design of optimum propeller

Upload: karol8037

Post on 07-Jul-2018

253 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Design of Optimum Propeller

    1/7

    J O U R N A L   O F P R O P U L S I O N A N D

      P O W E R

    Vol. 10, No. 5, Sept.-Oct.  1994

    Design   of   Optimum   Propellers

    Charles

      N .

      A d k in s *

    Falls

      Church,

      Virginia

      22042

    and

    Robert H. Liebeckt

    Douglas  Aircraft  Company,

      Long

      Beach,

      California

      90846

    Improvements have been made

      in the

     equa tions

      and

     computational procedures

      for

     design

      of

     propellers

      and

    wind   turbines   of  maximum efficiency. These eliminate   the   small angle approximation   and   some   of the   light

    loading

     approximations prevalent

     in the

      classical design theory.

     An

     iterative scheme

      is

     introduced

      for

     accurate

    calculation

     of the

     vortex displacement velocity

     and the

      flow  angle distribution. Momentum losses

      due to

      radial

      o w

      can be  estimated  b y  either  th e  Prandtl  or  Goldstein momentum loss function.  The  methods presented here

    bring

     into exact agreement

      the

     procedure

     for

     design

     a nd

     analysis. F urthermore

    the

     exactness

      of

     this agreement

    makes

     possible an empirical verification of the Betz condition that a constant-displacement velocity across the

    wake  provides

      a

      design

      of

      maximum propeller efficiency.

      A

      comparison w ith experimental results

      is

      also

    presented.

    Nomenclature

    a  =

      axial interference factor

    a '  =  rotational interference factor

    B =   num ber of blades

    b =

      axial slipstream factor

    C

    d

      =  blade section drag coefficient

    C,  =

      blade section  lift  coefficient

    C

    p

      -

      power

      coefficient,  P/pn

    3

    D

    5

    C

    T

      =  thrust  coefficient,

      T/pn

    2

    D

    4

    C

    x

      =

      torque force coefficient

    C

    y

      =

      thrust force coefficient

    c

      =  blade section chord

    D

      =

      propeller diameter,

      2R

    D'  =  drag force per unit radius

    F

      =  Prandtl momentum loss factor

    G =   circulation function

    /

      =  advance ratio,  VlnD

    K

      =  Goldstein momentum loss factor

    L' =   lift  force per unit radius

    n

      =  propeller

      rp s

    P

      =  power into propeller

    P

    c

      =  power coefficient,

      2P/pV

    3

    7rR

    2

    Q

      =

      torque

    R =   propeller  ti p  radius

    r

      = radial coordinate

    T  =

      thrust

    T

    c

      =

      thrust  coefficient,  2T/pV

    2

    7rR

    2

    V =

      freestream velocity

    v'

      = vortex displacement velocity

    W =   local total velocity

    w

    n

      =

      velocity norm al to the vortex sheet

    w

    t

      =  tangential (swirl) velocity

    x =   nond imen sional distance,

      £lrlV

    a

      =  angle  of  attack

    j8

      =

      blade twist angle

    F   =

      circulation

    s =   drag-to-lift ratio

    Presented

      as

     P aper

      83-0190

      at the

      A I A A

     21st

     A erospace

      Sciences

    M eeting,

      Reno,  N V,  J a n .

     10-13,

      1983;  received July  23 ,  1992; re-

    vision

      received July

     6 ,  1993;

     accepted

      for

      publication

      D e c.  15 ,  1993.

    £  =  displacement velocity ratio,  v'lV

    17   =

      propeller

      efficiency

    A   =  speed

      ratio,

      V/flR

    g   =

      nondimensional radius,

      r/R =  A J C

    \

    e

      =  nondimensional P randtl radius

    £

    0

      =

      nondimensional

      hu b

      radius

    p  =

      fluid  density

    a =

      local solidity,

      Bc/2

    /

    nr

      f>

      —   flow  angle

    < f)

    t

      =

      flow  angle

      at the tip

    f l

      =

      propeller

      angular velocity

    Superscript

    '  =

      derivative with

     respect

      to

      r

      or

      £,

      unless otherwise

    noted

    Introduction

    I

    N

      1936,

      a

      classic treatise

      on

      propeller theory

      w as

     authored

    by   H .  Glauert.

    1

      In this work, a combination of mo men tum

    theory and blade element theory, when

      corrected

      for mo-

    mentum loss due to radial  flow,  provides a good method for

    analysis of arbitrary designs even though contraction of the

    propeller wake is neglected. A lthoug h the theory is developed

    for

      low disc loading (small thrust or pow er per unit disc area ,

    it  works quite well  fo r  moderate loading,  and in  light  of its

    simplicity, is

      adequate

      fo r

      est imating performance even

      fo r

    high

     disc loadings. The conditions und er which a design would

    have minimum energy loss were stated

      by A. Betz

    2

      as

      early

    as 1919; ho wever, no organized procedure for produ cing such

    a design is evident in

     Glauert's

      w o r k .

     Those

      equations which

    ar e

      given

      by

      Betz make extensive

      use of

      small-angle approx-

    imations and relations applicable only to light loading con-

    ditions.

