diagnoscsandprognoscs** … and prognostics of electro-mechanical actuators, eu/ieee fdd workshop,...

31
Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 Diagnos(cs and Prognos(cs of ElectroMechanical Actuators Edward Balaban, NASA Ames Research Center https://ntrs.nasa.gov/search.jsp?R=20130013551 2018-06-23T01:31:50+00:00Z

Upload: duongtuyen

Post on 14-May-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012

Diagnos(cs  and  Prognos(cs    of  Electro-­‐Mechanical  Actuators  

Edward  Balaban,  NASA  Ames  Research  Center  

https://ntrs.nasa.gov/search.jsp?R=20130013551 2018-06-23T01:31:50+00:00Z

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 2

Team  Members  

q  Edward  Balaban  

q  Sriram  Narasimhan  

q  Abhinav  Saxena  

q  Indranil  Roychoudhury  

q Michael  Koopmans  (student  intern)  

q  Zachary  Ballard  (student  intern)  

q  Sterling  Clarke  (student  intern)  

2

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 3

Outline  

q  NASA  Ames  DiagnosFcs  and  PrognosFcs  Group  

q  EMA  health  management  -­‐  moFvaFon  and  approach  

q  Data  collecFon  

q  DiagnosFc  system  development  

q  PrognosFc  system  development  

q  Laboratory  experiments  

q  Flight  experiments  

q  Summary  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 4

Terminology  

Fault  DetecFon  

Diagnosis  

Prognosis  

Decision  Making  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 5

Diagnos(cs  and  Prognos(cs  Group  at  NASA  Ames  •  Areas  of  work  

–  DiagnosFc  systems  –  PrognosFc  systems  –  Decision-­‐making  systems  –  V&V  techniques  

•  Components  and  systems  studied  –  Electro-­‐mechanical  actuators  –  Power  electronics  –  BaPeries  –  Composite  structures  (in  collaboraFon  with  Stanford  University)  –  Cryogenic  refueling  systems  (in  collaboraFon  with  NASA  Kennedy)  

•  Methods  –  Discrete  model-­‐based  diagnosis  -­‐  Livingston  –  Hybrid  (discrete/conFnuous)  diagnosis  –  HyDE  –  Model-­‐based  prognosis  –  parFcle  filters,  Kalman  filters  –  Data-­‐driven  prognosis  –  neural  networks,  Support  Vector  Machines,  Gaussian  Process  

Regression  –  Decision-­‐making  –  stochasFc  opFmizaFon  methods,  game-­‐theoreFc  methods,  dynamic  

programming  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 6

Diagnos(cs  and  Prognos(cs  Group  (con(nued)  

•  Test  faciliFes  –  EMA  testbeds  –  ADAPT  (Advanced  DiagnosFcs  and  PrognosFcs  Testbed)  –  aircraY  power  distribuFon  –  Electrical  baPery  aging  testbed  –  Electronics  aging  testbeds  (for  MOSFETs,  IGBTs,  and  capacitors)  –  An  environmental  chamber  (temperature,  pressure,  and  humidity)  

•  Test  vehicles  –  K11  planetary  rover  prototype  –  Edge  540  UAV  (NASA  Langley)  –  UH-­‐60  Blackhawk  helicopters  (US  Army  at  NASA  Ames)  

 

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 7

Mo(va(on  for  EMA  Health  Management  

7

•  EMA  are  becoming  a  component  criFcal  to  aircraY  and  spacecraY  safety  

•  Performance  data  on  EMA,  both  laboratory  and  in-­‐flight,  is  scarce  

•  A  variety  of  fault  types  can  occur  (discrete/conFnuous,  abrupt/incipient)  in  a  variety  of  subsystems  (mechanical,  electrical,  control  system,  or  sensor).  

