division 15 - mechanical - university of northern colorado · 2017-03-01 · facilities management...

85
UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS 15-1 DIVISION 15 - MECHANICAL GENERAL PROVISIONS Facilities Management will provide information regarding preferred locations for tie-ins to existing utilities. Primary source of heat for most buildings will be the central High Temperature Hot Water (HTHW) system. The HTHW system is also used in conjunction with absorption chillers for air conditioning systems in most larger buildings. New construction will probably not utilize absorption chillers. The HTHW system is installed in a two pipe loop throughout campus, and is generally located in a tunnel system. HTHW is to be used for heating and production of domestic hot water for most buildings. Verify prior to start of design. HTHW is available 24 hours per day, 7 days per week. All projects are required to incorporate State of Colorado Energy Conservation Code, Energy Star and L.E.E.D. recommendations as appropriate to the individual project based upon life cycle cost analysis. This is in accordance with a Governors Executive Order. Utility outages will generally need to be scheduled after normal working hours and will often include weekends and holidays. Specifications will need to include this requirement at no additional cost to the Owner. Specify meters for all mechanical systems. Water, gas, HTHW, irrigation. All meters are to be capable of providing an output to the building automation system. Lonworks and/or BACnet IP preferred. Refer to the drawings in the appendix for UNC preferences on HTHW piping installation, converter piping, valving, pump piping and valving, water treatment and chiller piping and controls. Generally all HVAC equipment shall have 15-20 percent excess capacity for future expansion. However, if the excess capacity requires an unusual equipment selection and /or the incremental cost appears excessive, then the designer should advise the University. Chillers should be designed with 15 percent excess capacity. Boilers and primary heating equipment shall have 20 percent excess capacity . Air supply and exhaust fans shall have 10 percent excess capacity. HTHW to HW heat exchangers and building heating water pumps require redundant equipment . Each heat exchanger or pump shall be sized to meet full demand load.

Upload: doantram

Post on 02-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-1

DIVISION 15 - MECHANICAL GENERAL PROVISIONS

Facilities Management will provide information regarding preferred locations for tie-ins to existing utilities.

Primary source of heat for most buildings will be the central High Temperature Hot Water (HTHW) system. The HTHW system is also used in conjunction with absorption chillers for air conditioning systems in most larger buildings. New construction will probably not utilize absorption chillers. The HTHW system is installed in a two pipe loop throughout campus, and is generally located in a tunnel system. HTHW is to be used for heating and production of domestic hot water for most buildings. Verify prior to start of design. HTHW is available 24 hours per day, 7 days per week.

All projects are required to incorporate State of Colorado Energy Conservation Code, Energy Star and L.E.E.D. recommendations as appropriate to the individual project based upon life cycle cost analysis. This is in accordance with a Governors Executive Order.

Utility outages will generally need to be scheduled after normal working hours and will often include weekends and holidays. Specifications will need to include this requirement at no additional cost to the Owner.

Specify meters for all mechanical systems. Water, gas, HTHW, irrigation. All meters are to be capable of providing an output to the building automation system. Lonworks and/or BACnet IP preferred.

Refer to the drawings in the appendix for UNC preferences on HTHW piping installation, converter piping, valving, pump piping and valving, water treatment and chiller piping and controls.

Generally all HVAC equipment shall have 15-20 percent excess capacity for future expansion. However, if the excess capacity requires an unusual equipment selection and /or the incremental cost appears excessive, then the designer should advise the University.

Chillers should be designed with 15 percent excess capacity.

Boilers and primary heating equipment shall have 20 percent excess capacity .

Air supply and exhaust fans shall have 10 percent excess capacity.

HTHW to HW heat exchangers and building heating water pumps require redundant equipment . Each heat exchanger or pump shall be sized to meet full demand load.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-2

Provide appropriate, year round, cooling systems for phone and data rooms, elevator equipment rooms and similar spaces. Main chilled water system is not available in the winter months.

All mechanical designs shall meet the requirements of ASHRAE 90.1-1999 regarding ventilation and indoor air quality.

