rH c_ r-i *—

<\J O r^ o c o f—N c- O O c_. m - - • 1 1 1 1 1 1 .^, • o

i i cc C\! -♦• c NO fN CN- CO i -V cv. cf r-. r^ CN- r~\ NO'

i. . d NO • • • • • • m • rJ cd

•4

*>•

_ C-N. o o o c> o c c o r~ •r-

o vr\ • c

1 i 1 I I 1 i 1

r ft '"""""» I c^- CN- r> c r-% NO CN- cc c p, i

CD c^ rH NO -*.

■^ CO CN. NO

NO NO o r-^ c ;j ^ c c o ^ ON • *H) • c rH O r- r-i t>- ^3-

X 3 C"\. _^- rH rH c rH G c~\ a NO r-\ o o C c - c- o o c o n —u m 1 1 1 1 1 1 u •v» • ' '" Cl i VA r-N. CM cc u^ C NO NC p. 1 -i- cv. ^J- rv r~, CV r> NC < vn

as r^ o c C '~ . r~* c c o N —*i • 1 l 1 I T 1 i 1

fclfl 9 ■—-\ "i NO cv ON ON OJ -V NO NO

co 1 c^ CNJ *n C-N. —c CC' C~i NO

XI CO u '^ NO o rH o C c o !~' C" o *\J <"N •

TT • o rH Cvi -X. cv CNi ^J-

o o —* VPv viS NO CM c CO ON vn

« rH rH rH rH o e c o £~- c •\u • • 1 1 1 i 1 r- C' o c 1 1 CN- .cj- rH v,-> c c-, ^J- cc

-H O^ CV CM rH r~, rH ?S VA f * o c^- c O VA O C C^ C o rH c o I * M) • • 1 1 1 1 1 1

• r -N O

&- 1 | —j NO VTN CN>- CM ON -k. cc c o IV CN. -V VP\ C rS NO c ON <v r •vu

ON • •

rH rH O c c rH c c> ~N. o e o o c- ^ O c r^

co CO cv r c- _^- c CM -1 o o *n CN- rH ~^- CM CN f>

•(—. «« NO U-N. ' B • « «k ^» «k •. » c \» vo c^. cv C\J r^ r, ^- NO vn CN- f 1 1 1 1 I I 1 1 i 1

• .-. o c- o o o o o <^> C c. NO vn CO CO CM o C^ -*. c CM c *% VO o o ON CN- rH VPV CM CN CN-

M • -*-

CNJ CVi _-J. ON CC CN- C VA CN-

+- iH rH rH M rH CO

*o

Page 53: Design for creep in pressure vessels

CO Oi

•H -P T3

K) © ra U o 3 U w -P W CO <D

u <Hft o

rH C nt O C

•H JH -P Q O-P • *5 G PH 3}=^ (1)

Pt, 0) fc fc C o o

•Hfl

CO 3 ■p o at

•H ra -p -P.H CO 0t CD i K ra t» ra T) C o nt

•H > ft) cd -p fc-ct ro -P 0) CO H «H

rH o ctf

• £-"■• W H '. n I G n

WH •H .G -p

<D EH •H H . TJ ja:U n at O n EH^: o-

•4»<«B«T<tf\f»9fvi^^sfrorriro(\j'r^^ • I f I | • I f »+ • »' » » » un» i *4» ill ii

"paropoooeeBaoeeooeoDaoeepesRcseeooi peeoeeo«oooDBccioeoef)ecpoeeaoeoo|De

loooBooceesoPOooooocBCocooecaoocooo

• •*••••••••••••••••••••••••••••••!

«^«4eCMocsteirin<HliMn^cviroooaff>ocncjtv'ff><rf^<vi(rp<roaa

«) M t I • l • I M • • I I M M M I | I | l I M M > • I - «9C90*4(T(NJrO<-(flSJir)^«-l<VJ«H | »-4 f f t I I • I I «"•' '~-

|W» - f»» f <rt» f I I f f I t eoBBoeooooocooooPDOooeaoeoeoeeooei * -IpeeaBeceeBcieiBBeioBOBesBoPicjoeoBefsoeo "^9 ZBeBOOBPPDgOODPODCPOODOODOfJOnoOBPB M <pB0Boeo0BBBePBaBecBaeeoBeeBo6BBBD< ^ „••■#•••••••••••••••••••• •! ||

; 0ap^e«cDapecDaoaoaoaD«p«Q<Bap«o«oao«D<B«oaD«3<e«o«>«O«>oo«>e 0

<MCUoe«p«-ico>4'apV4«oirto««oroooocr>c30>oroeo«oroo<ro<roc9e3 vu ^_ ,«C^^p«^^K«pcOeOPr)^«0\0(Vje3«Po(sj^4«-t«9iOroro\De9«^<-«(siC9aioi vr. Ofoto«ipf^m«O(O<>-i^rotrt«ov4tx)mataecrf*?vor^vDtOiD«r>nt0'O9>e3C9e ,■ >-KKo«erwu>ou>wN1u>UNCT»irif2»u\ina)(vjrfinc=|^^ouN-»"<vi^in»fke9i _^ ^ ,

twfwot^.tf' | row | <v/,-» MIMH |i i| | i ~* u °i ^ vi : • i r •■ o cl> eroBooooooooooooeaooooesooooeooaooi ^j.

„ BBeeaBBBBBBBBBeBBBBBBepfiBBBrBDaBa || * ZBeBPBeBPaPBBOBOCOOBOOBBBBOBBaoaeO . ' ^peepeoeBooeproaeBceBpocorpBBeteoocsi -\J c" -5

<«o«oepDCT»<proc3fNJirnccruDiAooi5ouMrve3^«ovD»Doo-*c3UMno«=es p >-:

COtt0t*t««**t»t««tt«ttt0*«*«ttt»«»« ^ p- 1 lA^CO^ J- | W«Si | CM*-I |<H| |rlt | «| |f | | «4 9 9 ! I » i I 11 T! « T-

•O«O«o«o«o«o<Dao«O«e><oe*oao€O<Bao«Daoac>co«o«o«o«Daots«oao*oao«O0i TL •0«a0eoae*s«oao<eco*D«9co(oee«B«o«o«D«oa(>e(ME>«D*E«o«D«9«oan«o«o«c> i2 ,. j5

ITppooooopoooooooooopooooGOooDooooo' ^ q £ <B|iopaooBi90BBPBBaoBOBBBQBBeBeBBeoe -p b -p OfOOOOOpopOOOPBOOBBOOCOBPPOOBeoOOOD C <• o cr HU\i^o^fr>^M^Hfvjrjw,fo^fs.gr-oif\^cr'WvDao»4N.N,^«Diowcr»inif>o

WHBrlH I *-»i-l |r)| |H| |rl| I I | If I | . V* Iff I

JL poOoooeeeooooooooooBOBBOOBOBOoeea ■< PBBBBBBBDBBBBIpBOBBBBBeBBBeBBBeBBB ^ <

ZBBeBOeBOBBBDOOBBBBBOOOBBOOBBBOBBS Q_ ffl «ooooBBf:BBBf36PBeeBoeBPeBBOBOBBeBee «_ ^ ^

• •••••••••••••••••••• •••••t*«t*t* < < or.

* - - - : * «ceooaoea«o«o«o«x>^^<4'fvjcvjvoeeefvjt\fCvjwr<#-4,«oa>^««o«Beoe

C«H«S«4 " t* i * * i i " i » * »V«3e5 *' ** "' *" 'w*Jt<X

*'"- _ ; ' : -i^ I

.1?

Page 54: Design for creep in pressure vessels

Fig. 1-2 :

?i-°". 2-1:

norna"^ c ;urv

Fi/r

2-2:

'ig. ?-2

• chenatic Relaxation Curve

Re 1 ax at i on c urve - : (a) C arb on

' teel (at c5"°?, initial -tre-r

lr',0^° nsi); (b) "read rubber

(at 1?/)*C_, initial elcngation

5n' 'ler cent)

Tyoical tensile stress-rupture

data: (a) Arnhalt (pitch-tyrje

bitumen); (b) Killed carbon

steel (Timlten /'.oiler Bearing Co) ;

(c) Reinforced rlartic (polyester

fiberglarr laminate)

•Schematic ere en curver two

stresses:(A) and (B), method of

idealising a" steady-state creer;

only. (G) and (.3), a" steady

state plur lumped transient cree'o,

Creep curve showing initial elas-

tic and plastic strains as well at

transient ereen.

^

Page 55: Design for creep in pressure vessels

'3 0~ Z:

"cr, ■ " .o -~ an:

i_^ov;ao±e c- *-• ^ c* '

;rain /.atio? as a .unction cf

'ijc- £atio^ :°or •nr.ir.-'.'alle'1

- T" : :-i T; ~ r"-~ a

-on::ix:.cn'~ - u d o —

Page 56: Design for creep in pressure vessels

VD

M < K CO

Tertiary

?, Fracture

^Initial Plastic Strain , Initial Elastic Strain >

J Elastic recovery-

Permanent Plastic Strain

TIME (t)

Figure 1-1. Schematic creep curve. Dashed line shows behavior on unloading.

47

Page 57: Design for creep in pressure vessels

p*

< o

TIME (t)

Figure 1-2. Schematic relaxation curve.

48

Page 58: Design for creep in pressure vessels

tn *—V

a •<-1

to o a o a ^ * rH

i-i ' u

rH Q) <D .C a) &

■p 3 to cc

12

10

CO

0} OQ

K EH to

24 _

20

16

12

8

(b) Rubber

(a) Steel

.001 0.01 0.1 1.0 10 100 Rubber

0.1 1.0 10.0 100

TIME,

1000

HOURS

10,000 Steel

f igure 2—1. Relaxation curves: (a) Carbon Steel at 850 F, initial stress 10,000 psi); (b) Tread

rubber (at 130 C, initial elongation 5° per cent)

^9

Page 59: Design for creep in pressure vessels

+3 n tfl r-\ a, T3 o o U o

«H C

•H a

cr:

.«a += r-l i—; O Co CO x: -P P CO c. < >—<.

•H CQ ft

CS- — s C o o \ > Cr •-t bd *~*

» m

a ra CQ a © CD k ^

-p -P co CO

50.

10

l 10 ioo i,oc)o 10,000

10 100 1,000 10,000 100,000

TIME, HOURS

Plastic

Asia halt

Figure 2-2. Typical tensile ntress-rupture data: (a) Asphalt (pitch-type bitumen); ("b) killed carbon steel (Timken Roller Bearing Co); (c) Reinforced plastic (polyester fiberglass laminate)

50

Page 60: Design for creep in pressure vessels

(-1

EH W

w g O

TIME

Figure 3—1. Schematic creep curves for two stresses: (A) and (B), method of idealizin as steady—state. - - ■_ - (G) and (D), as steady state plus lunroed Tcansient creep.

51

Page 61: Design for creep in pressure vessels

Primary Tertiary

S3 M <

EH CO

Fracture

Steady State (Minimum Rate)

Initial Elastic Strain

TIME

Figure 3-2. Creep curve showing initial elastic and plastic strains as well as transient creep.

52

Page 62: Design for creep in pressure vessels

M CO P-t

c o c

CO CO

EH CO

T S: Tensile Strength Y S: Yiel Stress (0.2% off set) R S: Rupture Stress (100,000 hrs) C 3:: Creet> Stress ( '1$ in

100,000 hrs)

ASKE Code 5/8 Y.S. 1/4 T.S.

60

50 - ^"^^V. T S

40

30

Y S \

20

10 s- "iT" "X" "a -^

c s \V<^ ^^ 0 I i- i ii ^*i*-

200 400 600 800 1,000 1,200

TEMPERATURE

Figure 4-1. Change of the different stress values with temperature and the ASME code allowable stresses for 5 Cr-0.5 M steel

53

Page 63: Design for creep in pressure vessels

\ N \ - N m

?*2

2 &" .

2.4 .

'? . 0

1.6 .

1.2 -

;.8

.4 -

l\ A'A\

i\ r 1 i\« i

• \ 11 1

\\ i l\

Vr \ \\\

,^ III! _. .., i II i

-1.0 -"'•.6 -0.2 0 0.2 0.6 1.

STRESS RATIOS: dz /<i, = c<

Figure 5-1* Strain Ratios in Function of Strees Ratios for Thin-Walled Vessels under Internal Pressure and Conditions of Steady-State Creep.