•  We  need  to  be  able  to  diagnose  faults  quickly  and  accurately,  to  enable  prognosis  and  miFgaFon  

•  We  believe  that  collecFng  and  tesFng  on  high-­‐quality  nominal  and  fault-­‐injected  data  is  essenFal  to  developing  effecFve  EMA  health  management  systems  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 8

Objec(ves  

•  Collect  data  on  nominal  and  faulty  Electro-­‐Mechanical  Actuator  (EMA)  performance  

•  Develop  fault-­‐detecFon  and  fault-­‐propagaFon  models  

•  Develop  diagnosFc  systems  

•  Verify  models  and  validate  diagnosFc  systems  using  laboratory  and  field  data  sets  

•  Develop  and  evaluate  model-­‐based  prognosFc  health  management  (PHM)  systems  

•  Integrate  with  other  aircraY  subsystem  PHM  modules  and  a  high-­‐level  vehicle  health  reasoner  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 9

Nominal  and  fault  modeling  

•  Fault  analysis  

•  Lubricant  effects  modeling  

•  Micro-­‐scale  mechanical  modeling  

•  Wear  modeling  

•  Winding  shorts  modeling  

•  FuncFonal  system  models  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 10

Experimental  Data  Collec(on  

Capabili(es:    

•  5  metric  ton  load  capacity  

•  AccommodaFon  of  test  actuators  of  various  sizes  and  configuraFons  

•  Custom  moFon  and  load  profiles  

Sensor  Suit:  

•  VibraFon  

•  Load  

•  Temperatures  sensors  

•  High-­‐precision  posiFon  sensors  

•  Current  sensors  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 11

The  FLEA  (Flyable  Electromechanical  Actuator)  

•  Allows  diagnosFc  and  prognosFc  experiment  execuFon  in  

realisFc  condiFons  

•  Designed  to  funcFon  as  an  unobtrusive  secondary  payload  

•  No  aircraY  modificaFons  are  required  

•  Experiments  can  be  done  during  virtually  any  flight  opportunity  

•  Designed  to  be  quickly  adaptable  to  different  types  of  aircraY  

•  Faults  can  be  injected  without  endangering  the  host  aircraO  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 12

The  hardware  

12

Sensor  suite  •  High  Speed  (20kHz)  

•  Accelerometers  

•  Low  speed  (1kHz)  

§  current  sensors  

§  voltage  sensors  

§  posiFon  sensors  §  temperature  

sensors  

§  load  cell  

Major  hardware  components  •  Two  test  actuators  

•  Load  actuator  

•  MagneFc  coupling  system  

•  MoFon  controller  

•  Central  computer  

•  DAQ  system  •  Sensors  

•  Data  storage  system  

Major  soOware  components  •  Control  system  

•  GUI  

•  Signal  processing  and  data  extracFon  

•  DiagnosFc  system  

•  PrognosFc  system  •  Experiment  recording  and  

data  archival  system  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 13

Opera(on  

•  An  aircraY  actuator  is  selected  to  be  “mimicked”  

•  FLEA  operates  in  parallel  with  the  selected  actuator,  execuFng  the  same  moFon  

and  load  profiles    

•  Load  profiles  are  calculated  from  aerodynamic  data  and  scaled  down  for  the  FLEA  

range,  if  necessary  

•  One  test  actuator  is  kept  nominal,  the  other  one  is  fault-­‐injected  

•  Load  path  can  be  switched  in-­‐flight  from  

the  nominal  test  actuator  to  the  fault-­‐

injected  one,  via  the  magneFc  coupling  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 14

Test  Ar(cles  –  UltraMo(on  Bug  Actuators  

Mechanism type Ballscrew with a DC electric motor

Screw thread pitch 0.125 in/rev Efficiency 98% Dynamic load 5000 lb*in/sec (100% duty

cycle) Motor stall torque 41.3 oz/in Motor no-load speed 102.5 rev/sec Motor stall current: 8.11 amps Motor no-load current: 0.16 amps

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 15

Hybrid  Diagnos(c  System  

15

•  Hybrid model / feature-driven approach

•  Qualitative analysis on low speed data to reduce the possible fault set

•  The reduced fault set disambiguated by looking for specific features in high speed data

•  Runs continuously, updating its belief about the system health as more data becomes available

QualitaFve    Classifier  

QuanFtaFve    Classifier  

Low speed data

High speed data

Fault candidates ambiguity set

Final diagnosis

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 16

Hybrid  Diagnos(c  System  (more  details)  

•  Qualita(ve  analysis  

–  QualitaFve  signatures  of  fault  derived  from  model  as  well  as  data  from  faulty  runs.  