All systems shall included appropriate connections to the building automation system. Specify that the manufacturers and contractors are to provide all required licensing (JACE, etc.) One extra cat-6 data drop per controllr cabinet required for connection to BAS system.

Provide training for all systems. MECHANICAL SYSTEMS DESIGN CRITERIA

The design team shall provide a summary of the design criteria utilized for each project. Report shall include the following information at a minimum:

Outside design conditions:

Summer – Degree F dry bulb, degree F wet bulb, percent relative humidity

Winter – Degree F dry bulb

Inside design condition for each zone:

Summer – Degree F dry bulb, degree F wet bulb, percent relative humidity

Winter – degree F dry bulb

Supply air design conditions:

Summer – Degree F dry bulb, degree F wet bulb, percent relative humidity

Winter – degree F dry bulb (provide both hot and cold deck if applicable)

Air change rate for special occupancies

Air changes / hour for outside air or mixed air

Listing if areas with positive or negative pressure.

Filter efficiency for each occupancy

Percent efficiency using ASHRAE standards for each occupancy

Building air systems:

Supply air Summer - Total building CFM and CFM / SF Winter - Total building CFM and CFM / SF

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-3

Laboratory – air changes / hour Fume hoods Bio-safety hoods Laminar flow hoods Storage cabinets

Animal Rooms – air changes / hour

Outside air Minimum ventilation – Total building CFM and CFM / SF Minimum ventilation – CFM / person Economy cycle – CFM

Exhaust Air Minimum general – total building CFM Toilet – total building CFM Economy cycle – total building CFM Fume Hoods – CFM per hood and face velocity at 12”

sash ht - total number of hoods - total number of fans

Special systems – Stack heights, filters, design req.

Control description:

Each of the following systems should have a sequence of operation description and a discussion of DDC vs other control systems

Air systems

Supply air (incl. Hood make-up air)

Return air

Exhaust air

Room control or building pressure

High temp hot water

Hot water heating (incl. Reheat)

Domestic hot water

Chilled water

Compressed air

Special (compressed gasses, glycol, etc.)

Flow rates or demand at design conditions

HTHW – BTU’s / hr

Gas – cf / hr

Electricity – KW

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-4

Chilled water – gpm and tons, temperature supply/return (Do not specify EWT below 46 deg F. Suggest 46- 48 Deg F)

Hot water heat – gpm and Btuh, temperature supply/return

Humidification – lbs/hr

Pure water – gals/hr

City water – gpm (incl. Domestic hot water)

Sanitary waste – cf/sec

Storm water – cf/sec

Acid waste – gpm

Sump pumps – gpm

Sanitary pumps – gpm

Total HVAC system loads

Summer

Transmission – Btuh sensible

Solar – Btuh sensible

Lights – Btuh sensible

People – Btuh and # of people

Equipment – Btuh

Infiltration – air changes/hr and Btuh

Ventilation – Btuh

Total sensible – Btuh

Total Latent – Btuh

Total combined – Btuh

Winter

Transmission – Btuh

Infiltration – air changes / hr and Btuh

Ventilation – Btuh

Total – Btuh

Equipment output capacity

Cooling – Btuh or tons

Heating – Btuh

Annual Utility Consumption:

HTHW – Btuh

Chilled water – Ton days / yr

Domestic water – gals / yr

Gas – cf / yr

Pure water – gal / yr

Electricity – KWH / yr – KW peak demand

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-5

Energy – Total Mbtu’s /sf / yr – HVAC Mbtu’s / sf / yr – Lighting Mbtu’s / sf / yr

OPERATION AND MAINTENANCE MANUALS

Provide minimum of three copies of O & M Manuals covering:

Alp habetical listing of all system components with Name, address & phone number of company responsible for first year service and source of replacement parts

Operating Instructions normal starting, operating & shut-down emergency procedures summer & winter special procedures (if any) day & night special procedures (if any)

Maintenance Instructions lubricating instructions cleaning, replacement or adjustment schedule

Manufacturers data for each piece of equipment Installation instructions drawings and specifications parts list, including recommended spares complete wiring diagrams marked prints showing all concealed parts and variations from the

original system design test and inspection certifications MECHANICAL ROOM LOCATION AND DESIGN

Mechanical rooms must be large enough to allow adequate safe working space. Space must be provided for coil and tube bundle removal, without requiring disassembly of adjacent equipment. Include space for future equipment additions if possible.