54

Page 64: Design for creep in pressure vessels

', -1

r. II »

].o--^", Cha'^t. •',', 9uttc>rv.'oth .3 CO. It."., Icn'on, 1 ■?"'■'/•

I-"AJ'TrJ ..■:.-": ,d. J. , "Interpretation and 'dr. o of Croo"~ .on;

T A'-.i C',-,/-. " P. 4-nl^, 9.'''.. : 7 ': lO-'-'

'?.,?,, C . J. i-'. , de BLiK 3A.;II1JC , J.J., TfTGd, A../.-, an:

, .{.0., "The Green du'^ture I'rcnertJ er. of .'-recrure

Verrelr", Telling Journal derearch ounnlement, Anril

•''■. 'TAd'Tf, 0.";., "Transient Greco in iure . etair~", .'roc.

Thys. Goc, London, 366: 53-9, 1953.

£r. CCfTTdl.J., A.::., "The fine Lav/s of Croon", J. .och. and

i'hyr. Soli'lr, 1:5."-', 1952.

6. JOIIfCOi;, A.f. , ?>nI Fl'iOST, N.J., "The Temperature de-

pendence of Transient and Secondary Green of an. alumi-

num Alloy to British Standard 2142 at temperatures

between 20°and 250°C and Constant Stress", J. Iinst.

Petals, 91: 93, I952-I953.

7. HAZL3TIT, T.H., and PA7J33, '.3.3. "nature of the Green

Curve", J. ^etal^, °i : 0^. IQC?_IO<":

Page 65: Design for creep in pressure vessels

ASC > <- • » -Hr-

L • ,

<-} T* ^» ^

17 ,

ture~-;~h

rre?

.etal^ at .Jlevatei to::"ora-

rbolic Sine Pe lax ion between. St re""- an"!

Mo", 'Pran^. ASPP, 6;: 761, ISP-.

■n ■ :',-^-i.

:p:, Pationad. -'■lyrical laboratory PJ yr.'i" or: i-

u;n on Green and fracture of Petals at Pi^di fenncraturo,

Teddinccton, Pine land, II. ;•.. Stationary Office, Lorrlcn,

7. ",9, 1956.

11. PPiPTPAP, J. , and SPAGPPPAP ..-. , "Green of Poly

ryrtalline PicPel", JP Petals, " :122s, 1956.

, ai i GPAPP, P.J., "Creep and Stre< Tl;

:urs of Aluninun as a function., of Purity", J. ..etalr,

1°. PCOPPf, 1., "Prediction of Relaxation of Petals fror.i

"data", ..roc. ASPP, 51, Sn, 1951. 'y»no ~",

1<!-. P0:30LSJCY, A.V., and AfiPPPS, P.J., "Systems ^anifesd:-

iny Sunernose■"■ Slastic and Viscous Behavior", J.. Chen,

j. ii.: , . , J- _.. . _.' , .;'■/■ .■ j .

Page 66: Design for creep in pressure vessels

t -* • »

o ! ' n"

-C-

o^n ~ ^ '

, v-, p. I CS ■" -» ~ . O O "'»

■ o -"->"■> .o -. ■:.c:

:.:i: „..,-_CJ. ;air -o,

-/. ■-.':-;.:c-_3"r"9ra"ciir" .leJ-axj-ons/ii^r: lor

T-i.^> r- c- o < Aeiniorced .-ia"xic , :TCC. AS:

— ..■' ■ • » — y -

—■~t

o .:.■:•_air" ", -C Grav-j-ill s --> -' ^ 1 ~ « ■J- -- » -^ >■ ^ J '

Iran?. A3.3, 61: 239, 1939-

21,

3A±L_L'Y, M.-'J., HiK:] Utilisation of Creep Test Data in

iDnsineerin^ design", Yroc. Inst. i^ech. Sngrs. , 131:

PAYAI, A., "Theory of Flow and Fracture of Solid?",

::cGrav/-Hill,Nev/ York, 195:.

22. JYC^C:;, A.3., "Creep under Conple:: Stress Systens at

Elevator] Temperatures", Proc. inst. keen. E'ngrs.,

16';-: ^°2, 1951.

£"7

Page 67: Design for creep in pressure vessels

9" 'C"j :~3.':?fJr, C.'.'l. , "Intor-Tntat: or. of Croo- _o::tr for

,0^;,.,^(, -u. _ Art- -? ^ - . n-^: loV - ■- -- ^- » ^_CJ.. i . 21...- -J , _, . / _. _, » — , _ - ■ p r» •■>": r"!

-A-""!:'! , <J. , "focharioal - ro'^art.ior of .Material rro-

•^rti?~ of .^atorlalc and Joripn'V Char. '5, . .acGrav-

1 T '^T-r " '^-.V.- ~] O '.9

?orrior

, . . . O • I , A.G., "Croe^ under Combined

--i^. - r,--^ ?■''. TO/V"

:03I:.GGI-, f orroeraturo Variation on the

o -.: -^ — , ?u i^' • i-i..-.-... j i O n; o 1 o

£ ! ::oc" O::' i9:.i">3ra"curs variation on "cno

;ranc. Avh-d, r- «

(■■■■ •■ { ( ( i •"• < o

• p ■ <~-' TI '

n j.i'riCT C' 0'"c.-.*i.c .^99Tin~

,J °: V -° 10 d r"g''T~r; ]_°p T;'I'T^ c- AC''~r

^o.cc mr 01

:.v3Ch. ..'Ub]

.-.-< ) -/ • - . J .0 ^' '1 r-

-lochs t doc. , 21: I'd?, 1 C: C. -

. -i - ,. 1 • » "hhomal datigro and dhomal GhocX",

_.er oar en mil. dor. 10, April, 1952.

., G.v., "froportiac of Letalsr at Elevated hornror

■.?", ..cGrav'-Hill, hew Yorh, 1950.

Page 68: Design for creep in pressure vessels

urn

■ ^ >

Page 69: Design for creep in pressure vessels

i. s - - f/ -"•!-•»

. ft 1 »

) -- _ ' — >

,

,n ^' c- a

<

Page 70: Design for creep in pressure vessels

::A:

5""-c> '■ ~ n" '-3 : , T

o *: o ''"^ o o " ", A: A?:..,

Page 71: Design for creep in pressure vessels

ocii."ica"".LOiir an:: ..■or'::.:'.

'According to the ".lev ;lia"ra;~i o:;' the irirtallatior.,

e working conditions of the nrerrure vo^rol an t'hi fol-

io-vinT :

-"dluid : runerheat vancr

_,r~n-i-|'-.r>ci+lT!''n • 7^? ' [.'-'."' '' ':

.- j_ ., . i ..- . . - - \ . ./ U. : /

-fubjeciod to abnormal te-yr-ioratu.rs o'lcur^ionr of in

.o 1,112°? (6'"0*G). -I'otal duration of the oncurrion- Inn

n.r" lifeiinc, about l'-0 hourc.

'Jnscificationc; of the vem-Mlr ("if;. 12-1 and 12.-2]

are tho f ollov/inr::

■'hd i

C;*,r 11 n 1 r*j.ca 1 purfacg :

-Innide dianeter '-J c

-j.enT'cn

(—- c:i)

■J- •■•. yo j.ii

C'CO en)

-fhic::nem of internal refractory <'Mn (10.6 c:

-:o

Page 72: Design for creep in pressure vessels

\

-,:a::.vr (h; "f."7 in

(1 c -.;

-An-le ( <f> ) '-5'-°

-';h?.c1'nor'"1 or" material refractor^ '.'■ in (1 . ■'. en,1

•rP Q -i p -j ,'lp 1 r> T ] -ii ^ q ^ ^ •

-/hahiu- ( dN 27^-59 in

(7 ■ cm)

- An°;lo ( "jk *! V °

-Phicd-mor- o? internal refractory •''- in (l'.d cm)

>rir:i Criterion

In the dOvi.^n the v/or-: conditions are considered dur-

ing the abnormal operation of the installation.

Accor "in^ to Section '''-.2.1.5 the ves.sel temperature T

(1,112 '?) iri in the irener ranp;e of temperature ( T> ?so0f)

at "/hich only crso'" rro^ertics nee"', be considered, and.

h once, the r"le",imn har to he based ".7holl"r on ere en condi-

t i onri.

jimonslonal tolerance is relatively unimportant and

the condition to he avoided is, rupture v/ithin the design

"I i'^o: four f">e dor'Asm rtrncp^r' avp hnppri nn Th-^ y;■■■•-'.-!-n-^.^ ■-, -■-'-'- -•'- ■--■=. --c^- -Tresses are oases on xae runtur

i n ■■• n, o:~ the vsrrel (.Sections h.2.1.1 and h.2.2.1).

Page 73: Design for creep in pressure vessels

Ac cor' _;:''" to ; r". 7 2- , tno crco"1 c.'.rvo ~ro:n tort ac-

tive valerial shova a 'vcll-dof ino H reader of stoad"r-

o""^, and d":ir roller; cov'tributer" ::icr't o? the strain.

. , ..orio;n ray bo based on only steady-state croon.

According to vectlon ''1.2.2.4, tho measure vessel is

under a biarial stress state, ana crcen rater are governed

:vr T.D.0 ,0~. (°-15.;, ..GC'GlOn _'.'> 3 •

'; a

a 11 c -

12. " .""J t r e a s 0 a 1 c ul a t i o n

Accord ins; to Section 7 v.-hcre the importance of esti-

railny correctly the state of nultiarial stress ia aht¥v/n,

v:o are tho Computer Iro^ran Dr. Art urn Kalnina (fable 12-

l ) or ~no nenorano sxrer calculation for the shell cvlin-

'■rical surface! and for the cloaure (srherical and toroidal v

surface) of vessel (Pis. (12-1) and fig. (12-2) j ('j-9).

12--'- fatcrial

i,Te chooro a material for the vessel with the

lov/iny specifications ( ^ 11) :

Chemical Composition (.')

C: 0.10

Kn: o.k-5

<? -i • r~ i o

f ol-

.<>.'

Page 74: Design for creep in pressure vessels

.0 :

' 1^

'17

ec

Heat Treatment Annealed 1,551 R

Grain Size 7

3rine.ll Hardness 126

Type of Furnace electrical Furnace

Physical Properties at 1,1.12 F

T e n r i 1 e S t r e ng t h ^ k-, 0 0 0 p s i

Yield Stress (0.2;.:: ~et) 15,000 psi

Proportional Limit 5t5":0 P" i

dlons-ation in 2 inches 0.85'"!'

Reduction of Area G3f

Oharpy Impact Resistance

1 hour at temperature 5l\- Ft-lb

1,000 hour at temperature 55 Ft-lb

Young's modulus 2^.5 x 10

Creep Properties (^6)

Rupture Strength at 1,112*F:

Fracture at 1,000 hours 11,250 pci

Rupture at 10,0 00 hours 8,750 psi

Rupture at 100,000 hours 6,250 psi

Creep Strength at 1,112°F:

10' at 10,000 hours 5,500 psi

If' at 100,000 hours 3,000 Psi t

Page 75: Design for creep in pressure vessels

' f~% p r' r* ~* y.- c> :.es.i.s:n x,m.r, xi p "r T ,~, r\ ■" p *7*,p *-° " EL— J 13.T i -' / ° p

inches (° en) of

rcsion allov/ance

.c.:norr, ,/°2 inch: ( '. 2 c:.">; of cor-

i p £ dcsuits

dhe output of tho Cor.nutGr frogran (Table 12-1) shows

the n nribraiie stress values for the. Shell and closure of tho

vessel.

