dissociative recombination of cold h 3 + and its interstellar implications t. oka (university of...

26
Dissociative Recombination of Dissociative Recombination of Cold Cold H H 3 3 + + and its Interstellar and its Interstellar Implications Implications T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory) A. J. Huneycutt, R. J. Saykally (University of California at Berkeley) N. Djuric, G. H. Dunn (University of Colorado & NIST) J. Semaniak, O. Novotny (Świetokrzyska Academy, Poland) A. Paal, F. Österdahl (Manne Siegbahn Laboratory) A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Ben McCall Ben McCall Department of Chemistry Department of Chemistry Department of Astronomy Department of Astronomy University of llinois at University of llinois at Urbana-Champaign Urbana-Champaign

Upload: bruce-barrow

Post on 16-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Dissociative Recombination of Cold Dissociative Recombination of Cold HH33++

and its Interstellar Implicationsand its Interstellar Implications

T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory) A. J. Huneycutt, R. J. Saykally (University of California at Berkeley) N. Djuric, G. H. Dunn (University of Colorado & NIST) J. Semaniak, O. Novotny (Świetokrzyska Academy, Poland) A. Paal, F. Österdahl (Manne Siegbahn Laboratory) A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, R.

Thomas, M. Larsson (Stockholm University)

Ben McCallBen McCallDepartment of ChemistryDepartment of ChemistryDepartment of AstronomyDepartment of Astronomy

University of llinois at Urbana-ChampaignUniversity of llinois at Urbana-Champaign

Page 2: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Astronomer's Periodic TableAstronomer's Periodic Table

H He

C N O Ne

Mg

Fe

Si S Ar

Page 3: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

HH33++: Cornerstone of Interstellar Chemistry: Cornerstone of Interstellar Chemistry

H 2

H 2+

C H 3+

C H 5+

C H 4

C H2 3+

C H2 2

C H3+

C H3 3+

C Hm n

C H+

C H 2+

N H2

+

H C O+

O H+

H O2+

H O3

+H O2

O H

C H C N H2 5

+

C H C N H3

+

C H N H3 2

+

H C N2

+

H C N

C H N H3 2

C H N H2

C H C N3

C H C N2 5

C H

C H C O3

+

C H O H3 2

+

C H C O2

C H O H3

H C OC H O H

C H O C H

2

2 5

3 3

C H2 5

+C H2 4

H C O2 3

+C O3

C H2

H C N3 3

+H C N3

H C N5

H C N7

H C N9

H C N11

C H3

C 4

+

C H4+

C H4 2+

C H4 3+

C H4

C H3 2

cosm ic ray

H 2N 2

C OO

H 2

H 2

e

e

e

ee

e

e

N

N H 3

H C N

C H C N3

e

C O

H O2

C H O H , e3

C

H 2

H 2

H 2

e

e

C H 3

+e

e eH C N

C+

e

C+

H 2

e eC

+

H 2H 2

e

C O

C

H

+

e

e

Page 4: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Observing Interstellar HObserving Interstellar H33++

• Equilateral triangle• “No” rotational spectrum• “No” electronic spectrum• Vibrational spectrum is

only probe

• Absorption spectroscopy against background or embedded star

1

2

Page 5: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Interstellar Cloud Classification*Interstellar Cloud Classification*Diffuse clouds:

• H ↔ H2

• C C+

• n(H2) ~ 101–103 cm-3

– [~10-18 atm]

• T ~ 50 K

PerseiPersei

Photo: Jose Fernandez Garcia

• Diffuse atomic clouds– H2 << 10%

• Diffuse molecular clouds– H2 > 10% (self-shielded)

* Snow & McCall, ARAA, 2006 (in prep)

Barnard 68 (courtesy João Alves, ESO)

Dense molecular clouds:

• H H2

• C CO• n(H2) ~ 104–106 cm-3

• T ~ 20 K

Page 6: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

HH33++ in Dense Clouds in Dense Clouds

1.02

1.00

0.98

0.96

0.94

36700366803666036640 3717037150

AFGL 2136

AFGL 2591

R(1,1)u R(1,0) R(1,1)l

Wavelength (Å)