     Theodorsen

    3

      showed that the Betz condition for min-

    imum   energy loss  can be  applied  to  heavy loading  as  well.

    I n

      1979, E.

     Larrabee

    4

     resurrected  the  design equations and

    presented

      a

      straightforward procedure

      fo r

      optimum design.

    However ,

      there

      are still some problems:

      first,

      small angle

    approximations are used; second, the solution for the dis-

    placement velocity  is  accurate only  fo r  vanishin gly small val-

    ues (light loading), although an approximate correction is

    suggested for moderate  loading; and third,

      there

      are viscous

    terms missing in the expressions for the induced velocities.

  • 8/18/2019 Design of Optimum Propeller

    2/7

    ADKINS

     AND LIEBECK: DESIGN OF OPTIMUM  PROPELLERS

    67 7

    Th e  purpose  of this  article  is to

      correct these

      difficulties

    and bring  the design  method into  exact  agreement  with  th e

    analysis.

      It is

     then  possible

      to

     verify  empirically

     t he

      optimality

    of

      the design.

      This

      work was

     initiated

      at

      M c D o n n e ll D o u g la s

    in  1980

      in

     response

      to a

      requirement

      for simple

     estimates

      of

    propeller performance.

      In-house

     m ethods, i f they

     existed,

     h ad

    been  irretrievably  archived. A n early version was presented

    as

     AIAA Paper

      83-0190.  Continuous

      requests

      fo r copies  of

    th e  paper  plus  some

      ref inements

      to the  method  have moti-

    vated

      its

     publication

      in the

      Journal.

    M omentum Equations

    D etailed  axial  and general momentum  theory  is

     described

    by   Glauert ,

    1

      and  only  a

      brief summary

      is

      given

      here

      to em-

    phasize

      several important features. Consider

      a

      fluid  e l e m e n t

    of  mass dm, far  upstream

      moving

      toward  th e  propeller  disc

    in

      a

      thin, annular  stream  tube

      with  velocity  V .  It arrives at

    the disc  with

      increased

      velocity,  V (l  +

      0 ),  where

      a  is the

    axial  interference

      factor. A t the disc, dm exists in the an nulus

    27rr  dr ,  and the mass

     rate

      per unit radius passing  through  th e

    disc is 2irrpV(l  +  a ),  neglecting radial

      flow.

      The

      e lement

      dm

    moves  downstream into the far wake, increasing

     speed

      to the

    value

      V (l

      4 -

      & ),

      where

      b

      is the axial

      slipstream

      factor.

      A x ia l

    m o m e n t u m   theory determines b  to be

      exactly

     20 ,  whereas the

    general theory

      (which  includes  rotation

      of the

      flow)  deter-

    mines  b  to be

      approximately

      2a .

      U s in g

      th e

      axial

      approxi-

    mation,  which  is generally

      accepted,

      the overall

      change

      in

    m o m e n t u m

      of the

      e lement

      is 2VaF

      dm

      w h e r e F,  th e

      m o m e n -

    tu m

      loss  factor,

      accounts

      fo r

      radial

      flow  of the

      fluid.

      The

    thrust

      p er  unit  radius

      T',

      acting  on the

      annulus

      can now be

    expressed as

     rr

    T = — =  27rrpV(l

      +  a)(2VaF)

      (la)

    By

      similar  arguments, the

      torque

      pe r  unit

      radius

      Q '  is

      given

    by

    Q'lr  =  2irrpV(l  +  a)(2Slra'F)

    (Ib)

    Flow  geometry

      about

      a

      blade

      element at the disc is shown in

    Fig.

      1,

      where  W

      acts on the blade element

      with

      a, and  acts

    on the  disc  at  < j > .  F

     goes

      from

      about

      1 at the hub  (where  th e

    radial  flow

      is

      typically  negligible),

      to 0 at the

      tip,

      and is not

    unlike

      th e

      spanwise

      loading of a

      wing.

      The

      functional  form

    of  this factor was  first  estimated  by  P r a n d t l

    1

    -

    2

      and a  more

    accurate, though

      more complex,  form

      w as

      determined

      by

    Goldstein

    5

      an d Lock.

    6

     

    8

    Circulation

     Equations

    A t each radial position along the  blade,

      infinitesimal

      vor-

    tices are shed and

      move

      aft as a

     helicoidal vortex sheet.  Since

    these vortices

     follow

      th e

     direction

     of local

     flow,

      the helix angle

    of

      the  spiral  surface is  > ,  shown  in

      F i g . 1.

      Th e

      Betz condition

    for

      minimum  energy

     loss,

     neglecting

     contraction

      of the wake,

    requires

     the

      vortex sheet

      to be a

      regular screw surface;

      i.e.,

    r t a n

      < t>

     must b e a constant

     i n d e p e n d e n t

     o f radius. Theodorsen

    3

    AXIS

    VORTEX  FILAMENT

    AFTER

     TIME

    INCREMENT,

     A t

    VORTEX FILAMENT (t = 0)

    Fig.

