design status of the solar uv-vis-ir telescope...

39
Design status of the Solar UV-Vis-IR Telescope (SUVIT) K.Ichimoto (Kyoto U., Y.Katsukawa , Y.Suematsu, H.Hara, S.Tsuneta (NAOJ), T.Shimizu, K.Matsuzaki (JAXA) and Solar-C WG Hinode-6, Solar-C Science Meeting, 13 Aug. 2012 in St Andrews Rev. 2012.8.9

Upload: others

Post on 23-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Design status of theSolar UV-Vis-IR Telescope

    (SUVIT)

    K.Ichimoto (Kyoto U.),Y.Katsukawa , Y.Suematsu, H.Hara, S.Tsuneta (NAOJ),

    T.Shimizu, K.Matsuzaki (JAXA)and Solar-C WG

    Hinode-6, Solar-C Science Meeting, 13 Aug. 2012 in St Andrews

    Rev. 2012.8.9

  • The task of SUVITMeasure the magnetic field and plasma motion at the locations (from phtosphere to uppermost chromosphere) where the magnetic actions are taking place, with the highest angular resolution and spectropolarimetricprecision ever achieved.

    Toward the understanding of,,– origin of the sun’s dynamic atmosphere (= chrompshere and corona),– fundamental MHD processes (reconnection, wave, acceleration,etc.),– mechanism of explosive phenomena (flare, CME,,) .

  • The design policy of SUVITEmploy the advantage of the space to the utmost.(We should never ignore ground-based telescopes)

    Advantages of space;- Continuous sun light 24h/day (geo-synchronous orbit)- Constant PSF High spatial resolution diffraction limited optics High precision polarimetry high throughput

    - Infinite isoplanatic angle Large field of view large ‘etendue’ (acceptance angle)

    - Accessibility to shorter wavelength Include MgII 280nm (TBD) wide wavelength coverage

    - No scattered light from the sky (coronagraph)- Different view angle from the earth (synergy with ground)

    3

  • Important delta from SOT/Hinode

    • Spatial resolution• Polarimetric sensitivity• New spectral lines for

    chromospheric diagnosis• Cadence of magnetogram

    wide coverage

    Efficient 2D-spectropolarimetry& large telemetry

    Larger telescope

    Demand on HW

    As SOT/Hinode, SUVIT will have Filtergraph (BFI, NFI) and Spectro-polarimeter (SP)

  • Design goal -1

    Spatial resolutionSOT x 3 = dx = 0.05 ~ 0.1” = 35 ~ 70km- dx ~ photon mean free path in the photosphere

    resolve the collapsed magnetic flux tubes- dx < thickness of line forming layer 3D structure in photosph.- 10 times higher sensitivity for flux/energy elements (Bll dx2, j2)- chromosphere unpredictable discovery

    Requirement to the telescope Strehl > 0.8 @ 633nm

    PSF @280 (Strehl ~ 0.34) recovered by post-processing

    Need 1.2 - 1.5m telescopeSufficient spatial sampling is crucial! e.g. dx ~ 0.015”

  • Design goal -2

    Field of view• Ubiquitous, elementary phenomena (spicule, flux elements,,) can

    be captured by a few hour observing run with a small FOV ( 180” x 180”FG need dual modes; ‘high resolution mode’ and ‘wide FOV mode’!

    60”x60”

    Do you want a continuous observation for days with this FOV?

  • 100”x100”

    SUVIT FOV180”x180”

    SOT 320”x160”

    17.59=19507

  • Design goal -3

    Wavelength coverage• Measure the magnetic field of chromosphere by Zeeman effect

    extension to longer wavelength is inevitable• Observe chromospheric dynamics with a higher resolution and

    contrast demand for shorter wavelength, i.e. MgII 280nm

    Optics that accepts 280nm ~1100nm!

    SUVIT candidate lines

  • Design goal -4

    Polarimetric sensitivity• For chromospheric magnetic field -- 10-4 in CaII 854nm & HeI

    1083nm • integration time w/ 1.5m telescope ~ 10sec for 0.2”x 0.2”pix

    • For photospheric magnetic field -- 10-3 ~ 10-4

    Need high throughput (= large aperture, high transmission),& fast readout of camera /data processing

    CaII 8542A inversion testing(de la Cruz Rodriguez et al 2012)

    simulation

    = 10 -4

    = 10 -3

    Bz Bx By

  • Design goal -5

    Time resolution (for spectro-polarimetory)• Time needed for scanning a spicule with a slit

    – 5” /0.2” x 10sec = 250sec– Scanning speed ~ 14km/s too slow!