N(H3+) = 1–51014 cm-2

McCall, Geballe, Hinkle, & OkaApJ 522, 338 (1999)

Page 7: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

[H2]

Dense Cloud HDense Cloud H33++ Chemistry Chemistry

H2 H2+ + e-

H2 + H2+ H3

+ + H

cosmic ray

H3+ + CO HCO+ + H2

Rate =

Formation

Destruction

Rate = k [H3+] [CO]

[H3+]

=

k [CO]

Steady State

=(310-17 s-1)

(210-9 cm3 s-1)

[H2]

(6700)

= 10-4 cm-3Density

Independent!

(fast)

McCall, Geballe, Hinkle, & OkaApJ 522, 338 (1999)

Page 8: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

HH33++ as a Probe of Dense Clouds as a Probe of Dense Clouds

• Given n(H3+) from model, and N(H3

+) from infrared observations:– path length L = N/n ~ 31018 cm ~ 1 pc

– density n(H2) = N(H2)/L ~ 6104 cm-3

– temperature T ~ 30 K

• Unique probe of clouds• Consistent with expectations

– confirms dense cloud chemistry (forbidden)

32.9 K

K

Page 9: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Rate = ke [H3+] [e-]

[H2]

Diffuse Molecular Cloud HDiffuse Molecular Cloud H33++ Chemistry Chemistry

H2 H2+ + e-

H2 + H2+ H3

+ + H

cosmic ray

H3+ + e- H + H2 or 3H

Rate =

Formation

Destruction

[H3+]

=

ke[e-]

Steady State

[H2]=

(310-17 s-1)

(510-7 cm3 s-1) (2400)

= 10-7 cm-3Density

Independent!103 times smaller than dense clouds!

Page 10: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Lots of HLots of H33++ in Diffuse Clouds! in Diffuse Clouds!

8

6

4

2

0

H3+

Col

umn

Den

sity

(10

14cm

-2)

6543210

E(B-V) (mag)

OphP Cygni

HD 183143

WR 118

Cyg OB2 12

WR 104

Cyg OB2 5

WR 121

HD 168607

HD 194279

GC IRS 3

2 Ori

HD 20041

1.01

1.00

0.99

0.98

0.97

Rel

ativ

e In

tens

ity

3.7173.7163.7153.6693.6683.667

Wavelength (µm)

R(1,1)u

R(1,1)l

R(1,0)

HD 183143

McCall, et al.ApJ 567, 391 (2002)

Cygnus OB2 12

N(H3+) ~ dense clouds

n(H3+) ~ 1000 times less

L ~ 1000 times longer ?!?

Page 11: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Big Problem with the Chemistry!Big Problem with the Chemistry!

Steady State: [H3+]

=

ke[e-][H2]

To increase the value of [H3+], we need:

• Smaller electron fraction [e-]/[H2]

• Smaller recombination rate constant ke

• Higher ionization rate

~2 orders of magnitude!!

Page 12: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

HH33++ toward toward Persei Persei

Cardelli et al. ApJ 467, 334 (1996)Savage et al. ApJ 216, 291 (1977)

N(H2) from Copernicus

N(C+) from HST

[e-]/[H2]not to blame

McCall, et al. Nature 422, 500 (2003)

Page 13: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Big Problem with the Chemistry!Big Problem with the Chemistry!

Steady State: [H3+]

=

ke[e-][H2]

To increase the value of [H3+], we need:

• Smaller electron fraction [e-]/[H2]

• Smaller recombination rate constant ke

• Higher ionization rate

Page 14: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

HH33++ Dissociative Recombination Dissociative Recombination

• Laboratory values of ke have varied by 4 orders of magnitude!

• Theory unreliable (until recently)...

