digital cmos circuits (ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · rc vv τ μ == n −...

52
Digital CMOS Circuits (Ch. 15) 충북대학교 전자정보대학 2012.9.1 .9. Email: [email protected] 전자정보대학 김영석 15-1

Upload: others

Post on 18-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Digital CMOS Circuits (Ch. 15)g

김 영 석김 영 석

충북대학교 전자정보대학

2012.9.1.9.

Email: [email protected]

전자정보대학 김영석 15-1

Page 2: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Contents15.1 General Considerations

15.2 CMOS Inverter

15.3 CMOS NOR and NAND Gates

전자정보대학 김영석 15-2

Page 3: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.1 General Considerations 15.1.1 Inverter Characteristic

_X A=X A

An inverter outputs a logical “1” when the input is a logical “0” and vice versa.

전자정보대학 김영석 15-3

Page 4: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.2 NMOS Inverter

11

onR W=1( )

on

n ox DD THWC V VL

μ −

The CS stage resembles a voltage divider between RD and Ron1 when M1 is in deep triode region. It produces VDD when M1 is off.

전자정보대학 김영석 15-4

Page 5: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Transition Region Gain

Infinite Transition Region Gain Finite Transition Region Gain

Ideally, the VTC(Voltage Transfer Characteristics) of an inverter has infinite transition region gain. However, practically the gain is finitepractically the gain is finite.

Ex15.3:

Transition Region: 50 mV

Supply voltage: 1.8V

1.8 360.05vA = =

전자정보대학 김영석 15-5

Page 6: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.4 Logical Level Degradation

5 25 125V A m mVΔ = × Ω =5 25 125V A m mVΔ = × Ω =

Since real power buses have losses, the power supply levels at two different locations will be different. This will result in logical level degradation.

전자정보대학 김영석 15-6

Page 7: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.5/6 Small-Signal Gain of NMOS Inverter

Ex15.5 Small-Signal Gain Variation of NMOS Inverter: As it can be g s seen, the small-signal gain is the largest in the transition region.

Ex15.6 Above Unity Small-Signal Gain: The magnitude of the small-signal gain in the transition region can be above 1.

전자정보대학 김영석 15-7

Page 8: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Noise Margin

Noise margin is the amount of input logic level degradation that a gate can handle before the small-signal gain becomes -1-1.

전자정보대학 김영석 15-8

Page 9: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.7: NMOS Inverter Noise Margin

1L IL TH

n ox D

NM V VWC RL

μ= = +1:

( ) 21 22out DD n ox D in TH out out

WV V C R V V V VL

μ ⎡ ⎤= − − −⎣ ⎦

L

2 L

V VVin=VIH122

in THout

n ox D

V VV WC RL

μ

−= +

NM V V2 H DD IHNM V V= −2:

전자정보대학 김영석 15-9

Page 10: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.8: Minimum Vout

19DR W=

( )n ox DD THWC V VL

μ −

To guarantee an output low level that is below 0.05VDD, RD is chosen above.

전자정보대학 김영석 15-10

Page 11: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.1.2 Dynamic Behavior of NMOS Inverter Gates

Since digital circuits operate with large signals andSince digital circuits operate with large signals and experience nonlinearity, the concept of transfer function is no longer meaningful. Therefore, we must resort to time-domain analysis to evaluate the speed of a gateanalysis to evaluate the speed of a gate.

It usually takes 3 time constants for the output to transition.

전자정보대학 김영석 15-11

Page 12: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Rise/Fall Time and Delay

전자정보대학 김영석 15-12

Page 13: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.10: Time Constant

( )219

D XDD TH

LR CV V

τμ

= =−( )n DD THV Vμ

Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output low level, the time constant at node X is shown above.

전자정보대학 김영석 15-13

Page 14: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.1: Interconnect Capacitance

Wire Capacitance per Mircon: 50x10-18 F/µm

Total Interconnect Capacitance: 15000X50x10-18 =750 fF

Equivalent to 640 MOS FETs with W=0.5µm, L=0.18µm, Cox =13.5fF/µm2

전자정보대학 김영석 15-14

Page 15: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.1.3 Power-Delay Product

2DD XPDP V C≈ DD X

The power delay product of an NMOS Inverter can be loosely p y p s y thought of as the amount of energy the gate uses in each switching event.

전자정보대학 김영석 15-15

Page 16: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.12: Power-Delay Product

3PLH D XT R C≈

( )( )3

3PLH D X

DD DD D X

T R CPDP I V R C=

23 DD oxPDP V WLC=

전자정보대학 김영석 15-16

Page 17: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.2 CMOS InverterDrawbacks of the NMOS Inverter

Because of constant RD, NMOS inverter consumes static power even when there is no switchingeven when there is no switching.RD presents a tradeoff between speed and power dissipation.

전자정보대학 김영석 15-17

Page 18: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Improved Inverter Topology

A better alternative would probably have been an “intelligent” pullup device that turns on when M1 is off and vice versa.