    • To capture the chromospheric dynamic phenomena, 2D (Integrated Field Unit; IFU) spectroscopy is required

    • For observations of photospheric B and chromospheric Doppler, a slit spectroscopy has advantage (higher throughput & resolution)

    Require both slit and 2D spectro-polarimetry!

    spectrograph

    FOV of IFU spectro-polarimeter

    slit

    flare

    wavelengthFilament

  • SUVITItem DescriptionTelescope Aplanatic Gregorian telescope: diameter of primary: ~1.5m

    Focal Plane Instruments Broadband Filtergraph (BF), Narrowband Filtergraph (NF), Spectro-polarimeter (SP)

    Wavelength coverage 280 nm (TBD) – 1100 nm

    Spectral lines(spectro-polarimetry)

    Chromosphere: He I 1083 nm, Ca II 854 nm Dynamics: Mg II 280nm (not baseline)Photosphere: Si I 1082.7 nm, Fe I 525 nm

    Spectral lines(imaging)

    Chromosphere: Mg II 280nm (TBD), Ca II 854nm, H I 656nm, Na I 589nm, Mg I 517nmPhotosphere: Fe I 525 nm, continuum (wavelength TBD)

    Sampling scale Imaging: 0.015” (narrow field), 0.045” (wide field)Spectro-polarimetry: 0.07”

    Spatial resolution (or imaging performance)

    Imaging: 0.05” at 280nm (TBD), 0.09” at 525nm, 0.14” at 854nmSpectro-polarimetry: Slit scan: 0.14”, IFU: 0.14”(along slit)×0.18” (across slit)

    Slit width Slit: 0.07”, IFU: effectively 0.18”

    Spectral resolution Narrowband filtergram: ~50,000Spectro-polarimetry: 100,000 –210,000 (slit), ~96,000 (IFU)

    Exposure time Intensity observations: 0.05 – 1 sec, Polarimetric observations: 1 – 20 sec

    Polarimetric accuracy of chromospheric lines

    1×10-4 (6×10-3) for 0.2” (0.1”) sampling and 20 (1) sec integration Sensitivity of Blong: 1–2 (10-20) G, of Btrans: ~100 (~300G) [Zeeman], 0.1–100 [Hanle] G

    Filed of view Imaging: 61×61 arcsecs (narrow field), 184×184 arcsecs (wide field)Slit scanning polarimetry: 184×143 arcsecs2D spectro-polarimetry (IFU) : 10×10 arcsecs

  • SUVITItem Science requirements Science

    backgroundsRelated hardware limitations

    1.5m telescope aperture - High spatial resolution

  • SUVIT basic param’s (goal)SOT/Hinode SUVIT/Solar-C

    BFI Wavelength 388 - 668nm (280) - 668nm

    Spatial resolution 0.2” 0.05” - 0.11”

    FOV 220” x 110” 61” x 61” (narrow)184” x 184” (wide)

    NFI Wavelength 517 - 656 nm 517 - 854 nm

    Spatial resolution ~0.3” ~0.1”

    FOV 320” x 160” ~80” x 80” (narrow)~200” x 200” (wide)

    SP Wavelength 630 nm (280), 525, 854, 1083 nm

    Spatial sampling 0.16” 0.07” (slit)0.18” (IFU)

    FOV 320” x 160” 184” x 143”(slit)~10” x 10” (IFU)

    Sensitivity 10-3 10-3 - 10-4

    Time resol. 180” x 140”(10-3) 10” x 10”

    ~6000 s340 s

    ~2600 s1 s 13

  • Current baseline designand

    critical area

    14

  • SUVIT ongoing design work• Maximum usage of the Hinode heritage

    – An axi-symmetric Gregorian telescope with 1.5m aperture

    – Filtergraph (BFI, NFI) and Spectro-polarimeter (SP)– Common rotating waveplate as a pol. modulator– Image stabilizing system with a tip-tilt mirror– Heat dump mirror and 2nd field stop to minimize

    the heat lord to FPP

    • But, SUVIT’s new demands make it something different from the SOT/Hinode …

    15

  • 16

    1300

    Pupilϕ60

    200

    SP package

    FG package

    200

    1300

    400

    400

    Optical layout (baseline)

    TTMϕ89.2

    PMUϕ60

    CMU

    BSϕ120.2

    Reimg-lensϕ110.8

    Scan mirrorϕ126.8

    Folding mirrorϕ105.0

    2FS

    CT

    IF unit

    Entrance of FG packageϕ128

    Beam size FOV 200”x200”(diagonal 282”)