In the calculatioii of stresses 6/ and »2 tho nem-

^.0. paid 6<£ , respectively, are only orane sxre^'se^

included. dho stresses ""'roducod b~r the "bending sionent

( e,rAo-/hZ and 6 ** / W C\ ^~> pi "I included in design rules, ac-

w- ..j no: and .rressure Vessels Cole, Section

curves Pi^s. (12-d), 12-5) and 12-6) v/ere dot

tsd dro:a the data shov/n in dable 1^-1 and the critical val-

11 pi rj -f 'or tho stress ratio of the vessel- are the follov/ing:

Cylindrical surface er 77

.-6d> '(-rhX)

7,7:7

Toroidal surface cr •12. 67j =

-"'.o2c0

Snherical Surface cr dz -

d, 6,56?, =r O.O96S o

Page 76: Design for creep in pressure vessels

~ O O "

4. \ Z.C~C'-l"'', 1

c

€ ^ Bd, n

{12 ■

n arc ccrr'TanTf-; oo\" 'Oi. L iT-

"^'i*-)^r Q^on-";, "T^O"" "^"^"i^ *"' ^ r~ 0'' "C : 'ial (.3 octi or. 12-'':\

ra:m rax; nouiT ^o-

o" a rzrsr.r- o: £ C'

•A-i i "'train irate in 1' D.oi-rr ir nro-

:.ucea ay a rxref?" of i ,'V-'

_■' t -■■ -'

l'\

= (i^

n =. <?»% sC<n \ D t _' . i •-> ■■■' ■-• /

. CK. o± . o

.79-79:

7

Page 77: Design for creep in pressure vessels

( .' <

91

.V

'-I <■'

'_! .o r*" -t rv-~v

n-T-t ■:, -,, rical 'jurlacs

K7 9' 62 =

cr

Ji.rr-':.'!-91? (

r>''0 j?0 "^ *"■ P "^ ^II^'^PQr-

1L 9r-7

V* ..T7n'

( -<„.-=-:-. 72 7

£* = -■ .557? ( '-lb

■^■ip^i r*p 1 ;.;nvivnn.n <^..u . C„l,

:'.'" 1 --

( o<r — 0. o-.o' > cr ~ ' - ■■' - ■■' ■

£3 = - ■".?/.'? ( 12-lc

-acin.r tha .Jq. (12-1) into lqc. (12-la), (12-lb),

su~7 (l2-lc;, '/9 can c.e- ne 0 rxrain rax80 0: n v^.o.

rlinIr i cal 7Jur :7ace ;ensicn

c __ •" c 19 .1-721 ;: 1: -91

(</, = 7,707 psi i; o 9 o P 9 O 9 _9

9 7'"> 7 ' ' ^-'' ;^_ 11 . A'-7''''"rl" nr

Page 78: Design for creep in pressure vessels

£z - n '7 '7 i i i

79 7

19" 7 -, 7 -. ->

--- 1 7 1 'Is!-- _ i - - / » f ' — __ -. ■J2-

■ 7

' r~, 1 ':ace (4=12,67-'

6, = -I < i "on - - -i . P1 _ . " 7070

■ n;^ <~ , pf

07 r;---]

£2 = .2,67-9 P--1

£3 = -0-557' .?-

1 O <7I;

--<■- J ■- / ■

•7?:?? O ''' •' rr--"l

'-..'—-_. - - ^~* C-'- -—

6, =

€3 =

6.1521 :■: 1

6.i:'21 ::

-< 1

( ^,= 6,55 ;ii .■jjjj

_P1

_7"l

.21

^ r- /' ^■5 3.79:7? O .-''. O ■■ - "

70'"'7i*l^ _7

79:79: I— -16. 2'1::1 ,-7

:otal rtrainr of the o. Trpcco ; pf-v,-^ cLx. "J o: follov/iii;.?

Cylindrical Curxacc

" 1 ^'9

/? — ■-" 7-"'.' irT? ,. T,.

.'-■-:-:75^! 1 ■-)• :.r

.0

Page 79: Design for creep in pressure vessels

, -, n no rf !--■]-

.or

-■". .01772.' in l"o

Toroi lal Surface:

£, - - '■6.'27- : T '">'

Ji6~2^ in. 1

<f 2 -

.-1 OOTO .' 97 ' :.i ±0;;

>? "i ^ / ? :\-''.C

. l~2 0d :ln V"0

6/

T-y.3rical .Ourfaco : _9

O ,'',9 1

. ^o!\.£-; in i~.~. :■:

-7 62 = 6.779 :i 10 ' :: 1?" Oir

£3 = z

. r':'~:6'77^' ' in 100 Hrf*

t -7

162"! " in 1*0

o:0

0Te can cor.'oars critical "trecr: and critical strain:

:3 verr:?A ">/ith the AS;-!! codo allo'/abla valuer:

7'

Page 80: Design for creep in pressure vessels

— > -■■--•'- - >

1 'I,.-, (^,

7,7 7

U 1,11?/.?, ( £> 1

-i /"•..-; * i /■* -

0"r a r: '"• i O -"■ '"' o *

■"O-. ' 'PA. '.V-"~'ci.CP:

/> "1 1

At 1,11.? ~, ■-.°27'\' rtrair. ( £2 )

in .1 ' "' Ilr-"' i," nroluc-3'1 ~"r s-

\ r> - - ~~ -: ^ ■■

At 1,112 1', (6 > :.l

"U'TTCUI"?: li;io in 10 '.

.n ■-.r- >

'- "i^n"! ;ir>0'' ce

T' or: 1 ~: ft:'-'-. — - > ...'

-L,

7:

11„-

Page 81: Design for creep in pressure vessels

■ ^ ■)"--•*-' r-, f» -!

<-.-L-.-.o ; ( e, :■

- '")j70'"uc; : or

^ + :

^..-. .. ,■ , At 1,112°?, ( £ > -.1 ' in 1

runturo I!;"? i"i 110 Hrr ir nroducod.

b""r a ''''cr-sr.r of .13 •'r."'1 "~ni

JO Allov/abl-

At 752°? (:•" ^ > -u i i "~\ r; "» c- ^n of tlo vo-r,r:el could DQ

baro^ onlv on rhont-tinp. nro^jro P "'"■ rl "I '-"> c' (4-6) ('iff. In thi

c ?. .'■••• can a3.ro cormaro critica2. rtrerrcc of the varrel in

normal operation (752. •-*■'; v/ith the AClIf code allo'.vablo val-

•.'-Linp.rical iur;: acs

7,7'7 fri at 752' 12,9Z*-0 "OSi at 752

Jo'1^ A'':

°^

^

72

Page 82: Design for creep in pressure vessels

^ ''^S> " ' ■ C3 PC

7-'-

,""-' "'")"-i o"" i C 3 "^ -5-11 ^" "^ £1 c ^

at 75-5

lor-

1 9 O - • - > ,- t 752

, A-'-Aov;aoi

onclu

i 'O T, i« .in' "i-ho .t^, '.:o can uro 'd\

,'~J "^ P) c "L" ? C 8 \' 2 o IT. r ..o Steel (Sectio n

j' i ■* c' ~i -° ■ 1 £ / ' 9 .r.caer (3 c:-i)

)cioii A11O".'<'-CL .c( 3/32 incher (0.2 c;^}

Page 83: Design for creep in pressure vessels

I Figure 12.1. Dimension of Pressure Vessel

/ 74

Page 84: Design for creep in pressure vessels

Part No 2

Figure 12-2. Cylindrical Surface (Part No l) Toroidal Surface (Part No 2), and Spherical Surface (Part No 3)

75

Page 85: Design for creep in pressure vessels

u-<

.30 _

• c

-3- I c! 20

En

10

0 200 40- o pn §00 1,000

TTr.I3, HOURS.

Figure 15—3- Creep curve from test data of 4-Cr M Steel (Testing conditions: 1,100 F, 8,000 psi)

76

Page 86: Design for creep in pressure vessels

-C X \ N>

^ *

* "?

II II ■a. 4>

>• \9

II II •y *«*

M >3

c o

cv

2U0/^i ooi 'SSSH;

77

Page 87: Design for creep in pressure vessels

vo

o rH

c -Cv}

c rH

CO "-1

,-••■1

3

E-i

s O o o

o M Q M « S

CD O

k > CtJ <H \ JU

\ 3 \ CO

\ rH ) cd

t2 I •H

! O u

1 *' ° 1 -- *'EH

1 C 1 •H

/ CO 1 CO

CD t U

1 ■H CO

1 1 CD

i § ^ ,Q

CD

i 1 C\2 rH

* v«

•z ■*

CD u

•H

n n Cr-'

-a. 4> •\a ^

tl 11 •»

>* >»

/ /

/ J 1 1 L

vc rH cv -=;• VO CO ' C:

' • I I rH rH rH I I

,tuo /2}i GOL 'sSEilOlS

78

Page 88: Design for creep in pressure vessels

CM

o

EH CO

14 _

12

10

8

6

4

2

0

'"»*.

2

4

6

8

10

12

14

+ + + + , 155 160 165 170 175 -180

' Meridional Coordinate, Degrees / I /

L ./ t i u i i i

r

^2 = <^=r A/^ /h

Figure 12-6. Membrane Stress in Spherical Surface

79

Page 89: Design for creep in pressure vessels

(d.dd:CIATid?d C? CC.-P-vT.JR rdCGdAI

K

x'ART do 2

'FAR™ No .?

^

N

11 =. U<j>

npyo. ~ h4cf>

UTHJ'JJA = ^-9-

•=s M <*

Cylindrical Surface

Toroidal Surface

.Spherical Surface

deri 'ional Coordinate, dirtance

d along generator in Cylindrical

Surfaces.

deriiicnal coordinate in "• career

in toroidal and rnherical rurface^

An°:lo between normal and a"i^ of

":imetr~r foi 01 volution;

c.i rcurnfcrencial angle for tonu:.

,.'irr'lace:'cnt in normal direction

Tr an *~'ve r r* ° ^d ^^^ --T^'im "^^yg" ~~crc,'~i

in normal ..direction

dinPlacement in ^pyi ■. j Q Y\ ci J ; ■ i i y1 ^ Q —

tion.

the norm? 1 -in

der'ultant force in meridional

direction

Angle of rotation of

me ri d i onal ai re c t i on

.-irnlacenent in circumferential

di re of i on.

C'ir&nnf^ential .rhear force

I-'sri'icnal bendin" mc

Page 90: Design for creep in pressure vessels

■I =\/vJ &-

\ = M-&-

6$ _ov-. ,yr: 11 "1 /"% -.'■>

' ( = /^ /h ±6M<^/^J

-, -,i o "."i .<•"> r- T "> "» ,"\ *""* f" (".'*' C ' "''"* f1 ^ * ' , -, -,.-, J- ^ -, i

1 -->.-! Q-- ~ Q--1 ( = N-e-/h±: ZM-o-Zh'

\r T! "° r~' '"' "' ":" ^i "

0T.3V-'

Page 91: Design for creep in pressure vessels

\

o

u o -p

P- E o o

o w

+> ©

U

i

•H

62

Page 92: Design for creep in pressure vessels

1 Jt •; ^ : c*

a.

it

UJ 00

UJ

o 1-1 ttf Ui X Q. co

»-»

O

X

X a. x

»- Of

CD

CO

X C/>

o a? t- Ui X X >- CO M X «t

u. o CO M GO >■

-J «z z <l

or o u.

X 0. CD

\:

X CO

— ", V-?' I

CVJ

o

Ui to

u CO => CO

a o u.

CO I- z

00 U-' u

-co Ui a" i- 00

V) z o

u Ui -I u. UJ o

X ft- z

X a

CM CM H O O C • • I

UJ Ui Ui o «VJ CP o a» CM CP o K .4- CVJ «o

fO CO CVJ I I I

^ CD © a l i

Ui UJ vD in .* <T> P«- «o in o cr> cvj

• • • O U> CM

I I CM CVJ CVJ o o o * + + UJ U. U CP CP CP CM CVJ CVJ

H H H cr> CP cr> (T> U> O*

vO uO vO

ro ro

I UJ <J0 o tr in H ro

UJ H O CO

fO CM O ts I I

UJ lu CP to CM CP CVJ e= e? cj

I«H o a> H

L O O C3

UJ T-t VD

I2 • »

ix -» ^r

13. oo on no ro ro ro

H * ' • U-' ' X o r*. J- co e» in in

a «c K 2 p W U\

X. M

- ■ ■ ■■ X a <t to

1*0 CVJ wt

I I I UUlu

N. 00 O

.♦ CM H D OO

I I I UJ UJ UJ oo es CM D (C O' vO flo in IftffK <OtOO

o I

ro CM CD a I I

UJ Ui r«- ^» K. OO1 <C CM CP in OWN

H WM»<

I I I Ui U. Ui eo e CP J- 0D i-l rIOOM vO HN (O S O

OOB

M M *H O O O

i i t UJ Ui Ui in cr> o

CP -* CM CM O IN. •JJP OO O

CM CM CM

CP CP CP CP CP CP

or> CP CP CP CP CP

UI U- U- CP CP CP CM CM CM H ■•-( H CP CP CP CP CP O*

ro N. CM I I t

CO P. vO o oa I I I

UJ UI Ui o ro H in «o vO rlvO 0D ro in ro r>» m CP • • •

-» ro «H l I

CM CVJ CM o o c + + ■+■ Ui UiUJ CP cP CP CM CVJ CM

•H »-t ^H CP CP CP CP CP CP

ro rs. CM I I I « N- \D C3 O O I I t

Ui UJ UJ in a in in ^ in CP N- «c OUJfO ^ in i* • ■ •

J- ro -^ I

CM CM o o <*. * UJ U- <r <r CM CM

i CM

+ u~ CP CM

CP CP CP CP CP CP

(JO vD vJ3 I

ro ro ro POO

III U- UI u. iD vO en P- N vc r- »D in •-• p- ro ro ^ vO

KD «JD VD

ro ro ro o oe

I I I UJ UJ U' -* CM j- j- -* ro in ^ ro ro CP in vO K cr<

vO O vJT" vOvO^O ^OvO\J3

ro ro o o l I U UJ o ec

ro CM in ■"* CP «-I

ro C5 I

li- es a

r>- CM

r^ CM CM C3 o o I I I

Ui UJ UJ vo r- r*- r>^ CP eo O CM CO r^ * in cv er «-•

CM CM CM C3

I UJ

CO OO in r- «H CM

O

I u. ro vw cr CP r^

cv rr j-

ro P-

I I UJ UJ ♦ J- * in

OO T4

OO S- P- vO

CM o I

U- o-

vC

~± IT »JD

ro rr< ro OOB

I I I Ui UJ UJ p- oc CP es in oo ro r in <or- N *-4 in CP>

UD 0P CP

ro ro ro o o I I

UJ U in ro »-t er VJD v£>

I UJ CD P~

CP

ro ro o IP I l I

U- UJ UJ o in CP N, CP TH

J- ro

CM I

P» I

CP I

ro r«- l I I

(TMI

CP

CP

ro ro o «p

i' • U- U-1 UJ

►* CO in ro CP -J-

ro a I

CP

CP

I CM I

P- CP I I

C2 I

UJ I

UJ I

U- in eo ro j- ^- lO ro ro ro oo on en ro rn r"