–  An  observer  uses  differenFal  equaFons  to  track  plant  behavior  

–  QualitaFve  symbols  generated  when  predicted  behavior  (from  observer)  is  not  

consistent  with  actual  behavior  (sensor  data)  

–  Comparison  of  symbols  and  signatures  results  in  reducFon  of  possible  fault  set  

 

16

•  Disambigua(on  

–  Features  selected  based  on  diagnosability  analysis  of  qualitaFve  approach  

–  Features  specific  to  selected  ambiguity  group  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 17

Qualita(ve  Fault  Diagnos(c  Architecture  

System  receives  inputs,  produces  outputs  

Abstract  magnitude  and  slope  of  fault  deviaFons  using  +  (increase),  –  (decrease),  and    0  (no  change)  

symbols  

Detect  faults  based  on  staFsFcally  significant  deviaFons  from  model-­‐predicted  behavior  

Isolate  faults  by  comparing  to  model-­‐

predicted  fault  signatures  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 18

Fault  Detec(on  

•  For  each  sensor,  residual  r(t) = y(t) - y(t) •  Ideally,  residual  is  zero,  use  Z-­‐test  to  determine  if  nonzero  residual  is  staFsFcally  

significant  •  Use  set  of  sliding  windows  

–  W1  computes  variance  of  nominal  residual  –  W2  computes  mean  of  residual  at  Fme  k  –  Wdelay  ensures  computaFon  of  variance  does  not  include  samples  from  aYer  fault  

appearance  

•  Compute  thresholds  using  Z-­‐test  and  selected  confidence  intervals  –  Residual  mean  outside  thresholds  implies  fault  

Variance  estimation

Mean  estimation

Wdelay

kFault  detection

W2W1

r(t)

^

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 19

Symbol  Genera(on  

•  QualitaFve  approach  based  on  analysis  of  fault  transients  •  Magnitude  and  slope  deviaFons  from  nominal  behavior  abstracted  as  +  (increase),  

-­‐  (decrease),  and  0  (no  change)  symbols  •  Symbols  generated  using  a  sliding-­‐window  scheme  similar  to  the  Z-­‐test  •  Fault  signatures  are  predicFons  of  how  the  magnitude  and  slope  of  a  

measurement  will  deviate  from  nominal  under  each  fault  case  •  Represented  using  symbol  pair  for  measurement  and  slope  •  Fault  isolaFon  performed  by  comparing  observed  measurement  deviaFons  to  

predicted  deviaFons  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 20

Data-­‐Driven  Fault  Disambigua(on  

•  AYer  an  ambiguity  set  is  obtained,  the  data-­‐driven  disambiguaFon  module  is  

triggered  

•  De-­‐noising  is  carried  out  in  real-­‐Fme  and  appropriate  features  are  computed  

•  Accelerometer  data  condiFoning  and  de-­‐noising  is  carried  out  by  characterizing  

noise  levels  when  actuators  are  staFonary  (e.g.  during  parts  of  trapezoidal  profiles)  

•  Noise  characterizaFon  consFtutes  determinaFon  of  bias  and  noise  variance  

20

0 5 10 15 20 25 30-8

-6

-4

-2

0

2

4

6

8

time (sec)

Acc

ele

ratio

n (

g)

Effect of Denoising

De-Noised SignalOriginal Signal

Effect of De-noising on a sinusoidal profile for a nominal EMA

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 21

High  Speed  Data  Feature  Extrac(on  •  Average  Signal  Energy  (ASE)  used  as  the  feature  to  disFnguish  between  jam  and  spall  faults  