Provide hoist rails for large motor and equipment maintenance access.

An outside entrance with an oversized door is preferred. All mechanical rooms must be accessible without disturbing building occupants or normal functions of the building. Access shall be limited to authorized maintenance personnel only.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-6

Provide roof access to at least one roof level, with roof ladders to all other levels. Walkout access is preferred.

An areaway or doorway large enough to accommodate the largest component in the mechanical room shall be provided. If knock-out panels are provided, coordinate location with outside utilities.

Equipment rooms shall be arranged and located such that heat and sound will not transmit to other parts of the building.

Mechanical rooms must have adequate ventilation. This is especially critical with the increase use of electronic controls and other components.

Provide floor drains. When located above an occupied area, surround the area with a 6" high curb, and waterproof the floor. Provide sleeves for pipe penetrations through mechanical room floors. Sleeve height to be 6” above floor.

Provide an emergency eye wash unit in each primary mechanical room.

Provide roof ladders to all upper level roofs for equipment access, unless walkout access is provided.

Provide adequate lighting and electrical receptacles in all mechanical spaces. Lighting layout must not be finalized until after equipment and ductwork installation.

Provide adequate access openings in pipe and duct chases for service and maintenance. Access doors shall be sized to allow adequate access to equipment located within. Coordinate access door type and size with Architect for consistency. Allow for specialty doors such as in shower rooms and other areas as needed.

Provide ventilation for elevator equipment (air conditioning if required) to meet elevator manufacturers requirements.

Coordinate final location of all field equipment with adjacent walls, lighting, piping, etc. to ensure adequate access for maintenance. Some installations may require a mock-up.

IDENTIFICATION

Provide engraved nameplates (black plastic with white engraved letters), metal tags, pressure sensitive markers, semi-rigid markers, on all equipment as follows:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-7

Piping - pressure sensitive or semi-rigid markers on all piping accessible for maintenance, at all wall penetrations, within pipe chases and at all valves (including direction of flow).

Provide labeled tape above direct buried piping.

Controls - engraved nameplates on all connecting or controlled equipment. Include automatic controls, control panels, zone valves, relays, PE or EP switches and starters.

Pumps - stencils or engraved nameplates - service and zone served.

Heat Exchangers, fans, AC equipment - plan code number and area or zone served.

Access doors - engraved nameplates to identify equipment within.

Lift out ceilings – Specify color coded self adhesive dots to be installed on suspended ceiling system grids identifying access points to mechanical and electrical components located above the ceiling.

Color code as follows:

Water valves Blue

Ventilation system components Purple

Heating and Cooling system Yellow

Fire dampers or alarm components Red

Electrical transformers & equipment Orange START-UP PROCEDURES

Please emphasize start up requirements in the project specifications and in pre-construction meeting requirements. This is a critical issue.

Notify Facilities Management at least two weeks prior to scheduled start-up date of all mechanical equipment and systems.

Prior to start-up, all piping systems shall be cleaned and flushed. Notify Facilities Management prior to cleaning and flushing operation. Hot water heating and chilled water systems including pumps, converters, coils, etc. shall be flushed with an alkaline material containing dispersants, detergent and organic corrosion inhibitors. Preferred product is Rocky Mountain Aquatech (RMA) 6100 or equivalent. For effective cleaning, system is properly dosed with chemical, circulated for 24 hours and, if possible, heated to 140 – 180 deg. F. Following circulation, drain, flush, fill

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-8

and circulate 30 minutes and flush system until the water is clear and TDS is +/- 50 ohms that of city water. Once system has been flushed, add closed loop inhibitor (nitrate based) to boost chilled water system to 375 – 500 PPM NO2 and heating water systems to 500 – 750 PPM. Preferred inhibitor is RMA 5338..

Coordinate all start-up and testing operations with the work of other trades. Include manufacturers representatives and all sub-contractors in the start-up planning.

Provide a written start-up plan which includes a listing of all start-up tasks, prerequisite tasks by other trades and proposed schedule.