      2 Definition of

      displacement

      velocity   v in the

      propel ler wake.

    develops

      th e

      Betz  condition

      fo r

      heavy  loading

      by

      including

    th e

      contraction

      of the wake. He shows

      that  sufficiently

      fa r

    downstream

      in the  contracted

      w a k e ,

      th e  vortex

      sheet

      must

    be the

      same

      regular screw

     surface

      for a

     propeller

      of  m i n i m u m

    induced energy

      loss.  This

      opt imum

      vor tex  sheet  acts

      as an

    A rchimedean screw, pumping

      fluid

      af t

      between

      rigid spiral

    surfaces.

    A t th e

     blade station,

      r, the

     total  lift

      per uni t  radius  is

      given

    by

    L >

     =

     f=

      BpWT

    (2)

    and in the wake, the circulation in the

      corresponding

      a n n u l u s

    is

    BY

      =  27rrFw

    f

     3

    Setting

      th e

      circulation  F

      in Eq. (2) equal  to that in Eq. (3)

    will ult imately  determine that

     circulation distribution

     F(r)

      that

    minimizes

      the induced  p o w e r  of the

     propeller.

    I n order  to  obtain F(r),  it is  necessary  to

     relate

      v v

    r

      to a

     more

    measurable quant i ty.

     Figure

     2

     shows

     the wake vortex f i lament

    at station  r  and the  definition  of the  var ious

      velocity

      com-

    ponents there.  T he  motion  of the  fluid  must be normal to the

    local

      vortex sheet,  and this

      normal velocity

      is

     w

    n

    .

     T h e r e f o r e ,

    the tangential velocity is given by

    W

    t

      =  w

    n

      sin  < >

    However,  for a

     coordinate

      system

      fixed  to the propeller  disc,

    th e

      axial

      velocity of the vortex

      filament  would

      be

    v '

      =  H ^ / C O S   />

    where the

      increase

      in magnitude of

      v'  over  w

    n

      is due to ro-

    tation of the f i lament.

      This

     is

     analogous

     to a

     b a r b e r pole

     w h e r e

    it  appears

      that the

      stripes

      are translating in

      spite

      of the

      fact

    that  only

      a

     rotat ional

      velocity exists. It

      will become

      clear that

    it

      is convenient to use v' , and the

      corresponding

     displacement

    velocity   rat io, £ =

      v'lV.

      Th e

      tangential velocity

      is

      then

    W

    t

      =  V£

      sin

      c f>

      cos

      4 >

    and the circulation of Eq. (3) can be  expressed  as

    27rV

    2

    £G/(Bty

      (4)

    G =  F  x cos

      />

      sin

      < >

      (5 )

  • 8/18/2019 Design of Optimum Propeller

    3/7

    678

    ADKINS AND LIEBECK:

      DESIGN

     OF OPTIMUM PROPELLERS

    DISC

     P L A N E -

    Fig.

      3 Force diagram for a

      b l ade

     element.

    T he  circulation

      equations

      for  thrust

     T

     , and torque  Q',  per

    unit  radius

      can be

      written

      by  inspection  of Fig.  3 as

    T

      =

     L'

     cos

     0

     -

      D'

     sin  4 >

     = L'

      cos

     0(1

     -

      e

     tan

      < £ )

      (6a)

    Q'lr  =  L'  sin < £   +  D'  cos

     0

      =  L' sin

      < / > (

    +  e/tan

    (6b)

    where

      e  is the drag-to-lift-ratio of the

      blade  element.  N e x t,

    using

     Eq.

      (2),  L'

      can be

      replaced

      by

     F(r)  which,

      in turn, is

    related

      to conditions in the  w a k e  b y E q .  (3).

      Based

      on the

    flow

      in the

      w a k e ,

      F(r)  is

      given

      by

     Eqs.

      (4) and

      (5),

      an d  T

    an d

      Q' lr

      are

      reduced

      to

      being  functions

      of

      f>

      and the

      dis-

    placement velocity,

      £ =

      v'lV.

      Th e

      local  flow  angle

      f>   will

    clearly  be a  function  of the

     radius;

      however ,  at this stage  of

    th e

      analysis,

      th e

      opt imum  distribution  £(r)

      is not yet

      deter-

    mined.

      Several  diagrams  and an excellent

     photograph

      of the

    vortex

      sheet  can be  found  in a  1980  work by Larrabee.

    9

    Condition for M inimum Energy

     Loss

    A t

      this

      point , a departure

      from

      Larrabee's

    4

      design

      proce-

    dure  is made, and the momentum equations,  Eqs.  (1),  an d

    the circulating

      equations,

     Eqs.

      (6), are  required to be

      equiv-

    alent.