  • 17

    SP package

    FG package

    1300

    Pupilϕ60

    PMUϕ73.4

    TTMϕ90.8

    CLUϕ87

    1300

    748.6

    748.6

    389M3ϕ132

    2FS

    M3ϕ132

    Folding mirrorϕ79

    CLUϕ87

    PMUϕ73.4

    TTMϕ90.8

    Reimg lensϕ63.4

    Scan mirrorϕ79.4

    Folding mirrorϕ70.2

    CT

    IF unit

    Entrance of FG packageϕ92

    Beam size FOV 200”x200”(diagonal 282”)

    Optical layout (another option)

  • Layout of the spectrograph

    720 mm

    24 m

    m

    ~120 mm

    92 mm

    ~184 mm

    36 mm

    spectrum mask

    Slit/IFU

    detector

    offset parabola

    grating18

    Relay lensx1.5 magnification

    The spectrograph with F/7.8 covers 1.5xFWHM of exit beam from the IFU.Collect 80% of photon.

    PBS

    Optical fiber IFU and slit Teledyne H2RG + SIDECAR ASIC, HgCdTe, 2k x 2k pixels, 18m/pixReadout 64 frames/sec

  • Choice of tunable filterLyot filter vs. Fabry Perot

    Air spaceFoster etal 2009 Opt. Soc. America

    LiNbO3Schuhle etal 2009(?)

    19

    Tunable filter FPP/SOT

    Diameter (D=1.5m, FOV=2’)~40mm ~200mm ~80mm

    Oil chamber Mitigated by LCVR

    Big, heavy!Stability of flat

    FragileSlow tuningSmall FSR

    Experiment for LCVR Lyot filter is ongoing in SUVIT J-team and LMSAL/HAO.(Michelson -- another possibility..?)

  • TA: Telescope Assy (MELCO)

    FG: Filtergraph (NASA)

    SP: Spectrograph (MELCO,TBD)

    PMU CTAdj.

    M2M1

    BS

    CT-Cam

    SP-Cam

    FG-Cam

    CL

    SP-E-box(MHI)

    FG-E-box(NASA)

    Scan-M Gratingslit FW

    E-box HK,HTR

    E-box

    Baseline config 2012.8.2TF FW1&2

    HK, HTR

    HK,HTR

    BS

    focus

    focus

    IF unit(MELCO)

    TA-E-box(MELCO)

    PMU signal

    S/C bus

    CT command

    ( TBD )

    controldata

    Control,data

    Control,status

    ( ESA? )

    20

    SUVIT block diagram and possible task share

    shutter

  • 21

    Design goal and impact on the instrument

    MgII 280nm- challenging optical design may force a compromised optical performance

    in Vis.&IR- challenging coating may cause a less throughput, larger heat absorption,

    polarization effects- need more serious study of contamination control

    HeI 1083nm in SP- IR camera saturates in room temp. How to test the instrument on ground..

    FOV 200” w/ 1.5m aperture- large beam size, big optical elements (~14cm lens & BS in baseline layout)

    10-4 accuracy in 10sec - fast readout (2kx2k 64frame/s), fast data transfer & processing- 2D spectro-polarimetry lower Technical Readiness Level

  • 22

    CollimatorCovering 280nm – 1100nm is a challenge..

    3 mirror system(current baseline)

    We need to allow a significant field curvature correction in FPP

    Silica CaF2 Silica CaF2

    Lens system with Silica+CaF2(athermal solution)

    We need to allow a significant chromatic aberration correction in FPP

  • Scientific issues critical for SUVIT/Solar-C

    • Scientific advantage and technical challenge for having MgII 280nm.

    • FOV 184” x 184” necessary and sufficient?• Does Ca854nm/He1083nm spectro-polarimetory

    (10”FOV, 0.2”pixel, dI/I~10-4 in 10s) really tell us .. – energy carried by waves to solve heating problem?– good boundary condition for field extrapolation?– direct evidence of magnetic reconnection?– origin of spicule, prominence, flare,,?

    •23

  • Summary

    24

    SUVIT’s design goal and current concept are presented. More works on scientific justifications and technical feasibility are needed..

  • Backup slides

    25

  • SOT lines

    D1

    6303

    H

    CaH

    26

    imaging

    Spectro-polarimetory

  • D1

    SUVIT lines

    6303

    H

    CaK

    HeI

    CaII IR

    27

    imaging

    Spectro-polarimetry

  • 28

    Polarization Calibration Unit (PCU), Collimating Mirror Unit (CMU), heat dump mirror (HDM), secondary field stop (2FS), polarization modulation unit (PMU), tip-tilt mirror (TTM)

    Baseline Telescope Design

    TTM

    PMU

    To FPP Out-of-field light

  • M1 structure and support

    29

    Light waighted (~90%) Zerodure or ULE

    Designed for minimum gravitational deformation when the mirror is in vertical.