• Problem (?): not measuring H3

+ in ground states

Page 15: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Storage Ring MeasurementsStorage Ring Measurements

20 ns 45 ns

electron beam

H3+

H, H2

+ Very simple experiment+ Complete vibrational relaxation

+ Control H3+ – e- impact energy

- Rotationally hot ions produced- “No” rotational cooling in ring

CRYRING

30 kV30 kV

900 keV900 keV

12.1 MeV12.1 MeV

Page 16: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Supersonic Expansion Ion SourceSupersonic Expansion Ion Source

• Similar to sources for laboratory spectroscopy in many groups

• Pulsed nozzle design• Supersonic expansion

leads to rapid cooling• Discharge from ring

electrode downstream• Spectroscopy used to

characterize ions• Skimmer employed to

minimize arcing to ring

H2Gas inlet

2 atm

Solenoid valve

Insulating spacer

Skimmer

-900 Vring

electrode

Pinhole flange/ground

electrode

H3+

Page 17: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

R(1

,0)

R(1

,1)u

R(2

,2)l

33 K151 K(0,0)(0,0)

(2,0)(2,0)

(J,G)(J,G)

probe of temperature

not detected

HH33++ Energy Level Structure Energy Level Structure

Page 18: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Spectroscopy of HSpectroscopy of H33++ Source Source

• Confirmed that H3

+ produced is rotationally cold, as in interstellar medium

Infrared Cavity Ringdown Laser Absorption Spectroscopy

McCall, et al.Nature 422, 500 (2003)

Page 19: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

CRYRING ResultsCRYRING Results

• Considerable amount of structure (resonances) in the cross-section

• ke = 2.6 10-7 cm3 s-1

• Factor of two smallerMcCall, et al.Phys. Rev. A 70, 052716 (2004)

• Chris Greene: new theory• Andreas Wolf: TSR results

Page 20: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Back to the Interstellar Clouds!Back to the Interstellar Clouds!

Steady State: [H3+]

=

ke[e-][H2]

To increase the value of [H3+], we need:

• Smaller electron fraction [e-]/[H2]

• Smaller recombination rate constant ke

• Higher ionization rate

Page 21: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Implications for Implications for Persei Persei

[H3+]

L =

ke N(e-)

N(H2)==L

N(H3+)

N(H2)

N(e-)

L = 8000 cm s-1

ke N(H3+) (2.610-7 cm3 s-1) (81013 cm-2) (3.810-4)

Adopt =310-17 s-1

Adopt L=2.1 pc

L = 85 pcn = 6 cm-3

=1.210-15 s-1

(40x higher!)

(solid)

Page 22: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

What Does This Mean?What Does This Mean?

• Enhanced ionization rate in Persei

• Widespread H3+ in diffuse clouds

– perhaps widespread ionization enhancement?

• Dense cloud H3+ is "normal"

– enhanced ionization rate only in diffuse clouds– low energy cosmic-ray flux?– cosmic-ray self-confinement?– no constraints, aside from chemistry!!

• New chemical models necessary– Harvey Liszt– Franck Le Petit

Page 23: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J
Page 24: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Future WorkFuture Work

• More experiments!– Improved spectroscopy of ion source

• Higher resolution & higher sensitivity• Better characterization of ro-vib distribution

– Testing of new (piezo) ion source– Single quantum-state CRYRING measurements

• produce pure para-H3+ using para-H2

• More observational data!– Search for H3

+ in more diffuse cloud sightlines• Confirm generality of result in classical diffuse clouds

– Observations of H3+ in "translucent" sightlines

• C+ → C → CO

Page 25: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

Rich Diffuse Cloud ChemistryRich Diffuse Cloud Chemistry

• From 1930s through the mid-1990s, only diatomic molecules thought to be abundant in diffuse clouds

• Recently, many polyatomics observed:– H3

+ in infrared

– HCO+, C2H, C3H2, etc. in radio (Lucas & Liszt)

– C3 in near-UV (Maier, et al.)

• Diffuse Interstellar Bands!

Page 26: Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J

AcknowledgementsAcknowledgements• Takeshi Oka (U. Chicago)• Tom Geballe (Gemini)• Staff of UKIRT (Mauna Kea)

– United Kingdom InfraRed Telescope• Staff of CRYRING (Stockholm)• Chris Greene (Boulder)• Eric Herbst (Ohio State)• Mike Lindsay (UNC)• Funding:

– Berkeley: NSF, AFOSR– Illinois: NSF, NASA, ACS, Dreyfus