C3 I

U> P-

I UJ

I u; Cf ro -T vO

m ro ro OP on oo K5 PH fO

I UJ N- J-

I UJ

o I

U-' eo ro

rrs ro ro oo OP a1

ro ro ro

<rr p o I I I

UJ U. UJ r» ro ro j- J- VO ro ro rr< or eo eo ro m ro

o o I I

UJ UJ oo rr -I i£)

ro r> c BO or> ft)

I UJ

* ^ CP

r«» in J- Ifi « n

0s »f> ro CM eo -J" 4 M>H •-• ^ K

J- «=> in HO 00 SON

K »* ^H in ■*-• r«- et p- in CM„m oo

P- n- oo in j CM CO HJ>

*-■ —

OONN CM 3" tr>

i

p» »-• in m r«- eo

u\ o J- eo er «H

^ CO CM ^4 CM J-

CM P» •-•

ro CM •■< o o o l I I

UJ U. Ui p. ea CP HO1* a> ro CM p» o P- ro oo «E>

ro P* CM I i I

OO N. a a I l

UJ UJ UI o P. CM in oo J"

vO

I

vO fO in CP

ro H l i

CM CM CM O C5 O

+ ♦ ♦ UJ Uv UJ cr cr cr CM CM CM H H H CP CP CP CP CP CP

vD vO \£>

CM CM CM o e> o I I I

Ui U. UJ i-t H o

er *o CM cr o CM ro in vo

I u. vO op or. in a

C3 O

I I U-1 UJ •H CP ^O oo

J- -r-i J- CP

CM I

CP I

I I I UJ UJ UJ

J- J" OH ro ro p-- or oo ep ro m ro

eo J- eo MHO .*• r- c

•-< IT. o Kef p -H H CM

83

Page 93: Design for creep in pressure vessels

c*

Ul

UJ X

NNN C9 e o I I t

UJ UJ UJ O «D K. N. CM co ■# \0 ~4 tr> CM \D OlftN • ft

*-• CM *D I • I

to w w

UJ UJ Ul •-I .# O CO CO p

<J» o» o a* o> es w w •* t • •

K» CM CM o ea o I I I

UJ UJ UJ •■4 *-» CM

PWT4

<r •* to CM *-i «-i • • •

«-l CM 10 I •

W W fO O O o + ♦ * UJ UJ UJ in CO *4 » coo CJ* 0"» O cr> o> o ro to •* • t •

i in CM CM o e o I l I

UJ UJ UJ J" ^ N.

«o a> is. (COM

t • • CO CM \D

» I

es o o + * + UJ UJ UJ is. a> T* co <D o 0T» <X> O o^ (T» ea PJ to J- • • •

l*> CM CM

I I UJ UJ (V CO vO <T> 0 «-< CM tn

• • T4 CM

1 I to to

UJ UJ IS. CO CO CO

CT> CT> *? ro • •

I UJ CD vO N. CM CM •

vO I

to

LU

W CM CM to o e i I I

UJ UJ UJ J- is. to tn in <r>

HO-CM • •

CM vO I I

rr> to o o o ♦ 4. + UJ UJ UJ N. CO T>I CD CO O O^ O^ ?3 cr> o* e>

• • •

tn -* co

I

TO CM CM m CM CM

I t • UJ UJ UJ CM in <r> *. to N. co ^ is, *M J- ~i 0 to rj • t •

«4 CM <0 1 • I

W fO WJ

UJ UJ UJ IS. GO «H ceo CJ> CT» O &> a* eo n ro .* • • t

pi> * .*■«-• cr :OB\rt «4 IS. CM |P«ON N U\ J

CM m • • •

e ^ co •-I CM

in co H • i ■

CM J- in

tp a o

©* *P t* CM co ■» J- CM —I

f • • is. mi U\ ITKCO

I » I UJ UJ UJ m*. r*. CO *H O CM *H CO •H .* *H O tO CM • • •

«-» CM vO I I I

to to to ooo ♦ 4- + UJ UJ UJ is. «9 «4 CO «o €3 CJ» <T> €3

to to ^t • • •

I j 1.

1 i

1

!

» a o

*■» r> is. •» 0 m *-" e» co •> e CM

in •* is. co is. m CM m co

«-* cr *p is. CM eo in j^ CM CO«i4

»D »»» O CO J- 0 CM ^ tp •* Is. C3

• • •

CD O H

• • • ^ CO fvj •* CM J-

t • • MIS H ^t in is.

• C • Hmo N. 00 O

84

Page 94: Design for creep in pressure vessels

UJ, ooo

a. CD

X a.

x a. =3

W (\J rl o o o

I U-

CM fs»

i i UJ UJ cn r^ K- eo in -* ao o ff> «o • ■

• I CO N.

CM I

I UJ in o CM ro ,4

CM

UJ cr CM vi CT> cn

CM O I

U. N. TO CM CM

I t UJ UJ

ro <M ro tC

• •

CM CM *= O .+ 4. U- UJ or> rr> cv' CM

o> cn cn cn

t i CM E3 I

UJ I*-

I u. CM eo 4- ro in h- an

I LU w evj

t cn in cn •

CM l

■ ^

e I

! U> i f*.

: J- ■ ro

I UJ o> in cn

cn

!i u.

O

I? S cn

P O I

UJ ro

ro ro eo ao

iL

in «-i SO N- CM in ' t a

co »H CM «VI fVJ CVJ

ea P o o t

ro CM ** O CD O I t •

UJ UJ UJ in in in «-i o r«- *-• in CVJ <T> O N. fO 00 O • •

ro r- i i

ao K- O » I .

UJ UJ UJ >o cr o» \C tn CM in i»3 «3 ro »JD PO ■d- in cn ■ • •

.*■ *0 «H I I

CM CM CM o ep o *• * ■*•

UJ UJ U-; CX1 CT> <T> CM CM CM

CM

O »

cn or. cn cn : • t 10 vO i CM CM o o i» ' U~ UJ

•r • » «4 JH *H |>H

p I

ro o l

UJ UJ rr cn en >H CO CD in J-

i • •

CM N. I I

cn Cn •

vO

CM a I

UJ ro CP in 00 o •

r* 0 I

UJ CM in <y>

<T 9

<r i

o p e= I • I

U U,' UJ N. «P K. J- J- vu WWW er eo «c

0 o e= i I I

UJ UJ UJ n *-4 ^ (VJ O N «-t tn CM cnoK CO 8} o • t •

ty> N. CM • i i

oco 1 I I

UJ UJ UJ CM CT <T> J" J- CM -*■ tr> eo ro *f> ro j- in tr» • • •

•3" PO T* I I

CM CM CM ooo + + • UJ UJ UJ <T> <T> CT> CM CM <V r4 -r* T* <T> (T> CT> (T> <T> CT» • • •

kC vO «D

CM CM CM

I I UJ UJ

I u. o

<j> a. in ^

0 CM r* • • I •

CV CM j(V)

ro rr> rr> poo

1 l I U- UJ UJ iD ec ro or, w-{ in co Q (T

0> J- (J1 • • t

K av I i

CM I

o o I I

UJ u. i>» «o

^ ro r^ or er cr

P

Ui

to

Nl CM »-t OOO I I I

UJ UJ UJ GT> CT> J- (OtTN O ^ CM CP o (J> tr> ao o • • •

f"3 l>>- CM I I I

eo N- vD OOO I • I

UJ UJ UJ 0 w-t CT1

(^ in CM eo ro oo

■J- in <r> • • •

■jt rr> wt

• I CM CM CM OOO «f + ■♦• lb UJ UJ CT1 CT" CT1

CM CM CM »-l i-l TH 0> Cjv O1

o> <y> <T» • • •

»X) >X> >£)

CM CM CM Ooo

1 I I LU UJ UJ r- r» vO UJ u\ j- r» ro o> «r4 ro -* fr. j- in • , • t

CM CM CM

. I UJ fs.

co in

. • CM

a c I I

u; UJ

•H m C3 CT>

^- CT> ■ • •

• I

fn in f) fi « ! M p>! r i>)i»)R n i*1

er (E. o » I I

UJ UJ u N. oo tr> j- j- vD rr tn re or on eo

w CM -H ooo I l •

UJ UJ LU ONM

,.,oo CJ> n. O J- CM o> O f^ W«Oo • • •

fO l>» CM I I I

00 N- <D ooo I I I

UJ UJ UJ N- '-t <T« N. in CM t^> tO CO fO ^O M -*■ in cr» • • •

-* fO w4 I I

CM CM CM POO •♦> * + UJ UJ UJ <T> CT> CT1

CVJ CM CM o-l »-t W-4 <T» CT> <T> <T> a> o>

a • t UD \C) vD

CM CM CM OOO

1 I I Ui UJ LU -* ^t ro •J fO CM <j> in «H ■J" <D ec

• • • , CM CM CM |

K) !«•> fc ; o I

LL r» ac CD IT cr

a CM O- I I

o l

UJ cr

• o~> i

c »

LU

f or>

P o I I

U-' Lk. oo rr

a ao

^ -r-t rr\

N in j- in oo <H • a a

on CM r- fM J- in CM CM CM

cr KO ro CM CO •* J- CM «-< "H J" K

m 9 t t*. r-t u\ in N. ao CM CM CM

I

I*-. «r> K -* o m «-4 O 00 r* er CM

a • • in o J- BOH CM ro t»

K- ^ •rH in »HK oo K m CM in co • • .

J" "O CM •H CVJ ^ ro ir> fo,

.i... _..

I o I

UJ CM f» CM N.

I

o I

UJ

W CM O I

UJ vO J* O CO O J*

po ao o a • •

ro i>» CM I (

ao S. 0 o I I

UJ UJ co W (O K) K> CM J'WCO n "•o w J* in <y>

a • • Jj- W "H

I I CM CM CM OCO ♦ +. * UJ U- UJ cr <T o*> CM CM CM

cr <j> cr> ci> o> cr

a • • vO vO lO

CM CM CM O O CJ

1 I u, u. CM T-I

«p-t N- (T oo

a CM

ao

CM

I li- es o IT!

ro

oco I I I

UJ UJ la- in er oo in cr

a CM I

J- a

I •Jl—

in cr ■»-(

o-> . •

I

I o I

UJ UJ u. h» co rr> j- J- K; fr. OO CO

U3

on ro rt) ro

rtJTiO rw CM oo in .* CM

a • •

^IflS ro K. to

ro CM o o I l

UJ UJ IOKO

o I

UJ

en <r> oo -r ao o ro

a ro i

eo

eo CM rs.

a CM I

vO

ro

eo a

N. I

r>- ooo I I »

UJ UJ UJ o CKK \D <T> CV. r>* CM co

vO ro in cr>

• • a j- ro «-•

I l CM CM CM 0 o o

UJ UJ UJ cr <T> cr> CM CM CM r< »-l TH cr> cr> CP en en en

a • a vD \0 vO

CM CM CM OOO

1 I I UJ UJ UJ f»- rs. v£> cr> ou r^ CM eo J" y-t CM -J" O T-t CV.'

a • • ro ro ro

ro r^- ro ooo I l i

UJ UJ UJ en «* ,-! ee ,f CM (Pec in -* CM en -*■ en

CM I

en I

ooc

I I I U' UJ UJ N. eo ro -T -T \D ro ro ro eo eo eo 1*1 ro fi • • •

io r^ c cr J- as

J" N- p a • a

»-» m O

ro ro J-

l I

O O O o o o

ro CM o o I I

UJ UJ in ro en en v£> \D en o ro oo

a a ro N. I I

OO K eo o I •

UJ U. in vo CM vO

ro vo

a •4-

in

ro •

CM CM O o * +

UJ u. en en CM CM

** ro o o

• I UJ LU -*r^ ■»-• u^ rorw r^ CM ■= J*

a a CMro • t

iO oo «= o • t

UJ LU •"> * n- 4- eo eo ro en (T« ro • •

I CM CM O O * + LULU en en CM CM

CM —4 o O I I

UJ LU ro ro O v£) en CM o N. co o

a a CM I

<X> o I

UJ UJ o -*• in j- CM en n» ro in en • •

ro -H l I

CM CM O O 4. 4> Lv U- en en CM CM

en cr> en en en en en en en en en en

vO vD vO vO vO vO

CM CM O O I I

UJ Lu 4" 4-

4- c

CM ro • •

ro ro

ro o i

Ui in \o TH in en in en

CM I

I LU IS.