  • Telescope frame structure and I/F to S/C

    30

    Tangential support of M2 to prevent the defocus caused by a thermal effect (lesson learned from Hinode OTA)

  • Obs Mg II h&k G-band Na I D H I Hα Ca II IR He Iwavelength 280nm 430nm 589nm 656nm 854nm 1083nm

    Al+MgF2

    Ag

    Highly enhanced Ag(SAGEM)

    Coating

    An issue remains that non-uniformity of coating over the large mirror gives non-negligible WFE degradation with wavelengths. also polarization..

    31

  • Accommodating Slit and IFU

    32

    Idea -1

    Idea -2

    24.6 mm

    25 mm 25 mm

    8 8

    18.5 mm

    ~35 mm

    ~66 mm

    F/23.6 F/7.83

    F/23.6 F/7.83

    F/23.6 F/7.83

    18.5 mm

    14.5 14.5

    Switching mechanism4 slits / 4 IFU slits

    No mechanism1 slit + 3 IFU slits

  • Parameters of the spectrographSlit BiFOIS image slicer

    Focal length L 720 mm 720 mm

    F-ratio F 23.57(f=1414.4 for 0.07”/12µm)

    7.83

    Footprint diameter D=L/F 31 mm(Diffraction λ/s x L = 65mm @ 1083 nm)

    92 mm

    Grating size W 31 x 62 mm 92 x 184 mm

    Groove density (1/σ) 110 /mm 110 /mm

    Order m 15 @ He I 1083 nm19 @ Ca II 854 nm31 @ Fe I 525 nm

    15 @ He I 1083 nm19 @ Ca II 854 nm31 @Fe I 525 nm

    Spatial sampling 0.07” / 12 µm(FOV 143”x143” with 2Kx2K)

    0.18” /30 µm(FOV 11”x11” with 64x64)

    Pixel size (at the spectrum mask) p 12 µm(12 x 1.5 mag = 18µm)

    12 µm(12 x 1.5 mag = 18 µm)

    Slit width s 12 µm 30 µm

    Spectrum resolution (detector sampling)λ/Δλ = 2L tanβ/p

    2.4×105 2.4×105

    Spectrum resolution (slit width)λ/Δλ = 2L tanβ/s

    2.4×105 9.6×104

    Spectrum resolution (grating size)λ/δλ = m N = m W/σ

    1.0×105 @ 1083 nm1.3×105 @ 854 nm2.1×105 @ 525 nm

    (for W=62 mm)

    3.0×105 @ 1083 nm3.8×105 @ 854 nm6.3x105 @ 525 nm(for W=184 mm) 33

  • Pointing stabilitySolar-C requires 2 – 3 times higher pointing stability than Hinode

    Critical area

  • Contamination control;SOT throughput (real) SOT contamination model

    We do not understand exactly the cause of degradation of SOT throughtput. Need further experiments for Solar-C!

  • FG: Filtergraph (NASA)

    SP: Spectrograph (MELCO)BS

    CT-Cam

    SP-Cam

    FG-Cam

    SP-E-box(MHI)

    FG-E-box(NASA)

    Scan-M Gratingslit FW

    E-box HK,HTR

    E-box

    SUVIT block diagram and possible task share

    TF FW1&2

    HK, HTR

    TA: Telescope Assy (MELCO)

    PMU CTAdj.

    M2M1

    CL

    HK,HTR

    BS

    focus

    focus

    IF unit (MELCO)

    TA-E-box(MELCO)

    S/C bus

    ( TBD )

    PMU signalCT com

    controldata

    Control,data

    Control,status

    ( ESA? )

    36

    Another config 2012.8.2shutter

  • Image slicer (fiber ribbon)

    • Fiber ribbon developed by Collimated Holes (Inc., CHI) with H. Lin (Hawaii Univ.)

    • Size of the elemental fiber 10µm x 40µm.• Material: Bolosilicate Glass• Polarization maintaining (to be verified)

    37

    input arrayoutput array

  • Detector (candidate): H2RG

    38

    Teledyne Co.H2RG FPA, SIDECAR ASIC, HgCdTe, 2k x 2k pixels, 18m/pix

    Space qualified(TRL-6 for H2RG, TRL-9 for SIDECAR)

    Readout 64 frames/sec, (WP 1 sec/rot)

    Critical areas;- very fast data transfer and demodulation- possible saturation at room temp.

  • Photometric accuracy vs. spatial scale

    1000 100 1 0.1Spatial scale (arcsec)

    10-2

    10-3

    10-4

    Pola

    rimet

    ricse

    nsiti

    vity

    10

    SDO/HMI

    Hinode/SOT

    ATST, EST

    Solar-CSUVIT

    39