      This

      condition  results  in the interference factors being

    related

      to

      £

      by the

      equations

    a  =  (£/2)cos

    2

    (£(l  -  £ tan  < / > )   (7a)

    a' '=  (£/2*)cos  />   sin

      )  (7b)

    where Eqs.  (4) and (5)

      have

     been  used to express L'  in terms

    of £,  and the  terms  in

      epsilon correctly describe

      th e  viscous

    contribution.  E q u a t i o n s

      (7),

      together

      with

      th e  geometry  of

    Fig. 1,

      lead

      to the  important  simple relation

    tan   < £   =

    £/2)/x 

    (1 +  £/2)X/(

    (8)

    Here,

     A i s a

     constant ,

      an d

      £ varies  from

      £

    0

      at the hub to  unity

    at

      th e

      edge

      of the disc. The relation between the two non-

    dimensional

      distances

      and the

      constant

      speed

      ratio

      is

     

    =

    =

      (r/R)/\

      =  f/A

    R ecalling

      th e  Betz

    2

      condit ion,

      r

      ta n  < >   =  const,  Eq. (8)

    proves that  for the  vortex sheet  to be a  regular screw surface,

    Constraint

     Eq uations

    For design, it is necessary to

      specify  either

     7,  delivered by

    the propeller or the power P,  delivered to the propeller. The

    nondimensional  thrust and  power  coefficients

      used

      for design

    are

    T

    c

      =

      2T/(pV

    2

    irR

    2

    )

      (9a)

    P

    c

      =

      2P/(pV

    3

    7rR

    2

    )

      =

      2Q(l/(pV

    3

    >7TR

    2

    )

      (9b)

    an d

      using

     these

      definitions,

      Eq. (6) can be written as

    T'

    c

      =

     I (£

      - Itf  ( lOa)

    P'

    C

    =J[{

      + J ( l O b )

    where the  pr imes denote  derivatives  with respect  to  f,  and

    /; =

     4£G(1

      -

      e

     tan

     0)  (lla)

    1

    2

      =

      A ( / ;/ 2 £ ) ( l  +  e/tan  < / > ) s i n   < j>   cos  < >   (lib)

    /; 

    4fG(l

     +e/tan 0) (lie)

    J '

    2

      =

     (/;/2)(l

      -

      s

     tan

     < / > ) co s

    2

     0

      (lid)

    Since  £  is

     constant

      for an  opt imum  design,  a  specified  thrust

    gives

      the constraint equations

    £

      =

      ( A /2/

    2

    )  -  [(A/2/,)

    2

    -

      T

    C

    /I

    2

    2

      (12)

    P C   = J^

      +

      /

    2

    f

    2

      (13)

    S imilar ly,  if power  is specified, the  constraint relations  ar e

    £  =  ~(JJ2J

    2

    )

      +

      [(V2/

    2

    )

    2

      +  PJJ '̂

    2

      (14)

    T

    c

     =

     U

     -

      I

    2

    £

    2

      (15)

    where  the  integration  has been

      carried

      out over the  region

    f =

      & t o f

      = 1.

    Blad e G eometry

    For the element

      dr

      of a

      single blade

      at radial station  r, let

    c  be the  chord  an d  C

    l

      th e  local

      lift  coefficient.

      Then,  th e  lift

    pe r

      unit

      radius of one

      blade

      is

    =

      P

    w r

    (16)

    w h e r e F  is given by Eq.

      (4).

      I t  follows  directly

     that

    We

      =  47rXGVR£/(C

    l

    B)

    A ssume for the

      m o m e n t that

      £ is know n;

     then

      th e

      local

      value

    of

      c j )   is  known

      from

      E q.

      (8),

      and the

      above  relation

      is a

    function  only

      of the

      local  lift

      coefficient.

      Since

      the

      local Rey-

    nolds number is

      We  divided

      by the

      kinematic viscosity,

      E q.

    (16)  plus

      a  choice  fo r  C/

      will

     determine  th e

      R eynolds

      n u m b e r

    an d  £, from  th e  airfoil section data.  The  total velocity  is

     then

    determined by

     Fig.

      1 as

    W  =  V(l +  fl)/sin

    (17)

    w h e r e a is given by E q.

      (7),

      and the

      chord

      is

     then

     k n o w n

      from

    E q.  (16).  If the

     choice

      fo r  C/  causes  £  to be a  m i n i m u m ,  then

    viscous as  well  as  m o m e n t u m  losses  will  in  most  cases  be

    minimized, and overall propeller efficiency  will  be the highest

    possible

      value. For

      preliminary

      considerations,

      it is  usually

    sufficient

      to

      choose

      one  C

    h

      the  design  C

    h

      for

      determining

    blade  geometry.  ( A n y

      C

    l

      specification is

      permissible

      as long

  • 8/18/2019 Design of Optimum Propeller

    4/7

    ADKINS

     AND

      LIEBECK:

      DESIGN OF

      OPTIMUM PROPELLERS

    679

    at

      th e

      edge

      of the

      disc,

      and the tip

      chord

      is therefore

      always

    zero  for a  finite  lift  coefficient.

    Design

     Procedure

    Either F or K, relation for the momentum loss  function can

    be   selected.  For the  sake  of simplicity,

      only

      th e  P r a n d t l  re -

    lation

      is

      described

      as

    where

    F   =  (2/77)arc

    f=

    (18)

    (19)

    an d   < / > ,  is the  flow  angle  at the  tip.