•  The  feature  separates  the  jam  and  the  spall  faults  well  

–  Spall  faults  are  significantly  higher  in  energy  than  the  corresponding  nominal  scenarios  

–  Jammed  actuator  does  not  move  easily,  hence  has  lower  vibraFon  energy  

•  Depending  on  the  moFon  profile  and  load  levels  the  energy  varies  (inherently)  between  different  operaFonal  profiles  

•  Features  are  normalized  by  a  measure  of  this  inherent  energy  

•  Fault  disambiguaFon  success  rate  was  ~90%  (100%  for  spalls  and  80%  for  jam  faults)  

•   Due  to  noise  some  low  energy  jammed  scenarios  were  not  diagnosed  

0 10 20 30 40 50 60-20

-15

-10

-5

0

5

10

15

20

time (seconds)

Vibr

atio

n le

vel (

g)

Differences in Energy Levels from Nominal to Spalled EMA

Nominal EMASpalled EMA

sine sine sine sine trap trap trap trap trap triang triang triang triang triangsweep0

50

100

150

200

250

300

350

400

Load Profiles

Ener

gy M

easu

re

Accelerometer Energy Feature

Nominalspall

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 22

Laboratory  Experiments  •  Faults  introduced    

–  Actuator  ball  return  channel  jam  (discrete,  abrupt)  –  Lead  screw  spall  (conFnuous,  incipient)  –  Motor  failure  (discrete,  abrupt)  –  Sensor  dead  (discrete,  abrupt)  –  Sensor  bias  &  scaling  (conFnuous,  abrupt)  –  Sensor  driY  (conFnuous,  incipient)    

•  Profiles  –  UH-­‐60  Forward  Primary  Servo  (collected  in  flight)  –  Laboratory  experiments  with  a  wide  variety  of  moFon  and  load  profiles  

•  Total  experiments  =  320  –  Nominal  =  134  –  Jam  =  15  –  Spall  =  15  –  Motor  failure  =  15  –  Sensor  faults=  141  

22

1 2 3 4

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 23

Results  –  Diagnosis  Accuracy  

23

Fault Type  

Total Scenarios  

Correct Diagnosis  

Diagnosis Accuracy  

Nominal   134   133   99.25  Current Sensor Biased   15   15   100.00  Current Sensor Dead   15   15   100.00  Current Sensor Drift   15   15   100.00  Position Sensor Fault   21   13   61.90  Current Sensor Scaling   15   15   100.00  Ball Screw Return Channel Jam   15   10   66.67  Motor Failure   15   15   100.00  Lead Screw Spall   15   15   100.00  Temperature Sensor Bias   15   15   100.00  Temperature Sensor Dead   15   15   100.00  Temperature Sensor Drift   15   15   100.00  Temperature Sensor Scaling   15   15   100.00  Total   320   306   95.625  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 24

Prognos(c  Algorithm  •  Prediction algorithm: a Gaussian Process Regression (GPR) with neural network

covariance function (with a noise parameter) was used

( )( )( ) cIPxxxx

xPxxPx

xPxxxk

Td

jTij

Ti

jTi

jiNN

==

⎟⎟⎟

⎜⎜⎜

−+=

−−

−−

,,...,,,1~

~~1~~1

~~sin),(

21

11

11σ

•  Results  aggregated  based  on  50  runs  with  randomized  training  data  selecFon  and  hyper-­‐parameter  iniFalizaFon  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 25

Prognos(c  Valida(on  Scenario  

1.  Jam  was  injected  into  the  ball  screw  return  channel  of  a  test  actuator  on  the  FLEA  

2.  Performance  region  picked  where  a  nominal  actuator  can  operate  conFnuously  for  extended  periods  of  Fme  (100%  duty  cycle)  

3.  MoFon  and  load  profiles  were  designed  to  stay  inside  this  region  –  sine  wave  with  8  cm  (3.15  in)  peak-­‐to-­‐peak  amplitude,  0.5  Hz  frequency,  and  the  following  load  levels:  -­‐50,  +40,  and  +50  lbs  