a

r»- I

y-t o •

LU no

CV CM o o I I

U- LU ro ^ in in <JD yC

n- r-

• • ro ro

ro tyj o o • I

LU LU in

>£ en 0 en CM un en cr- • •

en CM 1 •

CM CM O O • I

LU Lu CO ro

o

CM cn in

oo p

ro ro

C3 CO • I

LU LU •eo »». y~* in en CM ro *H 4- cn • •

I

f> ro ro f»- • • a

Ooo I I I

UJ U, UI lu ^••N. co \C JJ- j- **'■ ro ro ro °n oo or or

ro

P

v£>

•o a

° N- -* j- T-I en

«= CM u. m oc ^i

f= J" 0C oo CM •>- O ^ fM CM j- m

85

Page 95: Design for creep in pressure vessels

WNN [ 1 PO (VI C\J 1*5 f\J

f CVI to CVI CM PO CM CM po CM CM PO CM CM W CM CM W CM CM

<p o e o a o o o «3 o o co <s o o o o o o o © o o o O O o I I I 1 1 1 1 1 1 • 1 • 1 • 1 1 1 1 1 1 i 1 1 1 1 1 1

«' UJ UJ UJ UJ UJ u; UJ UJ UJ UJ Ul UJ UJ UJ UJ Ul UJ UJ Ul UJ UJ UJ UJ UJ UJ Ul UJ t— ^ton <» CM -*• N. O PO p^ e «\J ,* o* cs CM in i<- a> a> ^ on CO fO fv- ^ O UJ N. 3- CM PO in CM to in CVJ CM in CM CM J- CVJ O j- «-l \D j- J- o a r»> CM N. (P X U\ ~* «0 N- »-< co rw *■« CO N. wi CO P*. «-t CO K «-i eo vD »H «0 cr» CM <y> CO CM N- »-1 H^r4 *H .* «■« *-i .* ■»-« «-t .*• «H «-l J* «-» «H J- <r4 «-l ^r ^ »-• ■* »-• CM ^ »-4 ar O M CM OMN (9 M CM O to CM o to CM O PO CM es M CM o fr> CM O W CM

HNiO *4NvO vH t\J vO «-l CM vO •H CM tO *-« CM 03 «-l CM vO <-< CM vO ■H CM v/J) 1 1 1 1 1 1 1 • 1 1 1 1 1 1 1 I 1 1 1 • 1 1 1 1 1 1 •

*» r*> w> PO to PO to to to i*> PO PO PO PO PO PO ro po PO w ro M W PO to PO PO O CD o o o o a a a CS o o 000 C9 a C9 C3 o"o ODD QOO

• ♦ * ♦ * * * * + •*• * * * * * + + * + ♦ + 4- * * * * * ♦ «« UJ UJ UJ UJ UJ Ul Ul UJ UJ UJ UJ UJ UJ Ul UJ Ul Ul Ul Ul UJ UJ UJ UJ UJ UJ UJ UJ K» N. CO wA N. co -* N. CO «-t h. CO v4 is. to *-i N. CO «-l N. CO -4 N. CO *4 h. co «-• bJ co«oo CO CO O CO <0 o CO co O CO CO 03 CO CO o CO CO O CO CO O CO CO O

X (T o> e> cy <y< es a* a» O a> <T> CD a> o> o a> a> e> o> 0> O CT1 CT* 63 CT< 0" C3 tm <y> o» e> a* <T> o cr> cr> a 0*< *5 cs o* c* o cr <T> «=> cr> or» o <T> o*» e> O*1 <T> O z W W «* fo ro J- M K3 J- PQ /* •* WWJ; PO w jr to w J- fO PO ^ PO W -4-

er j-cceoi\j K er w-t CMCM j- in

86

Page 96: Design for creep in pressure vessels

2.

•*•

1 e e e

[

m eo a o e C9 e CD cs e CD a O CD O O o e O a CD O

lu t*> CM 4-4 PO CM «-4 fO CV.' *•* ro cvi w* CVJ CVJ ~-4 CAJ CM ■-• 4-1 ■M «4 4^ 4-1 es a C3 4-4 X o o o CD CD o CD a c CD CD O CD CD e» CD CD CD CD O o CD O CD CD CD O t— 1 • 1 t 1 1 1 1 1 • t 1 1 • I 1 1 t 1 1 1 1 1 * * • -> 3 LU UJ UJ LU LU Lu LU LU LU LU LU LU LU UJ LU UJ Lu Lu LU LU LU LU Lu LU LU Lu U

CM in CP «o ro tn in «-• *o cr *4 in •*■* ro ro cr V0 cr in ro CM CM cr eo N- ro o *«4)

X a X

i0 no in cr J- o <y> ■* s a «-» CD CM a> j- Cu r> V0 4H —i -J- 4-1 UN ro «A> in cr es 10 N. %£} f" ^ ■* co j- ro in CVJ j- in *•* cr cr CD cr sD J- in ic «0 es CM CM CO GO \0 h- «-• vD »-t vO CVJ vD j- cr ro co *-* N. cr cr CM «0 ro r>~ 4-1 o CD CM in ro h- o CO h>- CD in CO ^4 in «-! CM in in CO CM <0 ro j- J- CM CM cr CM O cr CM

WKN CSJ N. CM cvj r* CJ oo <r CVJ rvi cr wi CM V0 «H ro ««• 4-« TO cr J1 J" eo 4-1 t 1 1 1 » 1 i 1 1 i i i i l 1 i 1 1 1 1 • K »0 CO N. «o CO r«- <x> 0O K V0 N. I*- V0 N. eo \D iO v0 in in in in in in .*■ o es o CD CD C3 CD CD CD CD o CD CD CD CD CD IS a a cs es CD CD CD CD CD CD

1 i 1 1 1 1 1 1 1 • 1 1 1 • 1 1 1 I 1 1 I t 1 • I i l LU UJ UJ LU LU LU LU UJ UJ LU UJ UJ LU LU LU LU LU LU LU LU LU LU Lu LU LU LU Lu4

«-4 m 4-t 4-1 CM «r \C VJO ^ oo CVJ K ro o ro ro CM ro \0 CM *0 r^ CD CO i0 CM in

z a M v0 N- 4-t CT> N- M C2 N. CD -» CD cvj in J- ro 4-1 10 V0 i0 in in OO in r*. O UA

«D in J- 4-1 in in «-l ro -H CO CD N, in ao ro CO J" o CM •«H J- cv 4-( 4-1 4-t -* CM 4-4 10 ro cr j- »H <T> C3 J^ 00 CVJ «f in ro CD cr -r »-t cr 10 V0 10 ro TH 4-1 ro CM

0 ro in <T> K .* O^ vC ro cr o V0 CVJ vO «-i in m-t -* *-• c? K »4 ro 4-» V0 J" V0 4-1

j- ro 4-4 .*• ro «-• v£> fO ^| -J- ■S CM CM cr CM in ro ^-i ro fx» -w* 4-1 4-t 4-1 4-1 CO CM i • i 1 i I 1 1 l I i i • 1 • 1 1

CM N CM CVJ CM tNJ nj CVJ CVJ CVJ rvi cvj CM CM rvj C\J CM CM CM CM CM CM CM CM CM CM CM i a es o e=> o o o CD »C e= en CD O CD es CD es CD CD CD O CD CD er CD C3 O

+ •> + ■+• *■ *v • * + + ■f •+ •4- * + + + *■ -> 4> •*- + * •> * •V * LU LU LU LU LU LU U- LU LU Lu Lu LU LU U- UJ LU Lu LU Lu Lu LU LU Lu LU Lu LU LU CT> (T <x> cr cr CT^ a« cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr

1-4 x

CM CM CM CM CM csj CVJ CVJ CVJ CVJ CVJ CVJ CM CM CM CVJ CM CM CM CVI CM CM cv CM CM CM CM

a. a% o> cr (T> CT <r> cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr cr z cr cr cr cr cr a> a> cr cr cr cr cr cr cr a» cr cr cr cr cr cr cr cr cr cr cr cr

%o iO 10 tC t0 vD a} vT> <J9 vO V0 vO 10 V0 V0 V0 vO i0 10 i0 i0 LO V0 V0 (0 iO «0

fvl CM fvi CM cv CVJ r\i CVJ f\j PVJ CVJ CVJ CM CM nj CVJ CM CM CM CM CM CM CM CM CM CM CM C3 O o CD <=> c= CD C CD CD CD a CD CD o CD CO CD O CD CD CS es CD CD es c:

1 1 1 1 i 1 1 1 1 t I t 1 1 1 t l » 1 1 1 » f 1 1 1 1 LU LU UJ Lu- Lu LU Lu a. Lu LU Lu Lu Lu u. LU LU U.' Lu Lu Lu LU Lu Lu LU Lu LU LU r^ N iO -»■ J- ro »i es ep to- N- UD j- ro -«-» cr 10 «* CM in o ao J- -f 4-1 .* eo

»-« CVj «H o D O" CD cu N- U) rn •*• ro ro CM ^-^ CJ C' ou CO r- ao N- CD J- J" in cv. X CO J- o es IT> w* TH N. W n cr in m v< r«- t~ CM or 00 J- CD CD r- ro ro cr jf a CP PO J- j in N- S- 00 CD CD »-t ro ro in V0 <X> <o cr cr «- ro r- j- V0 i0 s. cr =» N- «c cr D"* e» >-« TH CM .d- 4 in V0 iO r»- 0O CC cr CD CD CM ro ro ^• in in 10 h-

rO fo ro P •* -* J1 ^ ^ -r ^> j- J- J- J- ^t j- in in in in m in in in in in

fO fo ro fo in 1

m i ro ro CVJ ro ro CM fo ro r^ ro ro ro CM ro CM CV. 4-< 4-» •H 4-1 CM o to o CP e=> a ts o es a a «=> » CD CD CD CJ o CD CD CD c. CD 6= es CD CD

• J» 1 1 l 1 I 1 1 1 I 1 1 1 • f i I 1 1 1 1 1 1 l 1 1 Lu Lu LU LU LU LU U-i Lu LU U Lu LU LU LU U, LU LU LU LU LU LU Lu LU LU Lu LU U- w <T 4-t vO >JD in cr a- ^D eC IT CM N. ix-i «0 r^ op eo in 4-1 4-1 OP CM 4-t <0 cr CM cr tn -* ►- CV in f- J- i-t cr CD »-l r*. cr J- ro •-< N • O in r\j ro V0 cr -* in cr 4-4 CM 4-t C3 ao N vO ro r^ p ec cr CD in »-t ao r- V0 -* CO SO cr CM in in 10 -*

o in fv (T> t*5 r. ir> cr ro ro ^-t cr- ro J- in O ! in vO CO •0 4-1 in in 4- cr CM ro eo <F |* GC (T J- CT^ cr 03 CS j- «H CD K «-" V0 ro er 10 CM CD CD ro in cr cr vo J-

CM K. a> <\i r^ <r> CVJ rs- »H re a ^H tf. \£> J- CM J in «-t CM U% j- w-i CM CM ro to I • I 1 1 l i l 1 1 I 1 t 1 1 1 1 • 1 i i 1 1

CD O CD P «= C3 : a P= C5 CD CD CD CD O ep CP r- cs CD C? CD e CP f= e= o •= • 11 1 i I 1 » 1 1 I 1 1 1 1 i : 1 1 1 1 1 1 I 1 I I 1 1

LU LU U- Lu LU u U- li_ tl.' LU u U- LU Lu UJ Lu' LU LU LU LU LU Lu' Lu UJ LU LU LU fw fO ro h «o m N eo CVJ v0 CO \D C" N- o J- cr CM iC CD OO CM V0 h- 4-t CM ^ J" <T 10 J- -T <X) JT j- u; J" -T \D in u> eo <JO V0 10 J- P- CM «-• 4-4 es O' J" CM

^ JO *T) r" ro fr> r«o ro ro ro ro ro ro ro rr rr- r ro ro ro CM 4-1 4-t cr cr eo in vo 00 «D OP co ec cr- ; CO CO 0P 00 a' 0P or ec ou ao on eo eo OP eo a- r- h- r«- OL- «r

i

ro fO fi rr rr ro wt |r. fo ro l»; rr r; r» ro ro ro ro t~. to ro r»: rr m .T

f W o K- K J- «-< »-4 cr V0 i0 ro CD es K .* -* 4-J <r cr »r K »<- CO K. CM «D J- J- o in in ^H h r- CM eo CO ^ O CD in «H 4-f r^ CM CM eo -* * CD in. J" M w* <-l o <o ac N. in in u- CM CM rl O e? CO N. r*- in ^ j- CV. 4-t 4-1 cs eo ** ** h- N- t? CM CVJ in co CO r-t J- j- r- c c= tv IT. in 00 4-< •H J- »N. r»- CD CM

x •v. ?-• m U> cs .* ^ oo pvj *VJ fw w-l »^ in fp »P J- CO CO CM K. r*. •M in in CD ** in K CD co ° rt *H CVJ J- J- ir< K. r^ co «D e= w-t CM CM it in in K eo ao CS 4-i

. ,* *» J- ^ in in . in in in in in IT. m m vo «0 V0 \D U0 10 «0 \0 V0 <S) iDK K

. .1 . . i— — — 1 . .. J -i • L— . ^ _ ., i.._ .i -. _. 1 .