Before start-up, each piece of equipment shall be checked for proper lubrication, rotation, belt tension, alignment, control sequence, visually checked for debris or other possible conditions which could cause equipment damage or endanger personnel.

Control systems shall be fully operational in automatic mode

Fully comply with OSHA lock-out tag-out procedures before, during and after start-up.

Factory personnel shall be notified as appropriate to start up equipment requiring their services.

TESTING

Notify Facilities Management at least one week prior to all scheduled testing.

After testing has been completed, prior to permanent operation, all permanent pipeline strainers and filters shall be cleaned, air filters replaced, valve and pump packings properly adjusted, belt tensions adjusted, drive guards secured, lubrication checked and replenished if required.

BASIC MATERIALS AND METHODS Valves:

Provide valves to isolate logical segments of the building. Floors, wings etc.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-9

Provide valves on all branch lines, fixtures and on both sides of all equipment, located for easy access. Locate valves at equipment to allow isolation of control valves and strainers without draining coils.

Valves over 8 ft AFF shall be equipped with chain operators.

All valves must be shown on the drawings. Do not rely on general notes in the drawings or specifications.

Ball valves are preferred for domestic hot and cold water, heating water, chilled water, and similar systems where appropriate, for pipe sizes 1/4" through 2 1/2". Provide for isolation of equipment as well as for isolating segments of the building. No three (3) piece body style ball valves allowed. All valves are to have metallic handles.

Provide ball valves at all gauges in lieu of gauge cocks on low temperature and pressure systems.

High Temperature Hot Water System (HTHW). Within buildings provide Keystone K-lok Model 372 lug style high performance butterfly valves, RTFE seats w/gear operator for piping over 2”, Class 300, carbon steel with stainless steel internals or equivalent by Crane. Valves to be uni-directional for dead end service. For smaller pipe sizes (2” and smaller) provide socket welded, class 300 carbon steel ball valves. Building main and tunnel HTHW valves to have by-pass loops with valves.

Carbon steel globe valves may be used for balancing.

High Temperature hot Water valves for use in the central plant, tunnel system or other critical areas, 2 ½” and larger, shall be Butterfly valves, gear operated, triple offset, bi directional by Vanessa or Zwick Tri-con. Valves for these installations shall be welded.

Provide needle valves for gauges, high point vents, etc. on the HTHW system.

Hangars and Supports

Hangars for HTHW piping shall be roller type.

Design adequate expansion loops, guides and anchors for the HTHW system. Do not specify mechanical expansion joints.

Piping shall not be hung from other piping or equipment. Provide attachments to the building structure only.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-10

Thermometers, Gauges, Temperature & Pressure Test Plugs

Provide thermometers with wells on each inlet and outlet pipe of each piece of heat generating water equipment such as hydronic heat exchangers, chillers etc. Install to be relatively upright and readable from the floor.

Thermometers to be solar powered, digital display by Trend or approved equivalent.

Gauges to be selected so that normal operating conditions read near the midpoint of the scale. Install upright and readable from the floor. Gauges for pumps and other equipment subject to vibration shall be liquid filled.

T&P test plugs shall be installed on the inlet and outlet of each piece of heat transfer and pumping equipment. ( except HTHW equipment)

Miscellaneous

Dielectric nipples with steel unions shall be provided between dissimilar metals in all piping systems. Do not specify dielectric unions.

Strainers are to be provided upstream of pressure reducing valves, back flow preventers, pumps, all modulating control valves and elsewhere as needed. Strainers shall have a ball type blow off valve with a threaded and capped hose type connection.

All drains at equipment and other locations to have valve with hose threads and caps.

Unions (or flanges) are to be provided on the inlet and outlet of each piece of equipment and at each port to automatic control valves, pressure regulating valves, solenoid valves, etc. Provide flanged connections on all larger equipment such as heat exchangers, pumps, large coils, etc. Ground joint type.

Welding shall be performed by welders certified in the last six months to AWS or ASME standards.

