dipole polarizability and neutron skins in pb, sn and 48ca ......dipole polarizability and neutron...

1

Upload: others

Post on 19-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Dipole Polarizability and Neutron Skins in 208Pb, 120Sn and 48Ca from High-Resolution

    Proton Scattering

    Equation of State of neutron matter and neutron skin Proton scattering at 0° and electric dipole response Dipole polarizability of 208Pb

    Dipole polarizability of 120Sn

    Dipole polarizability of 48Ca

    2016 | Achim Richter

    Supported by the DFG within SFB 634 and SFB 1245

    MSU 2016

  • Neutron stars are remnants of

    the supernova explosion of

    massive stars

    Extremely high densities and

    exotic forms of nuclear matter

    Properties are described by an

    Equation of State (EoS) of

    neutron matter

    Neutron Stars

    2016 | Achim Richter | 2

  • Nuclear Equation of State (EoS)

    Energy as a function of

    density (or pressure)

    Well defined at ρ/ρ0 = 1 by

    properties of stable nuclei

    Large differences of model

    predictions at high

    densities: stiff or soft EoS?

    2016 | Achim Richter | 3

  • Neutron Matter EoS

    Result from chiral effective field theory

    T. Krüger, I. Tews, K. Hebeler, A. Schwenk, Phys. Rev. C 88, 025802 (2013)

    𝜌 (fm−3)

    E/A (MeV)

    2016 | Achim Richter | 4

  • Mass – Radius Relation of Neutron Stars

    P. B. Demorest et al., Nature 467, 1081 (2010)

    How can one experimentally distinguish between various predictions?

    2016 | Achim Richter | 5

  • Binding Energy of (Infinite) Neutron Matter

    volume surface Coulomb symmetry pairing

    For (infinite) neutron matter the pairing contribution is small

    enough to be neglected (at least for low densities) and the

    Coulomb term vanishes

    only volume and symmetry term contribute

    The volume term can be estimated from the saturation properties

    The symmetry energy represents the largest uncertainty for the

    EoS of neutron matter

    2016 | Achim Richter | 6

  • Symmetry Energy and Neutron Skin of Nuclei

    Nuclear force leads to constant

    density in the interior (saturation)

    In heavy stable nuclei N > Z

    because the symmetry energy is

    balanced by the Coulomb

    repulsion between protons

    Extra neutrons are concentrated

    on the surface

    formation of a neutron skin

    Neutron skin thickness Rn -Rp depends on the parameters of

    the symmetry energy

    2016 | Achim Richter | 7

  • Symmetry Energy: Expansion in Density and

    Neutron Excess

    2016 | Achim Richter | 8

    Taylor expansion of (N-Z) dependent part

  • Taylor expansion of (N-Z) dependent part

    Symmetry energy approximately determined by J (or Sv) and L

    L describes density dependence (stiff or soft EoS)

    Experimental approach used here: Electric Dipole Polarizability

    Symmetry Energy: Expansion in Density and

    Neutron Excess

    2016 | Achim Richter | 9

  • Static nuclear dipole polarizability

    αD is measure of neutron skin

    Theoretical predictions

    P.G. Reinhard, W. Nazarewicz,

    PRC 81, 051303 (2010)

    J. Piekarewicz, PRC 83, 034319 (2011)

    Symmetry Energy and Neutron Skin

    αD =ℏ𝑐

    2𝜋2𝑒2⋅ 𝜎−2 =

    ℏ𝑐

    2𝜋2𝑒2 ⋅ 𝜎𝑎𝑏𝑠 𝐸𝑥

    𝐸𝑥2 =

    8𝜋

    9 ⋅ 𝐵 𝐸1 𝐸𝑥𝐸𝑥

    𝑓𝑚3

    𝑒2

    Next: experimental

    determination of αD

    2016 | Achim Richter | 10

  • Electric Dipole (E1) Response in Nuclei

    p/n

    neutron

    skin ?

    IV GDR

    Oscillations of neutrons against protons:

    Giant Dipole Resonance (GDR)

    Oscillations of neutrons in the skin against core with N≈Z

    Pygmy Dipole Resonance (PDR)

    Excitation energy [MeV]

    2016 | Achim Richter | 11

  • Pygmy Dipole Resonance

    Soft E1 mode due to oscillation of neutron

    skin vs. approximately isospin-saturated core

    J. Piekarewicz, Phys. Rev. C 73 (2006) 044325. S. Typel, B. A. Brown, Phys. Rev. C 64 (2001) 027302

    PDR related to neutron skin Neutron skin related to

    neutron-matter EoS

    2016 | Achim Richter | 12

  • S-DALINAC at TU Darmstadt

    2016 | Achim Richter | 13

  • Structure of the PDR in 208Pb Measured at the

    S-DALINAC

    2016 | Achim Richter | 14

  • Structure of Low-Energy E1 Modes

    How can we elucidate the structure of the low-energy E1 modes ?