      F r o m

      Eq. (8)

    tan   < t >

    t

      =  A(l +

      £ / 2 )   (20)

    so  that  a choice  for  £ determines  the

      function

      F  as  well  as

      f>

    by

    ta n

     

    =

      (tan

      < £ ,

    (21)

    which i s simply t he

      condition that

      th e

     vortex sheet

     in the

      w a k e

    is a rigid  screw  surface  (r  tan

      < £

      =  const).  For an

      initial

     value,

    £  =

      0

      will

      suffice.

    The design is initiated with the

     specified

     conditions of power

    (o r

      thrust), hub and tip radius, rotational  rate,  freestream

    velocity,

      number of  blades,  and a

      finite  n u m b e r

      of  stations

    at which

     blade

     geometry is to be

      determined.

     Also, the design

    lift

      coefficient—one

      fo r

      each station

      if it is not

      constant—

    must  be  specified.  The design then proceeds  in the  following

    steps:

    1)

      Select

      an

      initial estimate

      for

      £

     (£  = 0 will

      work) .

    2)  D e t er m i ne  the

      values

      for

      F

      an d  < j)   at  each blade station

    by Eqs.  (18-21).

    3 )

     Determine

      th e

      product

      W e,

      a n d R e y n o ld s n u m b e r

      from

    Eq. (16).

    4)

     Determine e

     and

     a  from

      airfoil

      section

     data.

    5 )  If  e is to be

      minimized,

      change  C, and  repeat

      Steps

      3

    an d  4 until  this is  accomplished  at each  station.

    6 )

      D e t e rm i n e

     a a nd

      a '  from

      E q.  (7),  an d

      W f ro m

      E q.

      (17).

    7)   Compute the  chord  from  step  3, and the  blade

      twist

    )3  =  a  +  f > .

    8 ) Determine the four derivatives in / and 

    from  Eq.

     (11)

    and numerically

     integrate

     these  from  £ =

      £

    0

     to

      £

      =  1.

    9)

      D e t er m i n e  £

     an d

      P

    c

      from

      Eqs.

      (12)  an d  (13),  or

      £

      an d

    T

    c

      from  Eqs. (14)  an d (15).

    10) If this new  value  fo r

      £

      is not  sufficiently

      close

      to the

    ol d  one

      (e.g.,  within  0.1%) start

      over  at  step  2  using  the

    ne w

      £.

    11 )  D e t er m i n e propeller

      efficiency

      as  TJ P

    C

    ,  an d other  fea-

    tures  such

      as

      solidity.

    The above steps converge rapidly, seldom taking m o r e than

    three or  four  cycles. A n

      accurate

      description of viscous

      losses

    ca n

      be obtained  by creating another  design

      with

      e  equal  to

    zero

     and

     noting

     the

      difference

      in

     propeller  efficiency.

    Analysis of Arbitrary  Designs

    The analysis method is

      outlined here

      in

      order

      to

      discuss

    problems

     of  convergence  for off design  and for  square-tipped

    propellers in general, and to  point  out two minor  errors  in

    Glauert's w o r k . Figure 4, which is

     simply

      an alternate  version

    of  Fig. 3,

     shows

     th e relation between t he propeller

      force coef-

    ficients,  C

    y

      an d C

    x

    , and the

      airfoil coefficients,

      C, an d C

    d

    . Th e

    equations are

    C

    y

      =  C,  co s  f>   -  C

    d

      si n  < £   =  C,(cos  < >   -  e  sin  < / > )

    DISC  P L A N E -

    Fig. 4 Force

      coefficients

      for propeller blade element analysis.

    and the  relations  for the thrust

      7"

      an d  torque

      Q '

      per unit

    radius are then

    T

      =

      ( )pW

    2

    BcC

    y

    Q'lr  =

      ( )

    P

    W

    2

    Bc C

    x

    (22a)

    (22b)

    Again,

      it is required

      that

      the

      loading  Eqs.

      (22) be

      exactly

    equal to the

     momentum

     result Eqs.

     (1).

     With the use of the

    flow

      geometry in Fig. 1,

      this requires

      the interference  factors

    to be

    where

    and   c r  is  given  by

    a

      =  o-KI(F  -

      < r K )

    a '

      =

      )

    K '

      =  C

    x

    /(4   co s 0sin   < / > )

    e r   =  Bc/(2m)

    (23a)

    (23b)

    (24a)

    (24b)

    Equations  (23)

     correct

      th e  placement  of the factor

      F

     used  by

    Glauert  in his equations (5.5)  of Chapter  V I I a s identified  by

    Larrabee.

    4

    The

     relation

     for the  flow angle is

     obtained

      from

      Fig.

     1 and

    Eqs.

      (23)

     as

    ta n   < t>

      =

      [V(l  +

      a)]/[nr(l

     -  a')]

    (25)

    F or

      determining the

      function,

     F, in

     Eq. (18), Glauert  suggests

    the relation sin $,  =  f  sin  4 >   be  used  in E q.  (19).  It is rec-

    ommended that Eq.