Piping shall not be routed through telephone rooms, electrical rooms elevator equipment rooms or elevator shafts. The only exception is fire sprinkler piping serving these rooms.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-11

Provide proper vibration control for all mechanical equipment including flexible connections at all pumps, coils, etc. (No flexible connections allowed on HTHW equipment)

INSULATION

Piping shall be provided with insulation shields and calcium silicate inserts at each support locations, or use pre-manufactured high density inserts. Calcium silicate inserts are not required on HTHW systems when supported with metal insulation pipe support saddles.

Insulation shields on all piping systems shall be secured to piping at all support locations.

Stop and seal insulation at unions and other fittings that are to be accessible.

All interior insulation shall include premolded PVC fitting covers.

Exterior insulation shall be metal jacketed.

PLUMBING SYSTEMS

General

Most University buildings will be served via University owned mains

Design of buildings should include exterior fire hydrants, interior fire protection when required, main line tap and valve, main building shutoff valve (inside and outside), and distribution piping.

Exterior water valves shall have a concrete collar around them 18"x18"x4".

Plumbing Contractor shall be required to clean and disinfect all domestic hot and cold water systems. For occupied buildings the procedures shall be modified to accommodate the occupants. Final water quality must be approved by the Weld County Health Department.

Provide proper backflow prevention on all systems including feed lines for heating and cooling systems, laboratory faucets, hose bibs and faucets that may have a hose attached.

Backflow preventors to be manufactured by Febco or Watts. Double check type backflow preventors for fire systems may be by Ames.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-12

Backflow prevention for the building main water service shall include a 1” bypass line with a RPBFP to allow for maintenance without service interruption. Install main service backflow preventor at grade level if possible to allow for a gravity drain to the exterior. If not possible, suggest a concrete retention basin and automatic shutoff valve with alarm via the building automation system.

Provide a meter for the main building water service.

Provide a hose bib in all mechanical rooms and in shower / locker rooms. Sanitary and Storm Sewer

Interior clean-out caps and plugs will be located such that they can be utilized without damaging the floor or floor covering. Provide cleanouts at the base of all sanitary and storm stacks.

Exterior grade cleanouts shall be set in a 12" x 12" x 8" concrete collar. Riser to grade shall be cast iron with a concrete base under riser wye. Exterior cleanout to include a substantial steel or brass lid.

Clean-outs shall be located so that long lines can be entered from both ends. Plugs shall be lubricated prior to installation.

Provide floor drains in all restrooms and mechanical rooms.

Interior below grade sanitary and storm sewer lines shall be service weight cast iron with cast iron fittings to a point 5'-0" outside of the building. Joints shall be hub and spigot with neoprene gaskets.

Interior above grade sanitary and storm lines shall be service weight cast iron pipe with no hub fittings with neoprene gaskets and heavy duty stainless steel clamp an shield assemblies.

Sewage ejectors are not to be specified without prior approval from Facilities Management. Where used, provide duplex type units with high water alarms connected to the building automation system.

Storm water sump pumps shall be duplex type with alternating capability and high water alarms connected to the building automation system.

Perimeter drain systems shall either daylite or connect to a duplex pump system as specified above for storm water systems.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-13

Roof drainage shall be connected to storm sewer where possible. Downspouts discharging to grade may be considered only where adequate drainage away from the building exists.

Domestic Water Piping

Provide type "L" for all water distribution inside building, with wrought copper fittings and couplings. Copper lines installed below grade shall be type "K" with brazed joints.

Shock absorbers shall be placed in water lines to equipment or fixtures having quick closing or flush valves and any equipment that might produce water hammer.

Cold water freeze proof hose bibs shall be provided at outside locations around the building for cleaning and grounds maintenance. Provide with separate shut-off valve.

Approved manufacturers: Woodford Process Piping Materials

Vacuum piping – Copper with soldered joints

Laboratory Air – Copper with brazed joints

DI/RO water – CPVC for type III 3-meg ohm

Acid waste & vent – polypropylene Domestic Hot water heaters

Generally where HTHW is available, water heating will be done by one of the following methods:

- Instantaneous heater – Preferred

- Approved manufacturers: Cemline, Patterson Kelley

- HTHW tube bundle and storage tank (Note: Specify concrete lined tanks. Do not allow glass or epoxy lined tanks.)