87

Page 97: Design for creep in pressure vessels

>

A,

. • r: ■

;3 UJ X

-j I

m «M «M O O «9 • I I

UJ UJ UJ «o in K. «H O K. -4- \0 CM

OWN

o o o I I I

UJ UJ UJ -* fO O* <T> o o O J" CM ro «-* CT> t£ ro «-•

.»• CVJ CM opo I I f

Uj UI UJ in CM en «D in CJ .* o ro

in ro ro

f*> CM CM O O O I I I

UJ UJ UI ro ro \o (T> CO i-t (OfOlO *D -* r»

*0 CM CM OPO I I I

UJ UJ UJ PO <T» « \D v/j) n win J-

WWW ooo I I I

Ui UJ UJ vO «-) ee «o «o o fv 0* CM ro o r»-

•-«•«• CM OOO I I I

UJ UI UJ in .* K. N. CO CM CO CP ro W WO O rO K.

o o o P a CM o I 14 + 44.

UJ UJ UJ UI UJ UI U\ «o CM €3 vD cr» CO CX> (P CM h. IO in J" v-4 O \D CO NKtOoNW CO OVCM CM lO K.

wtCVJ vfl 1 1 1 www

CO CM vO 1 1 1 www

N. CM vO 1 • 1

W M f)

CM CM vO 1 1 1

ro PO ro

r>» CM m i i i

ro ro ro

«D CM -*

ro ro ro

<r4 *4 rO

WWW

en CM »»i «-• CM ro 1 • • 1 1

ro KO ro ro ro ro 1 e e fa

ui ui UJ K. CO *H CO CO o

ooo 4- + * Ui Ui Ui K. as -* OOOO

O O O 4 4- 4 LU UJ UI is e o to co o

ooo + 4> * UJ Ui UJ r- co ro co «o o

ooo ♦ 4 4- UJ Ui UI O vDifl CX> CP »-l

o ca o 4- * 4> Ui UJ UI (VJtOO ooo

ooo 4*4- UJ UJ UJ N. *-4 CO co CM en

O O O o o o 4 4*4-44 UJ UI UJ UI UJ LU in vo en in in ua co ^ o <J> in .»

UJ X ►»■ z

i •

CT» en o CJ> <J» O w w -r

<J> 0> o «T> CT> «p W CO -*

<J> CT O (P CP O

(T <7» C? CT> <y> o ro n .*•

CP CP O CT> O* O WW4

ooo ooo ,* Jt -*■

CP CP r*. CT> <T> CP ro ro po

N. \D UJ in wt en en en en en o «H ro ro ro ro rf •>■

ooo

ff>«p'r

CM CO J" J- CM •* *H «* r-

.» o

N- S?

m co CM

ooo

K .* «-» in *~i r» c N in CM in co

ooo

«•* CT \D K CM co m j- CM cu ri Jt

O O o

iflWo co -* o MrtD j- r~ «z

OK.* Olft H eoK P CM U\

I

in

en CM

in ^ CO »-•

O O O Q O O

m «p K. r es K CM CO J- J- o m j- CM *-i *-• e? co

K. w* in in N> co .*■ i» JT

U> O .*• eood j- in in i

.* «D CM

in m in i

NKrl J- ir> N. m m m

.i

«-i in o P ^- CO «= •-» CM 10 vO (D

I

CO CM ^ CM ^ in vO %D %C

I

IAN BCD B rt <Ot0iOiOr*S

88

Page 98: Design for creep in pressure vessels

(y

■ Ul s e a o e e o a a

«4 *S •H «-t CM CM CM CM «H ! »- O CD CD CD D CD o o o ,3 ♦ 4 ■4. 4- 4 4 + * +•

Ul UJ Ul U UJ UJ Ul Ul Ul o J- cr CM <T> (T> CO vO CT«

»-• ro in «P U> OD UJ o OD h«- X CM >H O ao .T «H ro ^-i in

1 ro -*■ CM ro aO f*5 m f*5 -^t CM CM a» cr «3 CM CM co in • • • • • • • • •

«~i in CM • ft

CM —1 CM CM CM -»

.* J- J- fO w m w o o o o CD O C5 o o 1 1 1 1 • 1 1 1 t

UJ Ul UJ Ul UJ u UJ Ul UJ •^ ro CM in 0> CM -t 1-5 W

IM CS 1*5 10 1*5 in CD CT^ cr> o> X CO in CD *-t CM C3 «P V0 C a © tO tO J- •H CO go CO o CD •H CM CM CM •-• 1*5 1*5 l*» N. • • • • • • • • •

M ro CM CM U> CVi CM in N. I i 1 1

CM CM CM CM CM CM CM CM CM o a O CS IP O O ep es «+> ■■* 4- 4. + + * i" * Ul UJ Ul U> UJ Ui U- LU UJ cr cr CT CT> <r> <r cr a* cr>

M' CM CM CM rv CM CM CM CM CV x; •H >H ■H «H •H ,-t -H «H ^

*' ,<r cr cr a> cr cr 0^ cr cr> <r o> <T» CT (f o> <T> <r> o> • •« * * • t • • •

l t0 tO tO <x> >0 «JD V0 v0 10

CM |M CM CM CM CM CM CM CM 1 o o o a o o CS o es i 1 II 1 1 1 1 1 1 1

U. Ul U! Ui u UJ UJ U- UJ t0 CO CM K

r>» in •H r««. in r> rv

1-4 x in in r» -H : »»i v0 (T>

■d- in CM CM KD O o •H J" 0> a *-l •H -H rr 1*5 ec «-< N. CT CD CD ■H CM CM W 05 • . • • • • • • • •

in in 10 t0 \D v0 , <0 10 10

CM £9 eo CD O C3 j ea er in e? p o P ea c.' C3 C3 O

» F ♦ 4- ■*■ * •*• * 4> Ul Ul u u U UJ i UJ UJ Ul e= h- ,* CM CO -H ' in p> J- * r* cr ■ T vO vO rl «f «-• fs. iH cr tn 10 •»-! or a> cr>

a O CM CM ro CT> C a> CD CT1

*Sft at «e> TH CO CO r^ in • - i* • • ■ • • • CM (H 1*5 ro r- N- ' N. CM fO

» ; I 1 1

CP p *-t JH r* »-i j T-I cv K O F O C3 ; C a o

I II 1 l i i ; 1 1 1 UJ U' UJ UJ UJ UJ LL Ul U' K t» M mp* <T N. fw

to in J- CM j- in : -T <H OD cr> o-> cr eo oo ■»-l ^H

X O i» er «n f^ CO CO «M J- JT i» -x ;» J CM ! CM J- CM

j

• i • • • • • • «H «H <H >H >H N C^

1 K.L «H JH cr vo <0 in «H r*. f>~ CM CO CO ■* (H CO f>- in m J- CM CM ■H P CM in OD <o •^ ^ 4NP • !• • ■ • • ' • « •

•4" (O CM f- N <H *w in cs X , «-< «M ■* I* in N K oo e=

Kf- r» K KK ; SN «5

a o o CD CD a a c= O e eo CD ea CD CD

•H CM CM CM CM CM CM CM «-4 «4 «-i •H m* CM CM o a O O C3 CD CD CD CD CD CD CD CD O O

+ + ■♦• 4> 4> 4> + 4- 4> 4 4 4 4 4. 4

UJ Ul Ul Ui UJ UJ UJ Ul Ul u Ul Ul Ul UJ U >H *-l 10 N. cr in K. eo cr J- ▼-t r*. oo «e s a) cr> a *-l V0 «-t <-l in CD in cr •H vX) CD CD

<r CM CM CM in in m in -* J- U5 ro ro eo eo J- o> \0 10 -a- cr cr •»4 r^ N. «-» J- j- -* cr in c=> s. rw eo in in CM vO V0 r*. ^-i •H CD V0

a «-4 «H «H •H «H >H «H OO ao 10 f> h- «H »-4 1 1 1 1 1 1 1 1 • • 1 III

fO 1*5 ro ro ro ro ro ro ro ro CO ro ro ro ro O o c CP o c=> o CD CD CP CD CD CD o o

1 1 1 l 1 « 1 I 1 1 1 1 1 1 1 Ul Ui Ul Ul Ul UJ Ul Ul Ul U. Ui Ul UJ Ui U eo o •-»- in \0 CO r- oo r*» s CM CD r s N in m -* ro ro in to ao CO <r ao •H T*O«

«H in •-I •H in r» rv CM •H «-4 e> CO OO CD 10 a ^4 tn ro CO ao ao J- f«- r- ro CM CM -* CM r»- u\ ao ao cr ■H •H in eo es N> -»■ .* CD .* • • • • • • • • • • • • • • •

N. ft. 10 v0 in in in •* ••*■

^ ro ro ro 1*5 CM

CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM O O e CO c ea C O CD CD e= C= CD CD CD

+ + •¥ ■*■ + <♦■ + 4> 4 4 4 4 * .4 4 UJ UJ Ui UJ Ul UJ U Ul Ul UJ UJ Ui U UJ UJ cr -* in v0 r^> c? o J- tO 10 er in in CD ro CM r- in in ro CM CM cr CM CM ru r-' co r^ ro 1 •r* C3 ro ro CO CM CM CD cr <r »-t CD es cr ■H 0> TH ro 1*5 «0 CM CM O o eo in ro ro j- H 0*> C3 CD CD CD ■H T-t CM ro ro -*■ t0 vO <0 •*-!

V0 t«- K r> K r«. N- r- r-. N. N. N r-N oo

, CM CM CM CM CM CM CM r* »-i *-< »H —t •H ^H w* O O o CD CD CD CD CD CD CD CD CD ceo

1 1 1 t 1 1 1 1 t • 1 1 1 1 1 UJ U' Ul Ul u< Ul Ul U Ul UJ u u. u, UJ U eo ao CM ao C3 r>- o ao vl •H in CM CM CM ro co CM CM CM C3 r>- eo (^ in Ui CM ro K, r< S ,* «-< 10 <0 J- w-l «H cr CM CV tO cr cr CD «0 «H <T> »i ■H IO CD CD tO CD CD -4- cr cr vo CM

; vo cr 10 V0 -a- in in CD CM CM r« j- ^ 10 CO ^ • • • • • • • • • • • • » • • i vDvCf» N- eo cr cr , • »H «H CD O cr e CD CD c: er en E> CD C?.«H i C P CD CD f& P CD CD CP P CD CD er eo o ! •*■ 4- *■ * '* 4- 4- + 4 4 4 4 4 4 4

Ui Ul Ul u Ul u U u> u; UJ UJ UJ U Ul U1

i cr cr 10 ro no cr ro CM CM J- CM cr CM U> f^- J- f5 cr •ri cr ro or .* cv wri ec, CM in cr r*- (0 LTl IT. N. j- cr ao ro or ec r-~ cr (Tn J- CT1 «H j- ^t j- cr cr *-i *-! »H in r- N- c: J UN BO i0 vO •H cr CT' K- o CD in. CD ea j*: ro

CM f»5 -H 1 1

u> 1

in l

CM in u^ tO u\ in »-i i

ro eo «H 1 1 1

CM CM »H »-i w-l T-l *H «H ■H ■w-l TH r* «-l «H >H O C= CD O CS fP cr. CD e= CD a C-i e= op c 2T 1 1 1 I 1 1 1 • 1 1 1 1 1 1 1

U' UJ U! U' Ul UJ U U' u U UJ Ul LU UJ U' 1- ■* «H cr cr 1*5 »-i ao CD ao ■-O CD »-4 eD ro oo CK O'1 ro eu eo C\J in -X CD K. r>- CM a. eo oo eo «« ^ J- <0 i0 r in in cr rtj CM in CD CD h- tO U ro «= c c; f er e? nj n-t *-l to cr o- oo ^r