전자정보대학 김영석 15-18

Page 19: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Improved Falltime

This i d i t t l d s s f llti si ll fThis improved inverter topology decreases falltime since all of the current from M1 is available to discharge the capacitor.

전자정보대학 김영석 15-19

Page 20: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

CMOS Inverter

A circuit realization of this improved inverter topology is the CMOS inverter shown above.

The NMOS/PMOS pair complement each other to produce the desired effects.

전자정보대학 김영석 15-20

Page 21: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.2.2 Voltage Transfer CharacteristicCMOS Inverter Small-Signal Model

( )( )||outv ( )( )1 2 1 2||outm m O O

in

v g g r rv

= − +

When both M1 and M2 are in saturation, the small-signal gain is shown above.

전자정보대학 김영석 15-21

Page 22: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Switching Threshold

The switching threshold (Vi T) or the “trip point” of theThe switching threshold (VinT) or the trip point of the inverter is when Vout equals Vin.

If VinT =Vdd/2, then W2/W1=µn/µp

전자정보대학 김영석 15-22

Page 23: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

CMOS Inverter VTC

전자정보대학 김영석 15-23

Page 24: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.15: VTC

W22

As the PMOS device is made stronger the VTC is shifted toAs the PMOS device is made stronger, the VTC is shifted to the right.

전자정보대학 김영석 15-24

Page 25: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Noise Margins

( )1 2 1 22 dd TH TH dd TH THa V V V V aV VV

− − − −= −

NML =VIL

( ) 11 3ILVaa a

=−− +

VIL is the low-level input voltage t hi h (δV / δV ) 1

( )1 2 1 22 dd TH TH dd TH THa V V V V aV VV

− − − −=

at which (δVout/ δVin)=-1

NMH =Vdd-VIH ( ) 11 1 3IHVaa a

= −−− +

VIH is the high-level input voltage

nWL

μ ⎛ ⎞⎜ ⎟⎝ ⎠

at which (δVout/ δVin)=-1

1

2

n

p

LaWL

μ

μ

⎜ ⎟⎝ ⎠=⎛ ⎞⎜ ⎟⎝ ⎠2⎝ ⎠

전자정보대학 김영석 15-25

Page 26: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

VIL of a Symmetric VTC

( ) ( )( )1 12 2 3 1

1 3DD TH DD TH

ILa V V a V a V

Va a

− − + − +⎡ ⎤⎣ ⎦=− +( )

Symmetric VTC: a=1

13 18 4IL DD THV V V= +

전자정보대학 김영석 15-26

Page 27: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.17 Noise Margins of an Ideal Symmetric VTC

2DD

H ideal L idealVNM NM= =, , 2H ideal L ideal

전자정보대학 김영석 15-27

Page 28: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.18 Floating Output

1 / 2/ 2

TH DDV VV V

>

>2 / 2TH DDV V>

When Vin=VDD/2, M2 and M1 will both be off and the output floats.

전자정보대학 김영석 15-28

Page 29: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.2.3 Dynamic CharacteristicsCharging Dynamics of CMOS Inverter

As V is i iti ll h d hi h th h i is li si MAs Vout is initially charged high, the charging is linear since M2

is in saturation. However, as M2 enters triode region the charge rate becomes sublinear.

전자정보대학 김영석 15-29

Page 30: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Charging Current Variation with Time

The current of M2 is initially constant as M2 is in saturation. However as M2 enters triode, its current decreases.However as M2 enters triode, its current decreases.

전자정보대학 김영석 15-30

Page 31: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Size Variation Effect to Output Transition

As the PMOS size is increased, the output exhibits a faster transition.

전자정보대학 김영석 15-31

Page 32: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Discharging Dynamics of CMOS Inverter

Similar to the charging dynamics, the discharge is linear when M1 is in saturation and becomes sublinear as M1 enters triode region.

전자정보대학 김영석 15-32

Page 33: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Rise/Fall Time Delay

Rise Time Delay2 2

22

2

2ln 3 4THL TH

PLHDD TH DD

p ox DD TH

VC VTW V V VC V VL

μ

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟−⎛ ⎞ ⎝ ⎠⎣ ⎦⎡ − ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

2 VC V⎡ ⎤⎛ ⎞

Fall Time Delay

1 1

11

1

2ln 3 4THL TH

PHLDD TH DD

n ox DD TH

VC VTW V V VC V VL

μ

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟−⎛ ⎞ ⎝ ⎠⎣ ⎦⎡ − ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

전자정보대학 김영석 15-33

Page 34: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.21: Averaged Rise Time Delay

1 W⎛ ⎞ ( )222

14AVG p ox DD TH

WI C V VL

μ ⎛ ⎞= −⎜ ⎟⎝ ⎠

( )2/ 2DD DD THL V V VCT− −

=( )

22

22

.PLHDD TH

p ox DD TH

TW V VC V VL

μ=

−⎛ ⎞ −⎜ ⎟⎝ ⎠

2 24

PLH on LT R C≈2 23PLH on L

전자정보대학 김영석 15-34

Page 35: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.22 Low Threshold Improves Speed