Final selection will be based on space requirements, hot water requirements, HTHW availability and installation cost.

Refer to converter requirements listed under hot water heating systems below for guidelines.

PLUMBING FIXTURES AND TRIM

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-14

All water closets shall be specified as wall hung.

Provide fixture supplies and stops on every individual fixture or appliance

All plumbing fixtures and trim shall be low flow type. Specific flow rates to be determined by Owner.

Stops shall be compression by compression types, with handles and flexible tube risers.

Shower control valves to have integral screw driver stops.

Flush valves, supplies and stops shall be anchored rigidly behind walls

All wall and floor mounted fixtures shall be caulked with non-hardening white adhesive elastomeric sealant

Pumps for water circulation shall be all bronze construction with mechanical seals.

Provide an emergency eye / body wash unit in mechanical rooms containing chemical feed or water treatment equipment.

Provide a hose bib in all mechanical rooms and near all cooling towers.

Approved manufacturers:

Enameled steel, cast iron, vitreous china: Kohler - American Standard – Eljer - Crane

Electric Water Coolers: Elkay - Haws

Flush Valves: Sloan Royal – Zurn

Flush valves (electronic): Toto Ecopower toilet flushometer valve, 1.6 GPF, exposed TET1GNC-32 self generating auto flush

Faucets (lavatory electronic sensing): Toto – Zurn;

Faucets ( std. two handle): Delta - American Standard – Symmons – Chicago Faucets

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-15

Faucets (lever handle): Delta commercial – Symmons Lever handled faucets to have metal stems. Levers shall be as short as possible (2 ¾”) to reduce breakage.

Service sink faucets: Central brass - American Standard – Delta Commercial. Service sink type faucets to be industrial grade with metal stems wherever possible. Furnish with hose and wall clip.

Shower control valves (Pressure Balancing): Leonard – Powers - Symmons

HVAC PIPING AND PUMPS

Hot Water Heating Systems

The preferred heating system is hydronic using HTHW to hot water converters.

Current HTHW system operating conditions: At Heating Plant

Temperatures

- 350 Deg F Supply - 225 Deg F Return - Flow (severe weather) 65,000 GPH (1083 GPM)

Pressure

Supply – 235 - 255 PSI

Return – 185 -210 PSI Remote Building Temperatures – Measured at Candelaria and Butler Hancock Halls Temperatures - Winter (high load) – 285 Deg F Original HTHW System Design

- EWT 380 Deg F - LWT 240 Deg F - 140 Deg F delta T (large delta T is required to reduce system flow

requirements) HTHW Control Valves

HTHW control valves for converters shall be located on the return piping. HTHW Control valves for heating water converters shall be interlocked with the heating water circulating pumps(s) to prevent valve opening

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-16

unless heating water is circulating. All HTHW control valves shall have a full line size bypass with valve. Control valves shall have a strainer located immediately upstream. Control valves on HTHW shall be normally closed, positive shut off type, ANSI Class 4. Use 1 ½” minimum for HTHW control valves. HTHW control valves to be Honeywell or Fisher only. HTHW control valves shall be flanged 300#. Refer to drawings in appendix.

HTHW Pumps

HTHW pumps for the absorption chillers shall be a manufactured by Goulds (ITT) or A-C pumps (ITT).

Pump to be equivalent to Goulds 3700 with chrome fitted construction, mechanical seal with pumping ring for cooling, heat exchanger, hi -efficiency motor; API-610-S6 (w/ 12% chrome) compliance, centering support, 300 psig construction flanges.

Shell and tube heat exchangers

Hot water heating system shall include duplex converters for redundancy, each sized for 100% load.

Converters shall be A.S.M.E. constructed and stamped.

U tube type with 3/4" OD minimum copper nickel, tube wall = .049 thick, suitable for 400 PSI working Pressure, tube gauge = 18.0 B.W.G. suitable for 400 Deg. Provide steel tube sheet with bronze or brass spacers. Head to be ductile iron.

Shell: steel pipe with threaded or flanged connections and necessary tappings, suitable for 160 Deg. water in, 200Deg. water out.