CM rr> t=> CD r° t0 to ao CD er *-i CM CM r j- \-i ~J C\ 40 «-» ■H ■H T-I »H «H CM CM CM CM CM CM CM W 1 1 t 1 1 I • 1 1 1 • 1 • 1 t T er- f> r^ K P- r~ ro r^. er er r»i N N C ^ in o ro t0 «0 C3 ro ro tO CD CD K" tO tO cr ro

& r»> to tO CD r. ro to CD O f; to to o ro 2 cp ro \D V0 CD ro tn tO C CD ro tO tO cr ro

er ro V0 V0 CS ro ro 10 CD CD ro t0 to o ro X cr> cr cr cr CD CD e= CD wi w-i »H •H

t

H N (\J

89

Page 99: Design for creep in pressure vessels

t

\

* S

Ifk <H N. * r«- u\ Nino • • •

C\J J-

I

*-f (T tf» ^ ev «o in j- <\j «0 wl .4 • • •

CM N ,H «»■ m N-

■ \ eoo OWd «4 »4 «4 1 f • «9 e> o O O O OBO ♦ ♦ ♦ + * + 4- ■*■ *•

< UJ UJ UJ UJ UJ UJ UJ UJ UJ K- ts \D \D \D *o to fO (T» .*■ UJ <T> ■* CVJ tn \0 o C\J in N- X tONQ us ■* in <T> in .* *- 0> N- vO ■*4 U\ O* <J\ <X> tn X. (OIAS OO <\i 10 tfi .# W

• • • • • • • • • TO <H CO • 1

tO tO tO

CO W 10 t0 CO «•<

W f> W fO CVJ ▼* BOO O O «3 o o o * ♦ * * * ♦ + + ♦

«t UJ UJ UJ UJ UJ UJ UJ UJ fr_ «\» o< <\J K. M »-l (OS «J ui p> o o OO ^ OJ •H -» O x o» w *-» O CM CO CO «-t «o ym <rimo> o"» oo »-( w co co Z ,* •* .* «* •* w M -*■ vO • • • • • • • • •

*»4 «H «-» v4 «-l *-( •H • <H

I

eo ^

• » *■* tn K. CO

e-

IP

4> * * UJ UJ UJ CO CO cO ooogt j- J- to lOOvt w> .* tn t • •

«■« to in t i

cs o o ♦ ♦ ♦ UJ UJ UJ in .* to COP vO ■H ro <r>

N. *0'C\J t t •

»-• W K

+ + + UJ UJ UJ 0 W CVJ W CVJ CO 4-vO a ■«-• W tO tn «o «-i • • •

in in in 1 i • www o o o + * * UJ UJ UJ 00 s. in vO *o «-i a> oo <JJ> J- CVJ C9 • •

1 I

t\J

I

UJ UJ UJ CP M <P eo f) KO 0 ^ h. W t\j a r400 • • •

v\ ** to I I I

to to n O O C9 ♦ + *.

! L' U.'

*-i cs a> o> J- .M

MlftK • • •

•r* +4 w4 1 I I

Ul UJ UJ win co co \0 «H K. N. \c oio> e» jt in • ■ •

M t\J c\J I I I www oeo ■♦■ + -f UJ Ul UJ w4 tO N> a« s. cy

O* O* h^ r«» a» ^H • • •

^H "-• <M • • I

* ■♦■ ♦ UJ UJ UJ Jt ** J» w(\Jtn to in ao

in in j- • • •

NWlft I I I

to t* to Boo

* * "^ Ul UJ UJ

<r> a> tn ■S tO ~4 N. -* <J» •H W J- • • c

CVJ PJ <\l II I

f\J

I

< • • • U o o o o o o oao

iir.

U.I T C K> ^ to C=J r*5 io

o tn %D

« cr PO iD

K r- t~ fC K. cr vO c= tr ro vO C3 lO o n K) «o C3 a> C5 1*5 IT «r cs • • • • • •

-4

to . IE

vO o

POO

er< K. (v •=> K> «D

• • i • PKlO

POO

;

K c< t*

»o o to

t • •

52- -i'' ^^M ^•^^ ^t^ri HHH r-4

90

i

Page 100: Design for creep in pressure vessels

'X a. x

x a CD

I a.

■a o • a C9 CO O O C9 CD a o

«M CM CVJ CM CVJ CVJ CVJ CVJ CVJ CVJ CVJ CVJ CP o to o e o coo CD CO CO * 4. ♦ * * +• ■4 * 4. * 4- 4. lu UJ UJ u- U. UJ UJ U. UJ UJ UJ UJ to in j- CD v0 a N- ^ «B «~t CVJ vO o o ro *? O CVJ r4 HO a» J- j- e to T-l ^ T* CVJ CVJ «=> CVJ CVJ J- N. <r vt in s vO cr j" CVJ m in J- <o \0 tO N. rA <r to CP N. vO tO -*• tO • t .• • "X • • • • • • t

UH CVJ W ro j. to tO tO vO to in cvj 1 1 I i 1 1 1 • 1 i i i

ro ro in irwn M tO CVJ CVJ CVJ CVJ e> o o a o o o a o CD o o 1 1 1 1 1 1 I 1 l 1 1 1

UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ !* cr to <-• KO S (OiCN in J- .* CT tO m O* tO T4 CJ> tO to to to cr» to r- cr T-l co «o h- tO w to CVJ CVJ CM cr OO IV CVJ OO OSS S vO tO cr -♦ to ro o in in in es e- ro in • • • • * • • • • • • •

IN w* T-l T-I CVJ cr J- fw »-( ■»H »-l «H

» 1 I 1 I 1 1 1 1 1 fcj CM CM ; CVJ CVJ CVJ cvj CVJ ro ro ro i>o

r ° ° i .CD to to coo O CO o * * 4. ! * * 4- 4. 4- + 4r 4- 4. UJ UJ UJ UJ UJ UJ UiUiUi UJ UJ UJ ro r*» er a* to cr> o> »-t ,»■ -*• K) CD f!iC«0 tO © TJ. ^H s cr <r> cy> s w-t m o CO TH N- NlftN K vOiH T-I T-I tfl tO C* -* ^j- vO ro nsn H J- h- t*- w4 in in cr> o «D O ^-t

1 • • • • • » • • • • • • bo oo co. oo <r o^ o*> cr> »4 •»-! »H T-t

•» e o o o coo CD CD CD

1 1 1 1 i 1 1 1 1 1 1 1 UJ UJ K> CVJ

UJ UJ UJ UJ UJ lb lu U. U. UJ tO ; to a> cs »-< -* m tO cv; «c

r^ -* *"• 1 T-l a Si tO «-4 S S TH O tO vO in in N- ■* J- OO tO to C7> in CM c tO tO CVJ N- N. 0> oo CO CM *H BC CT> *-i «-i ro ^-

^ U^ tO iDSN

JJ • • • • • • • • • • CVJ ! CV) CVJ CVi CVJ CVJ f«J fu CVJ CM

H *-• '*"' 1 T-l w4 «H TH O ■•H *-» »H T-l P O o 1 O o o O CD O ooo 4 4- * i * 4- * 4- 4- 4. 4- 4- 4- jj U1 UJ UJ UJ UJ UJ U. UJ U> UJ UJ x> co VD ! oc> •rJ AT to ■^ to J" tO OO S- tO in in in o w1 to cr «r «-i CM CT CVJ «o : OO cv in in oo to tO CT> tO t* K T-I i «-i f- ** rtWlO OO CT> CM fo N- er C3 or in in CVJ CD co r^ j- !• • • I • • i • • ! • •_ • • • H *"* CV. ! CM w4 «H rtlAH ^ WiD

U <H "H | • 1 1 1

*-t »H CVJ CM CM »-( CO O 0 i £3 «= F= c o e Poc

II ' I i 1 1 1 1 I 1 .' » ' UJ u UJ ! UJ U UJ Ui »J-' UJ UJ U- U cr> to in , r- a> CVJ in to to vO in CM

*» ■» tO «JD tv m mu\H vor IT to CO tO ! ro to a. tO to cr> cr co cr cr IP s l N. ou m in u <r (T<Trl

r * IT) . i»- ^-> oo «t f tO tO C CM

Ki CVJ CVJ ' CV CVJ «-■ «r< «-< tO lO T< r(

ro N- I I i t 1 1 1 1

co 1 CD K N- S C3 f ro s c f>0 tO K> tO

to C to tO tOCffl W vDo «= , €3 fO tC vOPK, ro tt> o

f> »o c to ro UJ to co ro ro tt cr :». • • 1 • • • • • • • • • fo tO CD . e> ro to to co ro to tO o CVJ cvj to i f to to . «44 j- J- in

f4**"^ i w4 •-4 •-< ^-1

. .1 Hrlf4

C3 ca e O O a a CO C9 CO o a

CM CVJ CVJ CVJ CVJ CM CM T4 T4 T-l T4 T-I CO CO o CO (O CD O CO CO CJ to a 4i 4> * 4> 4- 4> 4/ * 4- 4> 4» 4> UJ UJ UI UJ UJ UJ UJ UJ UJ UJ UJ UJ K. to in CO «4 oo tO CVJ in in vO in tn |w to tO vO T< CO aD CO T-l in ro IS. a in S OO ro tO N. cr tO T-l T-l vO tO «-) T-l vO <S OO CM vO in to a* tO s ^ -» <T ro to in «-• T-l CM s • • • • • • • • • • • •'

CVJ tO J" J- CM *4 T4 ro T4 T4 CM T4

1 I 1 1 1 CM CM ro fo ro cr cr cr cr -*■ cr cr CD co a a co o CD CD O CO to CO

1 1 I 1 l 1 1 1 1 1 1 » UJ UI UJ UJ UJ UJ UJ UJ UJ UJ UI UJ ro O CM o oo CO tO to cr CD CVJ T4

<T> tO N. -3- in OO CT« S <H OO ro ro CM rv ^ ro *H CO cr> •H S cr ro to tO «-i K. r*. in ao cr co OO o* CM tO

CM cK in ct r** ro ro tO vO cr to tO ■ • • • • • • • • • • • • *-» «H OO «o ro cr ' *>os N. in CM

• 1 1 ( l i • ro ro ro ro ro ro ro ro r<« ro r^ ro a a co O CD CD CD O "C' o to o 4> * 4> 4- 4- 4- * 4- 4. 4- 4> *

» UJ UJ UJ ; Ui UJ UI UJ U, UJ UJ UJ UJ *-4 in r«- in -*■ cr CM cr o to in cr r- CT> CT> cr ro T^ T-l cr» «o CO S fv «-< ro ro ro -* CO CD T^ in in CO CO ■»-• o> ro ro J- cr cr ro CM CVJ CM TH

»-t «H CM , CM CM CM CM CM CM CM CM CM

CD O CO co a CD CO co co CO to to » I I 1 t 1 1 1 ! 1 1 1

Ui UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U- o OO OO tO S K- in to ^t J- ro r>. «-t *-t ro K? m «H T-l in T-* T- T-l U in CO CM CM OO cr cr cr to tO c; m w-t CM "> in ro CD CD tO CM CM CJ> if>

r> f- tO to in ^t cr CM T4 T-l CT> OO ' • • • • • ■ • • • • • • • ^ CM C\J CM CM PJ CM CM CM CM T-l «-l

|H *-* to «3 TH b CO CO CO to CVJ »H CD O CO co co CO CD «P o CD a co *• * 4- 4> 4. 4> 4> 4- 4- 4- 1 1 UJ UJ UJ UJ U- u, UJ UJ U- u UJ u s ro ec CM CO CD cr e= in U^ h. to r-t K OO 00 «0 OO C5 cr —I f^ 00 CM tO .* ■* J" TH T< T-l fv CVJ CM S (T* CM N. h-i CV. tO cr or.- CM uv U> to CO jf in oo OO CD T-l T-l r J" * a to

ro to T-i in in T4 uu oo '■^t T-l T-l CM m i l I t 1 1 1 1

—{ •-i «-< *-i *J »H T-l T-l T-l TH •H TH o c= O CO CD CO co CO to «= to C> CD

Z 1 1 1 • 1 I 1 1 I 1 1 1 U! UJ U, UJ U U u. u.' u. UJ UJ UJ

1- C5 J- ^ oo h- ■* aO lO fJ CO in r*. ae cx> tr> ro cr CD CD tL» ro oo oo cr in <r J- ro t2 CD CJ> to in r- CD CO OO CD Q. «H in to to O' in in r- cr es ro CM

CV. a* cr> cr o' ro tr ro to ro CM CM

_J •-! r»* in IT tO h- N- N S r- N- S UJ x r- O CD O CO c CD er co co o to CO CO CO o CD er to en co to CD er cr

CO C CD = CO CD CD CO CO (=3 o o Z t= cf op ec CM tO tO c -» cr ao CM t-t • • • • • • • • • • • • <X CO wH CM CM .* in in r- oo CO 0^ T-l r irk in in in in in in in in in in >o

»H «-l »4 »4 T-l »4 T* T-l T-l T-l ▼4 T4

91

Page 101: Design for creep in pressure vessels

■7

x;

o o o ♦ ♦ ♦ UJ UJ UJ NW« <T» CT> -H «o «o in \DO(M

X Mj* -4 _t «-»

CM CM CM OOO * + + Ul UJ UJ CM a* CM

in in CM J-

CM CM CM ooo 4> UJ

oo «o

00 oo

f*. N.