      (21)

     be used  instead, i.e.,

    tan   < / > ,  =  £ ta n  < >

    which

      is

      exact

      for the

      analysis

      of an

      optimally designed pro-

    peller at the  design point.

    The  analysis

      procedure requires

      an

      iterative solution

      for

    the

      flow  angle  < >

      at each radial position,

      £.

      A n

     initial estimate

    for

      < >

      can be

     obtained

      from Eq. (8) by

      setting £

     equal  to zero.

    Since  j3  is  k n o w n ,  the  value  for  a  in Fig.  3 is  /3  — < £ ,  and the

    airfoil

      coefficients

      are known  from  th e

      section

      data.  The

    Reynolds  n u m b e r

     is  determined

      from

      the

      known

     chord  and

    W,

      which is obtained

      from

     Fig. 1 and Eq.

      (23a),

     and the new

    estimate

      for

      < £

      is then

      found

      from  E q.  (25).  A   direct

      substi-

    tution   of the new  f>   for the old  value  will  cause adequate

  • 8/18/2019 Design of Optimum Propeller

    5/7

    680

    ADKINS

      AND LIEBECK:

      DESIGN

      OF

     OPTIMUM

      PROPELLERS

    nonoptimum

      designs, some  recursive combination of the old

    and new

      values

      fo r

      f>

      is  required  to  cause adequate  conver-

    gence.

      U n d e r  some

      conditions  (usually

      near

      th e  tip),

      con-

    vergence

      may not be

      possible

      at all due to  large values  fo r

    the interference factors,

     a and a' , in Eq. (23). Since Fis zero

    at   the tip and

      a

      is not for a

      square

      tip

      propeller,

      th e  value

    for

     a

     is 1 and a ' is +1. S uch values are physically

     impossible

    since

     the slipstream

      factors

     are approxim ately twice the values

    at

      th e

      rotor

      plane.

      W ilson

      an d  Lissaman

    10

      suggest  empirical

    relations for resolving this

      problem, whereas Viterna

      an d

    Janetzke

    11

      give  empirical arguments  fo r

      clipping

      the magni-

    tude  of a  an d  a '  at the  value  0 .7  (a/F  at the tip is  finite  at the

    design

     point

      for an

      optimum propeller).

    F or

      analysis,

      the conventional thrust and

     power coefficients

    ar e

    C

    T

      =  TI(pn

    2

    D

    4

    )

    C

    p

      =

      P/(pn

    3

    D

    5

    )

    Using

     Eqs.  (22) and  (24),  th e  differential  forms with  respect

    to f  ar e  given  by

    C

    T

      =

  • 8/18/2019 Design of Optimum Propeller

    6/7

    ADKINS

     AND LIEBECK: DESIGN OF OPTIMUM

     PROPELLERS 68 1

    Tab le 1

      Propeller

     design

     solution

     

    5

    8958

    1 2917

    1 6875

    2 833

    2 4792

    2 875

    3424

      46 5

      4269

      3569

      2796

      1913

     

    58 3125

    41 8645

    32 2669

    22 2978

    18 7971

    15 9619

    13 8552

     

    54 8118

    38 3637

    28 7661

    22 7927

    18 7971

    15 9619

    13 3552

     

    4449

      81 4

      9834

    1 295

      974

    783

    348

      644

      8 4

      89

    938

      968

     

    a

    633

      365

      219

      142

      98

      72

     

    Input :  brake horsepower = 70, 2

     blades;

      hub diam = 1 ft, tip

      diam

      =

      5.75

      f t ; b l ade sect io n : N A CA

    4415,  C,

      =

      0.7,

      velocity

      = 110

      mph, rpm

      =

      24001.

    O utput: thrust =  207.61  I b,  77 =  0.86996.

    N o t e :  a  an d

      a'

      have  been  se t  eq u al  to

     zero

      at the  tip.

    T a b le  2

      Propeller

      analysis solution

     

    5

    8958

    1 2917

    1 6875

    2 833

    2 4792

    2 875

    54 8116

    38 3638

    28 7661

    22 7927

    18 7971

    15 9619

    12 5862

    c

    7

    7

    7

    7

    7

    7

    7

    4449

      81 4

      9834

    1 295

      974

    783

    348

      644

      8 4

      89

    938

      968

     

    a

    633

      365

      219

      142

      98

      72

     

    Input :  propeller  geometry

      from  Table

      1;

      r, C, and  /3 at the

      same  radial locations; velocity  =110  m p h ,

    rpm   = 2400.

    O u t pu t :

      brake horsepower

      = 70, thrust =

      207.61  Ib ,

      17 =

      0.86996.

    DISC PLANE

    Fig. 6

      Force

      coefficients for w indmill bla de   element.

    0.08

    0 06

    0.04

    0 02

    0.8

    0.6

    0.30

      0 40 0 50 0 60 0 70 0 80 0 90

    Fig. 7   Example   of

      propeller

     performance.

    1 00

    require an additional layer of

      iteration

      to

      achieve

      a specified

    design

      thrust or  power.  I n

      light

      of the  favorable  agreement

    between

     the present theory and the exp erimental results

     given

    later in

      this

      article,  it is  argued that  such an  increase  in  com-

    plexity

      is not

      justified.

