dgao_05

Upload: thang-dang

Post on 03-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 DGaO_05

    1/15

    1

    Measurement of the frequencylinewidth of single-mode lasers

    by means of a quadrature signalinterferometer

    Th. Kinder, Th. Mller-Wirts: TEM Messtechnik GmbH, HannoverK.-D. Salewski, J.-U. Gnther: University of Greifswald

  • 8/12/2019 DGaO_05

    2/15

    2

    What is (spectral) laser linewidth?

    Laser - Meter

    Spectral density

    laser linewidth

  • 8/12/2019 DGaO_05

    3/15

    3

    Why is there a laser linewidth?

    [ ]

    W HWB HWB

    HWB HWB

    t jt j

    Lc

    t

    E E

    E f f f

    j

    E dt e E dt et E f

    11

    24

    2

    1

    )(4)()()(

    )(2

    )()(

    222

    20

    2

    20

    20

    22

    20*2

    0 0 0

    0)(20

    2 0

    ==

    =

    +=

    +

    ==+

    ===

    +

    bzw.

    reiteHalbwertsbderBestimmung

    ProfilLorentz

    Classical model: The oscillations of an atomic dipole decay due to the emission of radiation.As a result, the emitted wave is of finite length.

    E02

    2

    0

    f ( ) 2

    Fourier Transform: After a Fourier transform, we find a spectral density function withfinite width, centered about the eigen frequency of the dipole 0.

    decay time:

    ct clt ee E t E W t jt ====

    1)( 020 length of the wave:

    Determination of the spectral width

  • 8/12/2019 DGaO_05

    4/15

    4

    Linewidth measured with FPILaser

    optical frequency

    photo current I

    photo detector

    Fabry Perot interferometer

    I

    Advantage:

    direct signal detection

    Disadvantage:

    measurement only at distinct center frequencies

    no measurement while tuning the laser

  • 8/12/2019 DGaO_05

    5/15

    5

    Linewidth measured by beatOften cited statemant of Dirac:Each photon ... interferes only with itself. Interference between different photonsnever occurs.

  • 8/12/2019 DGaO_05

    6/15

    6

    Linewidth measured by beat

    Advantage:

    fast signal detection

    Disadvantage:

    2 lasers required

    no measurement while tuning the laser

    suppression of disturbations that affect bothlasers synchronously

    Often cited statemant of Dirac:Each photon ... interferes only with itself. Interference between different photonsnever occurs.

  • 8/12/2019 DGaO_05

    7/15

    7

    Interferometric linewidth measurement

    Interferometer Signal:

    opt. frequency, D geometric path difference,

    n refractive index, c0 speed of light in vacuum

    I = I o (1 + cos ) with 00

    4

    +=

    c Dn

    Albert A. Michelson(1852-1931)Quelle: http://www.sil.si.edu

    Lichtquelle

    Detektor D

    Principle of operation:

  • 8/12/2019 DGaO_05

    8/15

    8

    Interferometric linewidth measurement

    opt. frequency, D geometric path difference,n refractive index, c0 speed of light in vacuum

    I = I o (1 + cos ) with 00

    4

    +=

    c Dn

    Albert A. Michelson(1852-1931)source: http://www.sil.si.edu

    constant and known: nD = c0 / 4

    = c0 / 4 nD

    Incremental laser interferometer

    D , constant and known:

    Michelson-Morley-Experiment

    c0 = 4 nD /

    D constant and known:

    Measurement of Laser frequency changeSource: http://utf.mff.cuni.cz/Relativity

    =0 !

  • 8/12/2019 DGaO_05

    9/15

    9

    Optical phase quadratureGeneration of a pair of

    Sy = S y0 sin and

    Sx = S x0 cos

    l Laser Wavelength

    Quadrature Signals

  • 8/12/2019 DGaO_05

    10/15

    10

    Interpretation of quadrature signals1)

    2)

    3)

    1) regular laser frequency scan

    2) a mode hop occurs

    3) a multi-mode state occurs

  • 8/12/2019 DGaO_05

    11/15

    11

    Interferometer set-up (1)

  • 8/12/2019 DGaO_05

    12/15

    12

    iScanTEM Messtechnik GmbHCoSyThomas KinderThomas Mller-WirtsKlaus-Dieter SalewskiFaserinterferometerLinienbreiteADI

    absolute distance interferometryDBR diode current driverlaser diode driverfiber interferometerfibre interferometerDFB diode current driverlaser frequency stabilisation

    Interferometer set-up (2)a

    FPI

    TC TemperatureStabilisation

    NormalisationPhoto Detectors

    Quadrature SignalPhoto Detectors

    WedgedBeam Splitter

    laser beam toexperiment

    Fabry-Perot-Interferometer

    BS

    PB A PB B

    b

    IbIa

    Advantage:

    fast signal detection

    measurement with 1 laser

    measurement possiblewhile tuning the laser

    Disadvantage:

    calculation of phase fromx/y coordinates

    Patents:US 6,178,002DE 197 43 493 A 1

    principle fairly unknown(until now)

  • 8/12/2019 DGaO_05

    13/15

    13

    Linewidth measurement in the

    presence of noise1. Interferometer path difference2. Detector upper cut-off frequency

    Observed noise in x-y-planeFourier transform of the phase noise

    Noise spectrum does not exceed the detector frequency range.

    MHz f m L G 3005,0 == d.h. MHz f El 250=

    laser onlaser off

  • 8/12/2019 DGaO_05

    14/15

    14

    Linewidth measurement in the

    presence of noise

    == 774,122 HBW El R Las

    MHz HBW MHz HBW Las El 29,419,1 ==

    1. Recording of phase values for 0,2 ms

    2. Calculation of the standard deviationfor both cases (laser on and laseroff)

    3. Calculation of the laser linewidth :

  • 8/12/2019 DGaO_05

    15/15

    15

    ResultsLinewidth of a DBRlaser diode

    Frequency noise and

    linewidth during lasertuning