differential amplifiers prof. ali m. niknejad prof. rikky...

30
Department of EECS University of California, Berkeley EECS 105 Spring 2017, Module 4 Prof. Ali M. Niknejad Prof. Rikky Muller Differential Amplifiers

Upload: others

Post on 08-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

Department of EECS University of California, Berkeley

EECS 105 Spring 2017, Module 4

Prof. Ali M. Niknejad Prof. Rikky Muller

Differential Amplifiers

Page 2: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

2

Announcements

l  HW11 due on Friday, last homework! l  Lab 6 due this week, last lab! l  Check web site for updates on RRR & finals week

office hours and review sessions: l  http://rfic.eecs.berkeley.edu/105/lectures.html

University of California, Berkeley

Page 3: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

3

Multistage Analysis Example

University of California, Berkeley

Page 4: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

4

Cutting Through the Complexity

University of California, Berkeley

1. Identify the “signal path” between the input

and output 2. Eliminate “background” transistors to reduce

clutter

3. For “background transistors, understand their role (e.g. DC biasing)

4. For frequency response, identify “hi-Z” nodes.

Page 5: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

5

Eliminate Clutter

University of California, Berkeley

Page 6: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

6

Identify Signal Path & Amplifier Stages

University of California, Berkeley

VB1

VB2

VB3

Page 7: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

7

DC Biasing

University of California, Berkeley

VB1

VB2

VB3

Page 8: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

8

Small-Signal Models

University of California, Berkeley

ro4

ro1

Page 9: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

9

Two-Port Model

University of California, Berkeley

Page 10: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

10

Basic Amplifier Types

Page 11: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

11

Differential & Common Mode Signals

Page 12: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

12

Why Differential?

l  Differential circuits are much less sensitive to noises and interferences

l  Differential configuration enables us to bias amplifiers and connect multiple stages without using coupling or bypass capacitors

l  Differential amplifiers are widely used in IC’s –  Excellent matching of transistors, which is critical for

differential circuits –  Differential circuits require more transistors à not an issue

for IC

Page 13: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

13

Brain-Machine Interfaces

Hochberg, Nature ‘12 Source: Hochberg et al., Nature ‘12

Page 14: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

14

Neural Recording

University of California, Berkeley

l  An array of electrodes is implanted in the motor cortex and senses extracellular signals that include firing from nearby neurons

l  The propagation of signals from neuron to neuron is called an Action Potential, which is analogous to a digital “pulse”

Page 15: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

15

Extracellular Neuronal Signals

l  The goal of a neural recording device is to record the small-amplitude neural signals and pick out the meaningful signals from the “noise”.

l  These signals are then decoded to create trajectories, movements, and speeds for controlling prostheses, computers, etc.

Action Potential �spikes�

300Hz-10kHz 10µV-1mV

Local Field Potential (LFP) 1Hz-300Hz; 10µV-1mV

volta

ge

time

Page 16: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

16

60Hz and Other Interferers

University of California, Berkeley

l  In reality, the tiny signals recorded from the brain can get corrupted by numerous interferers.

l  Ambient 60Hz noise couples into electrical signals in and on the body

l  Motion can cause voltage artifacts from the movement of the electrodes relative to the neurons

60 Hz Noise

Action Potentials

Page 17: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

17

Key Idea: Differential Recording

University of California, Berkeley

Page 18: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

18

MOS Differential-Pair Basic Configuration

Two matched MOS transistorsCommon current bias"Differential signls" applied to vG1 and vG2

(equal amplitude but opposite sign)"Differential outputs" are produced at vD1 and vD2

Note in differential configuration, VGS is fixed for both Q1 and Q2

ID1 = ID2 =I2

I2=kn2VGS −VTn( )2

VGS =VTn +Ikn

Page 19: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

19

Large Signal Behavior of Diff Mode Operation

vid = vin+ − vin− = VTn +I1kn

⎝⎜⎜

⎠⎟⎟− VTn +

I2kn

⎝⎜⎜

⎠⎟⎟

vid =I1kn−

I2kn=

I +Δi 2kn

−I2 −Δi 2

knΔi = iD1 − iD2solve

Δi = knvid2Ikn− vid

2

vid ≤Ikn

Δi

I

I

Ikn

Ikn

Page 20: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

20

Small Signal Modeling: Step 1

Courtesy: M.H. Perrott

Page 21: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

21

Method 1: Use Small Signal Model

l  Analysis follows easily, but there is a simpler way!

Page 22: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

22

Method 2: Differential Amplifier Analysis

Courtesy: M.H. Perrott

Page 23: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

23

Differential Analysis

Courtesy: M.H. Perrott

Page 24: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

24

Find Differential Gain

Page 25: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

25

Common Mode Analysis

Courtesy: M.H. Perrott

Page 26: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

26

Common Mode Analysis

vo−vic

=vo+vic

=−RL

1/ gm + 2ro4

=−gmRL

1+ 2gmro4

Since 2ro4 >>1/ gm,vo−vic

=vo+vic

≈−RL2ro4

vod = vo+ − vo− = 0Common-Source with degeneration

Page 27: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

27

Useful Metric for Diff Amps: CMRR

Courtesy: M.H. Perrott

Page 28: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

28

Current-Source Loads

Q3 and Q4 are PMOS current sources

From half-circuit:

Ad =vodvid

= −gm1 ro1 || ro3( )

Page 29: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

29

Cascode configurations for bothamplifying transistors and currentsource loads.From half-circuit

Ad =vodvid

= gm1 Ron || Rop( )

Ron = gm3ro3( )ro1

Rop = gm5ro5( )ro7

If all transistors are identical,Ron = Rop = gmro

2

Ad =12gm

2 ro2

Cascode Differential Amplifier

Page 30: Differential Amplifiers Prof. Ali M. Niknejad Prof. Rikky Mullerrfic.eecs.berkeley.edu/105/pdf/module4-5_Annotated.pdf · 2017-04-26 · EE 105 Spring 2017 Prof. A. M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

30

Common Mode Voltage Range

Courtesy: M.H. Perrott