    Windmills

    A ll

      of the analyses  described  in this

      article

      ar e

      directly

    1.6

    1.4

    1 .2

    1 .0

    I

    0 8

    0 6

    0 4

    0 2

      7  DESIGN

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    r

    /

    R

    T.P

    Fig.

      8 C

    distributions

      for

      example propeller.

    0 20

    C P C T

    0.15

    0.05

    REF:

     NACA

     TN 1834,

     PROP

     MODEL 5

    1.0

    0.8

    Fig.   9 Comparison of  theory   and experiment .

    geometry  for a windmill is shown in Fig.  6 ,  w h e r e  the primary

    distinction is that the  blade  section  is  inverted  (a s compared

    with  a propeller),  and the local angle of  attack  is  measured

    from

      below

      the local  velocity

     vector. Corresponding

      relations

    fo r

      th e

      angles

      ar e

  • 8/18/2019 Design of Optimum Propeller

    7/7

    68 2

    ADKINS AND

      LIEBECK:

      DESIGN OF OPTIMUM

      PROPELLERS

    0. 3

    0.1

    J = 0.914

    THEORY WITH PRANDTL F

    - — — THEORY WITH GOLDSTEIN K

    0  NACATEST

    REF: NACA

     TN

     1834,

     PROP MODEL 5

    0 0.2 0.4 0.6 0.8 1.0

    r/R np

    Fig.

      10

      Comparison

     of

      propeller analyses thrust   coefficient.

    as shown in

      Figs.

      6 and 1,

      respectively.

      I n

      these  figures,  C,

    fo r

      th e  windmill  is  negative

      with

      respect  to  that  for the  pro-

    peller,  an d  this

      sign

      change

     together

      with

      the angle  definition

    will

     convert

     t he propeller metho ds to the windmill application.

    For the  design

      case,

      th e

      input  P

    c

      value  should be negative,

    and the resulting  values  of  v '  (and  th e  interference factors  a

    an d

     a ')

      an d  T

    c

      will

      also  be  negative. (Thrust  is of

      less interest

    fo r

      a windmill  since  it typically represents  th e tower

     load

      an d

    is   not a main performance parameter.)  Similarly, the analysis

    results for a

      windmill

     rotor

      will

      yield

      negative

      values  fo r  both

    P

    c

      an d  T

    c

    .

    Examples

    A s a sample calculation, the design of a propeller  for a light

    airplane  is

     considered.

     T he

      design conditions

     and the

      resulting

    design  are described in

     Table

      1  which

      gives

      fo r  each  radial

    station: blade chord, blade pitch  angle, local

     flow

     angle,  local

    R eynolds

      n u m b e r ,

      and the interference  coefficients  a  an d a'.

    This

      propeller geometry  has,

      in

      turn,  been  analyzed

      at the

    design con dition

      and the

      result

      is

     given

      in

     Table

     2 .

     A g r ee m e n t

    is virtually

      exact.

      A nalysis over  a

      range

      of

      values

      of the ad-

    vance  ratio, J =  V/(nD),

      provides

      the typical  propeller per-

    formance

      plots

      which

      are shown in

      Fig.

      7, and  Fig.  8 gives

    the blade  lift  coefficient  distribution over a range  of /s  where

    the design  condition  is the  C, —  0.7 and is a

     constant

      line at

    J

      =

      0.7.

    A calibration of the  method  is given by

      comparing

      its

      the-

    oretical prediction  with  experimental results. Reid

    12

      has  eval-

    uated several

      conventional  propellers

      extensively by  experi-

    ment, and one of

      these

      ha s

      been

      chosen  fo r

      comparison.

    Figure 9 gives C

    p

    ,

     C

    T

    , a nd

      77

      vs

     /

    fo r

      both Reid's

      experiments

    an d

     the

      corresponding

     theoretical

     prediction. The

     agreement

    here is quite good,  with

     most

      of the disparity  occurring  after

    the

      blade

      is

      stalled.  This

      propeller uses

     N A C A

      16-series

      air-

    foils,  and no  poststall  data  were

      available.

    Figure 10 gives the  comparison  of the  blade

      thrust

      coeffi-

    cient distribution

      as

      measured

      by

      R e i d

      an d

      calculated

      by the

    method.

      Tw o

      theoretical

      results  are shown: one

      using F ,

      an d

    th e

      other  using

      th e

      more  complex

      (from

      a

      calculation  point

    of  view)  K .

      I n

      principle,

      th e

      accuracy

      of the

      method  should

    be   better  with  th e  Goldstein  factor for a  propeller  with few

    blades—this

      example had  three  blades—and the two

      factors

    should  give  similar  results  as the  n u m b e r  of

      blades

      is in-

    creased.

      The results of Fig. 10  confirm

      this

      t r en d ,  and the

    overall

     comparison for

     both

     factors  is regarded  as quite good.

    Conclusions

     and

     Recommendations

    The   propeller  theory of Glauert has been  extended to im-

    prove  the design of optimal propellers  an d

      refine

      the calcu-

    lation of the performance of arbitrary propellers.