    Proton scattering at 0° Coulomb excitation of 1- states

    high resolution: ∆E = 25 – 30 keV (FWHM)

    angular distribution (E1/M1 separation)

    polarization observables (spinflip / non-spinflip separation)

    Electron scattering (preferentially at 180°) high resolution

    transverse form factors needed

    very sensitive to structure of the different modes

    2016 | Achim Richter | 15

  • Proton Scattering at 0° on 208Pb at RCNP/Osaka

    2016 | Achim Richter | 16

  • Polarization observables at 0° spinflip / non-spinflip separation

    (model-independent)

    E1/M1 Decomposition by Spin Observables

    T. Suzuki, Prog. Theor. Phys. 103, 859 (2000)

    sideway normal longitudinal

    + +

    NNSSDD 0At

    0ΔS

    1ΔS

    for

    for

    0

    1

    4

    )2(3TransferSpinTotal

    LLSS

    DD

    DSS DNN DLL -1 for DS = 1 1+

    3 for DS = 0 1- =

    2016 | Achim Richter | 17

  • Measurement of Spin Observables

    Scheme of the FPP / Grand Raiden Setup

    2016 | Achim Richter | 18

  • Decomposition into Spinflip / Non-Spinflip

    Cross Sections

    2016 | Achim Richter | 19

  • Multipole Decomposition of Cross Section

    DWBAdata

    )()(

    D

    Dd

    da

    d

    d

    L

    L

    Restrict angular distribution to = 4°

    (response at larger angles too complex)

    DL = 0 isovector spin M1

    DL = 1 E1 (Coulomb + nuclear)

    DL > 1 only E2 (or E3) considered

    2016 | Achim Richter | 20

  • Multipole Decomposition of Angular

    Distributions

    I. Poltoratska et al., Phys. Rev. C 85 (2012) 041304(R)

    2016 | Achim Richter | 21

  • Comparison of Both Methods at Low Ex

    Total

    DS = 1

    DS = 0

    2016 | Achim Richter | 22

  • Comparison of Both Methods at High Ex

    Total

    DS = 1

    DS = 0

    2016 | Achim Richter | 23

  • B(E1) Strength: Low-Energy Region

    2016 | Achim Richter | 24

  • Photoabsorption Cross Section: GDR

    2016 | Achim Richter | 25

  • Polarizability and Neutron Skin

    Precision value αD(208Pb) = 20.09(59) fm3/e2 (from all existing data up

    to 130 MeV)

    Within the model of Reinhard and Nazarewicz*

    rskin = 0.156 ± fm0.021

    0.025

    Present model-independent measurement by PREX: rskin = 0.34 ± fm0.170.15

    Improvement necessary for true constraint of any microscopic interaction

    *P.G. Reinhard and W. Nazarewicz

    PRC 81 (2010) 051303 (similar

    results exist from J. Piekarewicz)

    2016 | Achim Richter | 26

  • Neutron Skin in 208Pb

    1G. W. Hoffmann et al., PRC 21, 1488 (1980) 2A.Krasznahorkay et al., NPA 567, 521 (1994) 3A. Trzcińska et al., PRL 87, 082501 (2001) 4M. Csatlós et al., NPA 719, C304 (2003) 5E. Friedman et al, Phys. Rep. 452, 89 (2007)

    6B. Kłos et al., PRC 76, 014311 (2007) 7A. Klimkiewicz et al., PRC 76, 051603 (2007) 8J. Zenihiro et al., PRC 82, 044611 (2010) 9A.Carbone et al., PRC 81, 041301 (2010)

    2016 | Achim Richter | 27

  • Constraints on Energy Density Functionals

    Relation between αD and

    rskin is model-dependent

    Important constraint by 208Pb result

    J. Piekarewicz et al., Phys. Rev. C 85 (2012) 041302(R)

    2016 | Achim Richter | 28

  • Neutron Skin Thickness and Symmetry Energy

    X. Roca-Maza et al., Phys. Rev. C 88, 024316 (2013)

    88, 024316

    (2013).