4.  MoFon  was  performed  in  30  second  intervals,  with  15  second  cool-­‐down  periods  in-­‐between  

5.  Current  was  limited  to  6  amps  @  28  volt  for  the  enFre  system  at  all  Fmes  

6.  Experiments  were  executed  unFl  actuator  motors  failed  due  to  temperature  build  up  and  consequent  windings  insulaFon  failure  

7.  Failure  occurs  at  approximately  88  degrees  C  

Desired performance region

Ball  return  jam  (abrupt  fault)  

Heat  build-­‐up  due  to  increased  fric(on  (cascading  con(nuous  fault)  

Actuator  failure  due  to    motor  windings  short  

Jam mechanism

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 26

Run-­‐to-­‐Failure  Experiments  

0 500 1000 1500 200020

30

40

50

60

70

80

90

100

EMA Run-to-Failure Data

Time (sec)

Mot

or T

empe

ratu

re d

egC

+40 lbs Run 2filtered +40:2- 50 lbsfiltered -50+ 50 lbsfiltered +50Failure Threshold

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 27

End  of  Useful  Life  Predic(on  Results  

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

10

20

30

40

50

60

70

80

90

100

110

X: 1752Y: 88

Operational Time (seconds)

Tem

pera

ture

(C)

Life Prediction for EMA under Load Level 1 (+40lbs sine36)

Failure Threshold

EoL890

100 200 300 400 500 600 70020

30

40

50

60

70

80

90

Operational Time (seconds)

Tem

pera

ture

(C)

Life Prediction for EMA under Load Level 2 (+50 lbs sine50)

X: 642.8Y: 88

Failure Threshold

EoL450 540360

0 200 400 600 800 1000 1200 1400 1600 1800 200020

30

40

50

60

70

80

90

100X: 1421Y: 88

Operational Time (seconds)

Tem

pera

ture

(C)

Life Prediction for EMA under Load Level 3 (-50 lbs sine51)

Failure Threshold

EoL960780

Fail threshold = 88C Onset of detectable damage: 40C +40 lbs sine36 Load Condition tp1 = 890 MAPE = 6.62%; 2σ = 215s +50 lbs sine50 Load Condition tp1 = 360 MAPE= 4.76%; 2σ = 60s -50 lbs sine51 Load Condition tp1 = 890 MAPE = 8.02%; 2σ = 338s

* Colored bands around the predictions on the right-hand plots are the 2σ bounds

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 28

Flight  Tests  on  UH-­‐60  Black  Hawk  Helicopters  

•  Spall  and  ballscrew  jam  faults  injected  into  the  test  actuators  

•  Improved  data  acquisi(on  system  tested  

•  Diagnos(c  system  tested  •  Some  prognos(c  

experiments  executed  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 29

Recent  progress  

•  DiagnosFc  and  prognosFc  algorithm  improvements  

•  Hardware  improvements:  

–  New  accelerometer  signal  condiFoner  

–  Winding  shorts  simulator  

–  Robustness  improvements  

•  Sensor  fault  experiments  

–  PosiFon  sensors  (stuck)  

–  Temperature  sensors  (bias,  scaling,  driY)  

–  Current  sensors  (bias,  scaling,  driY)  

–  Hundreds  of  fault  scenarios  with  different  parameters  performed  

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 30

Summary  

•  Hardware  testbeds,  for  both  laboratory  and  flight  environment,  have  been  developed  

•  Prototypes  of  a  hybrid  diagnosFc  system  and  a  GPR-­‐based  prognosFc  system  created  

•  Various  types  of  fault  modes  injected,  both  in  soYware  and  hardware  

•  Tests  performed  to  validate  performance  in  nominal  and  fault-­‐injected  scenarios  

•  Experimental  data  is  available  on  NASA  Ames  DASHLink  website:  

hPps://c3.ndc.nasa.gov/dashlink/  

 

 

30

Diagnostics and Prognostics of Electro-Mechanical Actuators, EU/IEEE FDD Workshop, Toulouse, France, Oct 23-26, 2012 31

Thank  you!