      Extensions

    of

      th e  theory  include 1) elimination of the  small  angle as-

    sumptions  in the  optimal  design  theory;  2)

      accurate  calcula-

    tion  of the  vortex displacement  velocity which  properly  ac -

    counts

      for the  blade

      section drag;

      and 3)

      elimination

      of the

    small

      angle assumptions  in the  P r a n d t l m o m e n t u m l o s s

      func-

    tion for

     both

      design and  analysis. These

     extensions

      bring  th e

    design

      an d

      analysis procedures

      to exact  numerical  agreement

    within   th e precision  of

      c o m p u t e r

      analysis.

    The pr imary  approximation  remaining in both

     procedures

    is  the use of the  axial  m o m e n t u m equations which require  th e

    increase in w a k e velocities to be twice those at the

     disc.

     Under

    certain

      conditions

      this approximation is not  good  an d  gives

    rise to the  u n n a t u r a l

      conditions

      and

      convergence

      problems

    described in the

      analysis

      section.  Improvements might  be made

    by

      replacing  th e

      axial  m o m e n t u m  equations  with

      relations

    more  closely aligned  with  th e general  theory,  particularly  in

    those  differential

      stream

      tubes  in

      which

      heavy

     loading

    ex -

    ists.  Such conditions appear  to be more prevalent  in the  anal-

    yses

      at  off-design

      conditions

      than in the

      design

      itself,

      an d ,

    when combined with poststall misknowledge, can lead to large

    errors

      in

      analysis.  However,

      fo r  design  and analysis

      within

    the conventional  operating  regime,  both procedures  ar e  sim-

    ple,

      accurate, and

      reliable. This

      method has

      been

      extended

    by

      P ag e

      an d  L ieb eck

    13

      to the design and  analysis  of  dual-

    rotation propellers.

      A   favorable

      comparison  between theory

    an d experiment  w as also observed.

    References

    l

    G la u e rt ,

     H.,

      Airplane

     Propellers,

      Aerodynamic

      Theory, edited

    by  W . D u r an d ,

      D i v.

      L ,

      Vol.

      5 ,  P e t e r  Smith , Gloucester,  M A ,

      1976,

    pp . 169-269.

    2

    Betz, A.,  with  appendix  by  Pra n d t l ,

     L.,

      Screw

      Propellers

      with

    M i n im u m  E n e rg y Loss, Gottingen Reports,  1919,  pp .  193-213.

    3

    Theodorsen,  T .,  Theory  of  Propel lers,  M c G ra w -H il l,  N ew York,

    1948.

    4

    Lar r abee, E.,  Practical  D esign of  M in imu m  Induced Loss Pro-

    pellers,"

      Society

      of

      A utomotive En gineers, Business

      A ircraft

      M e et -

    ing

      an d

      Exposition,

      W ic h ita , K S,  A pril 1979.

    5

    Goldstein,

     S.,

      "O n the Vortex Theory of Screw

     Propellers,

    Pro-

    ceedings  of the Royal  Society  of London,  Series

     A,

     Vol.  123, 1929,

    pp .

     440-465.

    6

    L o c k ,

      C.,

      The

      A pplication

      of  Goldstein's  A irscrew Theory to

    D es ign, "  British A er onautical

      R esearch

      Com m ittee , RM

      1377,  N o v.

    1930.

    7

    L o c k , C.,

      "An A pplication of P randtl 's  Theory  to an  A irscrew,"

    British

      Aeronautical  R es ear ch

      Com m ittee , RM

      1521,

      A u g.

      1932.

    8

    L o c k ,

     C., Tables

      for U se in an

      E m pirical M ethod

      of

      A irscrew

    Strip Theory C alculations,"

      British  A er onautical

      R es ear ch

      Commit-

    tee, RM 1674, Oct.

      1934.

    9

    Larrabee,

     E.,

      The  Screw  Propeller, Scientific  American,

     Vol.

    243,  No. 1, 1980,  pp.  134-148.

    10

    W ilson,

      R., and Lissaman, P., Applied  A e ro d yn a mic s of

      W i n d

    P o wer  M achines ," O r egon

      S tate

      U n i v .,  N S F / R A / N - 7 4 - 1 1 3 ,

      P B-

    2318595/3,

      Corvallis,

      O R ,  July  1974.

    H

    Viterna, A.,  and J anetz ke, D.,  Theoretical  an d

      Experimental

    Power  from  L arge Horizontal-A xis  Wi n d

     Turbines,

    Proceedings from

    the   Large  Horizontal-Axis  Wind Turbine Conference,  DOE/NASA-

    L e R C ,

      July  1981.

    12

    R e id ,  E. G.,  The  Influence  of  Blade-W idth Distribution  on

    Propeller   Char acter is t ics , " N A CA TN  1834,

      M a rc h  1949.

    13

    Page,  G .  S.,  and Liebeck, R.

      H.,

      Analysis  of D ual-R otation

    Propellers,"

     AIAA  P a p e r 89-2216,  A u g .  1989.