    Strong correlation between αDJ and the neutron skin, i.e. L

    2016 | Achim Richter | 29

  • DP: Dipole Polarizability

    HIC: Heavy Ion Collision

    PDR: Pygmy Dipole Resonance

    IAS: Isobaric Analogue State

    FRDM: Finite Range Droplet Model

    n-star: Neutron Star Observation

    χEFT: Chiral Effective Field Theory

    QMC: Quantum Monte Carlo Theory

    M.B. Tsang et al., Phys. Rev. C 86 (2012) 015803

    I. Tews et al., Phys. Rev. Lett. 110 (2013) 032504

    A. Tamii, PvNC, I. Poltoratska, Eur. Phys. J. A 50,

    28 (2014)

    QMC

    Constraints on Symmetry Energy Parameter

    Density independent part of the EoS

    Neutr

    on s

    kin

    thic

    kness

    2016 | Achim Richter | 30

  • Electric Dipole Strength Distribution in 120Sn

    Note: Low energy strength contributes about 9% to αD

    T. Hashimoto et al., Phys. Rev. C 92 (2015)

    2016 | Achim Richter | 31

  • Correlation of Experimental αD Values of 208Pb and 120Sn

    Experimental values of αD constrain the EDFs

    Relativistic EDFs seem to have a problem

    Darmstadt-Osaka Collaboration (T. Hashimoto et al., Phys. Rev. C 92 (2015))

    2016 | Achim Richter | 32

  • Correlation of Experimental αD Values of 208Pb,

    120Sn and 68Ni

    Only a handful of EDFs are able to describe the correlations

    Those EDFs predict for 48Ca: αD = (2.06-2.52) fm3 and rskin = (0.15-0.18) fm

    2016 | Achim Richter | 33

    X. Roca-Maza et al., Phys. Rev. C 92, 064304 (2015)

  • Motivation

    2016 | Achim Richter | 34

  • Neutron Skin in 48Ca?

    Analysis analogous to the one in 208Pb(p,p‘)

    2016 | Achim Richter | 35

  • B(E1) Strength in 48Ca

    2016 | Achim Richter | 36

  • Comparison of 40Ca/ 48Ca in the GDR Region

    Cross sections are comparable but there is an energy shift of (1.0 ± 0.3) MeV

    2016 | Achim Richter | 37

  • Photoabsorption Cross Section in 40Ca up to

    160 MeV

    Note: above Ex = 60 MeV cross section is negligibly small

    2016 | Achim Richter | 38

  • Photoabsorption Cross Section in 48Ca and

    Running Sum of αD

    2016 | Achim Richter | 39

    αD(exp) = (2.06 ± 0.11) fm3

  • Photoabsorption Cross Section and Running

    Sum of αD compared to χEFT predictions

    αD(exp) = (2.06 ± 0.11) fm3 αD(χEFT) = (1.8 - 2.6) fm

    3

    2016 | Achim Richter | 40

  • Present Status of Experiment and Theory for

    the Dipole Polarizability of 48Ca

    Still needed: Correlation analysis

    (e.g. αDJ vs. rskin) to constrain the

    neutron skin

    40Ca: αD = (1.87 ± 0.03) fm3

    48Ca: αD = (2.06 ± 0.11) fm3

    αD(40Ca) - αD(

    48Ca) provides an

    additional constraint for the

    neutron skin

    2016 | Achim Richter | 41

    EDF: J. Piekarewicz et al., Phys. Rev. C 85, 041302 (2012)

    EDF RM: X. Roca-Maza et al., Phys. Rev. C 92, 064304 (2015)

  • Experimentalists and Theorists in the 48Ca

    Project

    Experiment: Darmstadt-Osaka

    Theory: Darmstadt-Tennessee-TRIUMF

    S. Bacca

    S. Bassauer

    J. Birkhan

    G. Hagen

    H. Matsubara

    M. Miorelli

    P. von Neumann-Cosel

    T. Papenbrock

    N. Pietralla

    A. Richter

    A. Schwenk

    A. Tamii

    2016 | Achim Richter | 42

  • Comparison of 40Ca/ 48Ca in the GDR Region

    Cross sections are comparable but there is an energy shift of (1.0 ± 0.3) MeV 40Ca (GDR): αD = (1.50 ± 0.02) fm

    3

    48Ca (GDR): αD = (1.75 ± 0.11) fm3

    2016 | Achim Richter | 43

  • Predictions for observables related to the

    neutron distribution in 48Ca

    2016 | Achim Richter | 44

    G. Hagen et al., Nature Physics 12 (2016)

  • Double Differential Cross Section of 40Ca

    2016 | Achim Richter | 45

  • Running Sum of αD from χEFT predictions for 40Ca

    2016 | Achim Richter | 46

  • Running Sum of αD from χEFT predictions for 48Ca

    2016 | Achim Richter | 47