UJ UJ <r ro CM ro

to CM 00 N.

CM CM <H ooo ♦ * + UJ UJ UJ in ^ CM N5 Jf \D

CM 10 <0 ** CM in

UJ

in «o *4 » i i

to ro ro o o^o * * *- UJ UJ UJ

ro ro ^ «-«in o <p o N- J>vDo) • • •

(CM «M CM

I I I ro fO ro O O O * + ♦ UJ UJ UJ

*-t «-t o o oo ro N. vD «o

• • • CM CM CM I I I

I I I to ro ro

UJ UJ UJ o» ifi in o N- oo K) «± CM oo o ro u\ -f *-• • • •

CM CM CM I I f

OOO

ro«oo CM CM ro

o fO *0 ro

v0 o ro

»-• «-i ro l l l www ooo •♦■ + ♦ UJ UJ UJ 0> CM N» 0O fC o> CM w* O ro «o «o <•■< r* ro

a • • CM m* «4 I I I

! 1

i I

j i

fO K. O ;

fO «C C

o r<- N- e w ifi en ic cr ro tL

K «=» r»* »o e t« v0 P K vo «= ro

W»Co ro a. o Kite

j- J- in

•4 CM CM ooo * * ♦ UJ LUUJ

<T> CM N.

vo in o> in in in • • •

ro «-4 «-t •

ro CM CM ooo * <¥ 4> UJ UJ UJ <r» oo .# a> o »H o o «~» ao wl to ro in vo

CM CM -H OOO * * ♦ UJ UJ UJ in tr» CM CM *4 10 CM J- 0O a» p -H won • • t

CM ro ro ooo ♦ * + UJ ID UJ ao tO J- ** .* r^ CM CM CM ro ro oo u> CM ro

UJ UJ UJ -± .* in in m in oo •«-< ro CM oo N-

• • • -*" oo vO

I to ro to ooo ♦ * ♦ UJ UJ UJ CJ^ CJ^ to in in vD CM ro u> «o N. *-< ro w ro

I <

o o o ♦ * 4. UJ UJ UJ o o \0 O <T» fvj ro o eo in «-* in vo »4 in • • •

vD (T» iO I I t

ro ro ro o o o * + + UJ UJ UJ *-• —i to vo in vo vo in in ▼H vO tO « CM CM

ro i j i

O; Zi

1 i j . 1 !

o. OOO. ooo o a o ooo

_J i 1 1 j -I UJ

i ;

x r~ e> o cec o cr o OOO] </) o o o ooo ooo boo

ooo ° e o ooo Poo 2 c j- oo / 0C CM %D tO t 4 J- oo CM 1-4 • « • "J • • ■ • . • • I • • •

«OHW CM Jt in in K «o » <r V* x in in in in in in in in in in in «o

•H »"• «-l *••»-»«-« «■« «-l w4 n*4H '•N .1 i " -L i I

92

Page 102: Design for creep in pressure vessels

1 [ e © «9 O a o o o r> O |B e> es er a cs a is

I.I «-l o o o *H *-i ot «H O a a ▼-i «-t ^t «-i 1-1 er cv

Z o o o a O CD a er cr er o a cr er er cr cr cr

.♦ ♦ * ♦ 1 1 1 1 * *■ + ♦ ■* * * * * * a Ui u. UJ UI Ui UI UI UI u. Ul UJ UJ Ui UJ UJ Ul UJ Ul

10 a o» »-i CP \0 in ao a tO iO o ro in in CD »-l <T>

X <Vi o vO cr »H in CV cr in ro cr ■a CV cr m J- -3- -» o tn CV «-i ^ re .*■ ■«H CV er cr cr ro co a *-4 ro j- -° J- v£> iv v£) j- tw vO CV in r^ er u\ *-■ cv eo O •»-!

X f*. K r- in N. in wH CVJ J- eo in ro ro -* cr <T> cv m

•H o> w ro m CVJ cv CV CV ~* I i 1 l i 1 .» m in in in in in in in in in J> J- J" -* .* ro -a- e c o er o O o a er er o cr o c CD o O cr

1 I • 1 1 i 1 l 1 i 1 • 1 1 1 1 1 1 LU UI UI UI UJ UJ U* UI Ui UJ UJ UI Ul UJ Ul u_ UJ UJ r^- ro in cv CP o J- CO <T> in vO \D o*> o-> in in eo r»

*•* X a o

«o in rv er <X) in CV ao J- .» v£> CV ro eo CO ■a 1^ ^ J- cr •H N- cr ro CO vO cr CV -* ro j- ro rr> N. r^ ro •v ro in fO cvi ao ^-t i-t CV cr ro .* CO CJ f- ■»-l J- «P -* -4" ro —( N. CT» N. CV CV N- CO J- ^t CV J- in cv »v

M il> CV

1 CV

1 ■4-

1 1 -*■ ro l 1

CV -H 1

•-i «-t -4- CO CO wi uD

www ro to W M ro I-) ro ro ro ro ro ro ro ro ro O O to er CD a cr a cr a a er. D e= CD cr o er * * '♦ * * + + *■ * 4- + * + + + ♦ >♦■ * UI Ui U- . UJ U- UI UJ UI u, UI UJ u. u u. UJ UJ UJ Ui

, ro in '/ r- cr

»-f <T> CT> -* cr J-eo eo r«- «-i eo ro CD tn ro a> in .*- IV -» J- cr «-i er eo m ^H vO in ▼H cr iv

X CK S N. \D in in ro cr <T> CV ro ro cr -* ^f cr cr »•< *H «-< <H «H *-i t-t ▼H CD er a cr tr> t>~ \D OJ vO J- O-

z CV CV CV cvi CVJ CM CV CV CV CV CV ▼H ~4 T4 V* «H ** CV

t ▼H CV CV CV cv CV CV cv cv

«9 O O er a CD er o cr o er o o o o a a cr

1 • UI Ui

... lO O ll. 1 1 • 1 1 1 1 1 1 » 1 1 1 1 1

u> UJ UJ UJ Ui UJ UJ Ui UJ u UJ UJ U. Ui UJ ' * N- in in v£> J- «=> ro <r> r* eo eo TH ro ro ro iv U\ CV *-< ▼-I o N r- ro »- \u ro f- CV ro r- cr cr cr>

»-4 in TH ID vC C3 CV r.1 j- J» J- o J- -4- in iO in K co X in cv eo CO Ul ^-4 ■>-t N- ro ro -* CV CV er a <T> cv cv a to N- IT m -* r> n »H cr er cr in in «-( vC vO ro er

«H ~* *-i I

v* >r-t «H «-H *-> eo »- r^- U2 i

j- j- ro cv

*4 *H »-4 1

w 1 CV CV »-< •H ^1 «-) •-< *-< ■r* •-) er -r*

C3 «? ks O c o IP o a ' o cr cr ep cr c; cr er o 1 1 i 1 1 1 • l 1 "1 1 1 I 1 1 1 + *

• UI U/ Lu Ui U, U UJ UJ UJ UJ U> UJ u, Ui U UJ UJ U- ' wt PI (r, en in fvj ro er »H «=. c -3-

-» in J- IV r*- cv

»© f*- ^ sO er vO <r> CV r>. ro in fT> eo K m •-• ^ CD J- lO ro e CL .* in aj re ^ e? eo ro m-i in cr rv jh in cr v£> e= a> CT> cr cv cr u> ro c: -4- N- en cr eo

cr C^«X) iO IV er T-I J- ro t= ^( ee K in CT- en in v£> & • •

r- • ; • • • • • • • • » • • • • •

in J- CV ^H in "~* «-■ *H ^1 cv I* J1 rv ao •

eo 1 1 1

o cr P Cr c a e> cr c. O o cr CD er CD CD o er 1 • ii 1 • l i 1 f 1 1 1 1 1 1 1 • 1

U-' UI U. UJ UJ U' UJ lu U. Ul Lu UJ UJ UJ U U- Ul o -» CF> K «-l TH er J- N- eo T-I »- CV eo ro vO KD eo m IM B3 cr UA ^. iO il) ■-• er cv tr« er> ro ed r»> U^ cv C O' N ID e; CV CV C! -* j- a> UO r^ IV rr -T err ^,

^ CV ro N r>- CVJ UL- VO C3 K- r» ir. to \D r^ J- J- 1-- eo CV CM CV OJ rr> f ro -* ^r -3" -T JT ■S j- m ro ▼H CT>

I^N r- N» N f^ r^ » N- N- N- N. r^ K K IV r- *o

CJ C5 er e? e er er er er e=> er> er er er er CJ CD er C9 tD cr e? o cr IP cr Cr C3 CZ> CD cr es CD c; tn er o e> D C? «= o IP O CP •P cr- er O cr CD - er e=. o cv <x» C3 c J- ao CO CV vC UJ er rf J" CO CV CV vD C

I •-< cv .* J- in v£> v£) «p (P a> «-< CV CV ro in in vD cd X . «£> *C lO IO vO «X> vO \D iD «ONr« s- f-- N- K rw iv

' __ . :' * 1. . J_. i i.- - i _.^

93

Page 103: Design for creep in pressure vessels

\

I. ' 00*4 •4'T« <«H *4 *-4 «4 w-t 0 0 O «-4 O (9 «-l *4 e e «P a 0 19 0 e 0 B O (9 0 a 0 000 ♦ ♦ 1 1 1 • 1 1 1 1 * * ♦ I ■*• * ♦ *

'^' tu UJ UJ UJ LU UJ UJ UJ UJ UJ UJ UJ UJ W UJ UJ UJ UJ t- *-4 W K- in »-» *-4 wt a* m (Or4K in w \D tT» tT CM UJ O N- ^1 in «-• uo w 0 ^ -H 0* r*- MCOO ro w 0 X CM er> jf ^ in .* ^ vO CM •* w in »o •«-» w u> in o> l-i w in .* o> -*■ J- ^ «o J- ■* co m w w ^ ^ f- «o

*. in CM a> -*■ CM o> in «o w* r> ^ •H CM «H K. 10 W 10

(Of4 Q> (J> T-l w & ■& N. CO »■* CM CM <J> K. N. W l«w 1 1 1 1 1 1 t 1 WWW w w w www www WWW W W CM 0 0 0 e 0 a 00a O O C9 e 0 a OOO ♦ * •♦ ♦ ♦ * + 4. * +*>•*■ + + ♦ 4> * *

<r UJ Ul UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ k. e 0 N. W 0» <T> 00 0 OO W t= *. .* CM CO C3 UJ Ul vO cs-CM CM a m inss «0 eO CM ^ CM CO in in ^

Ift •* w W N- CM CM co in in CM vO vO S (T 0 w rj W CM «M CM CM w w w -* -* in in in j- 0 *-) CM o> CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM NH J

_ j

1

1

i

i ]

i i

O O O O 0 a 00a 0 C9 0 0 0 0 0 0 0

COD CBD 'OP C

CM «0 CS

e> e o ceo opo ceo p c o oeo CStPO pop COO c 4 co eo CM a. a> c? .?

000 .? CO C\J

*-• CVJ j-

t L

^ in v0 U3 U3 \D

\0 «0 tT> 03 lO MD

a» «H CM tONK

CM w in *• N N-

in u? co f^ K K

_>a 1 —

9^

Page 104: Design for creep in pressure vessels

Jh

::A

Ar

~ -)' jl. -.'■■' CR.Zrn."''1'?.":" '0, :JZ

In.t'ri^ial ; r,'..-".

r . a c j i an i1 c 3 J. /i- ■' '■1 J^CO'^J;

-^ ---^ —. v^ p ,.

■ •"-> ,~ /~> -i ,"> ■■ -, ; fw

197' i"5 "10.'.'.''.'''3-'

. .C Ci a-llcal -ill""! —

no or in;; "n Ja:iaar;r "015 •* After June 1?7;<,

'■:or''-in"-; :°cr the Vonosnolan -.oirochor:ical Inatitr.to at their

■ 7i.il cortini'

Central inf"? iioorin~ V^iiicoc at Garacaa, Vonenreha

oc

7