⎡ ⎤⎛ ⎞

1st Term

2 /1 2 /1/

2 /1/ 2 /1

2 /1

2ln 3 4TH THL

PLH HLDD TH DD

p n ox DD TH

V VCTW V V VC V VL

μ

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟−⎛ ⎞ ⎝ ⎠⎣ ⎦⎡ ⎤−⎜ ⎟ ⎣ ⎦⎝ ⎠

22nd Term

The sum of the 1st and 2nd terms of the bracket is the smallest when VTH is the smallest, hence low VTH improves speed.p

전자정보대학 김영석 15-35

Page 36: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.23: Increased Fall Time Due to Manufacturing Error

1

( )

'1 1 1'

11 1

1|| 2on on ON

n ox DD TH

R R RW WC V VL L

μ

= =⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟+ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠1 1⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠

Since pull-down resistance is doubled, the fall time is also doubled.

전자정보대학 김영석 15-36

Page 37: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.2.4 Power Dissipation of the CMOS Inverter

2_

12Dissipation PMOS L DD inP C V f=

21P C V f

2supply L DD inP C V f=

_ 2Dissipation NMOS L DD inP C V f=

전자정보대학 김영석 15-37

Page 38: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.24: Energy Calculation

21 2

2

12

1

stored L DDE C V

E C V

=

2

22dissipated L DD

drawn L DD

E C V

E C V

=

=

전자정보대학 김영석 15-38

Page 39: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Power Delay Product

2 21 1

1

2ln 3 4THin L DD TH

DD TH DD

Vf C V VPDPW V V VC V Vμ

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟−⎛ ⎞ ⎝ ⎠⎣ ⎦⎡ − ⎤⎜ ⎟ ⎣ ⎦1

1n ox DD THC V V

Lμ ⎝ ⎠⎣ ⎦⎡ − ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

Ron1=Ron2

전자정보대학 김영석 15-39

Page 40: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.25: PDP

4 1R ≈3on

n ox DD

RWC VL

μ≈

⎛ ⎞⎜ ⎟⎝ ⎠2 27.25 ox in DD

n

WL C f VPDPμ

=

전자정보대학 김영석 15-40

Page 41: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Crowbar Current

When Vin is between VTH1 and VDD-|VTH2|, both M1 and M2 are on and there will be a current flowing from supply to ground. g s pp y g

전자정보대학 김영석 15-41

Page 42: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.3 CMOS NOR and NAND GatesNMOS Section of NOR

When either A or B is high or if both A and B are high, the output will be low. Transistors operate as pull-down devices.

전자정보대학 김영석 15-42

Page 43: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.26: Poor NOR

Th b i it f il t t NOR b h A iThe above circuit fails to act as a NOR because when A is high and B is low, both M4 and M1 are on and produces an ill-defined low.

전자정보대학 김영석 15-43

Page 44: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

PMOS Section of NOR

When both A and B are low, the output is high. Transistors operate as pull-up devices.

전자정보대학 김영석 15-44

Page 45: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

CMOS NOR

Combing the NMOS and PMOS NOR sections, we have the CMOS NOR.

전자정보대학 김영석 15-45

Page 46: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.28: Three-Input NOR

( )'outV A B C= + +( )out

Equal Rise & Fall (µn≈2µp)

W1=W2=W3=WW4=W5=W6=6W

전자정보대학 김영석 15-46

Page 47: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Drawback of CMOS NOR

Due to low PMOS mobility, series combination of M3 and M4

suffers from a high resistance, producing a long delay.

The widths of the PMOS transistors can be increased toThe widths of the PMOS transistors can be increased to counter the high resistance, however this would load the preceding stage and the overall delay of the system may not improveimprove.

전자정보대학 김영석 15-47

Page 48: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

15.3.2 NMOS NAND Section

When both A and B are high, the output is low.

전자정보대학 김영석 15-48

Page 49: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

PMOS NOR Section

When either A or B is low or if both A and B are low, the output is high.

전자정보대학 김영석 15-49

Page 50: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

CMOS NAND

Just like the CMOS NOR, the CMOS NAND can be implemented b bi i it ti NMOS d PMOS tiby combining its respective NMOS and PMOS sections, however it has better performance because its PMOS transistors are not in series.

전자정보대학 김영석 15-50

Page 51: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

Ex15.29: Three-Input NAND

( )'outV ABC= ( )out

Equal Rise & Fall (µn≈2µp)

W1=W2=W3=3WW4=W5=W6=2W

전자정보대학 김영석 15-51

Page 52: Digital CMOS Circuits (Ch. 15)bandi.chungbuk.ac.kr/~ysk/ckt15.pdf · RC VV τ μ == n − ¾Assuming a 5% degradation in output low level the timeAssuming a 5% degradation in output

NMOS and PMOS Duality

C is in “series” with the “parallel” combination of A and B

C is in “parallel” with the “series” combination of A and B“series” combination of A and B

In the CMOS philosophy, the PMOS section can be obtained from the NMOS section by converting series combinations to the parallel combinations and vice versa.

전자정보대학 김영석 15-52