Acceptable manufacturers: Bell & Gossett, Taco, Armstrong

All heat exchangers shall be located and piped to permit removal of tube bundles without interference.

Expansion tanks

Expansion tanks for glycol systems require EPDM diaphrams. Air Separators(Combination air separator/strainer/dirt filter)

Acceptable manufacturers: Spirovent Air / Dirt

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-17

Heating and Cooling Piping – General

High points in piping system shall be fitted with manual air vents. Low points shall be fitted with drain valves. Automatic air vents, where used, must have isolation valve.

Provide flow balancing stations in the main system and each major branch and at equipment.

Valves shall be installed at each branch line (each floor and zone).

Control valves in hydronic systems shall be flanged for valves larger than 1". Valves 1" and smaller shall be installed with unions. Provide isolation valves on all ports to control valves.

Heating and Cooling piping (200 Deg.)

Steel 2" & smaller ASTM A120, Sched. 40 black buttweld or continuous welded steel - with ASTM A197 150 lb black screwed fittings

Copper 2" & smaller ASTM B88, Type L, hard drawn with wrought copper fittings

Steel 2 1/2" & larger ASTM A53, grade A or B, Sched. 40 black seamless steel - with ASTM A234 sched 40 weld fittings

Gaskets: 1/16" full face - punched Garlock Blueguard (minimum 150 LB) or as approved by Facilities Management.

Bolts: Grade 5 minimum, regular hex head machine bolts with heavy hex nuts

HTHW Heating Water Piping (400 Deg.)

Steel 2" & smaller ASTM A53, Grade B Schedule 80 black socket weld or continuous welded steel - with ASTM A105, 3000 pound socket weld steel fittings

Steel 2 1/2" & larger ASTM A53 Grade B, Schedule 40 black seamless steel, butt weld, with ASTM A234 WPB steel fittings.

Flanges: In general, flanges are not allowed in the Heating Plant, Tunnel system or for building root valves. Where allowed, ASTM A105, 300 pound slip-on or weld neck raised faced.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-18

Gaskets: 1/16" ring gaskets - Garlock Graphonic flexible graphite facing w/ 304 SS corrugated core, dimensions per ANSI B16.21,or as approved by Facilities Management.

Bolts: Grade 8 bolts or Grade B7 studs with 2H nuts. Bolt length selection must allow for a full nut plus a maximum of ½” of thread. Studs are not allowed unless approved by UNC Facilities Management. All bolts are to be torqued to manufacturer’s specifications.

Hydronic Pumps

Refer to the standard pump and accessory piping detail in the appendix.

Provide two pumps for main building heating pumps. One primary pump and one stand-by for full redundancy.

End-suction centrifugal, flexible coupled. Provide standard single mechanical seal with carbon seal ring and ceramic seat. Replaceable shaft sleeve shall be furnished to cover the wetted area of the shaft under the seal. Use of in-line pumps shall be limited to coil circulation. Specify stainless steel bellows connector expansion joint.

Pumps shall be single stage, end suction, vertical split case design, cast iron with bronze fitted construction. Pump internals shall be capable of being serviced without disturbing piping connections or motors.

Maximum pump speed shall be 1800 RPM. Mechanical seals shall be selected for intended temperature service.

Pump and motor shall be base mounted on common base plate. Grout base plate in accordance with manufacturers instructions. Laser align all pumps after final piping connections and grouting of base plate.

Provide suction diffuser with in stream magnet, start-up strainer and adjustable foot support.

Acceptable manufacturers: Bell & Gossett, Taco, Armstrong, A-C Pumps (ITT), Aurora, Gould, Grundfos.

Motors

Motors to be high quality, long life, general purpose, continuous duty, design “B” except “C” where required for high starting torque. Premium Efficiency (91% – 94%)

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-19

Motors 3/4 HP and larger to be 3 phase, ½ HP and smaller to be capacitor start single phase except 1/16 HP and smaller may be split phase type. All motors rated greater than 1000 watts shall have a power factor not less than 85% under rated load conditions. Service factor for three phase motors 1.15, single phase motors 1.35. Three phase motors shall have under voltage, phase failure and phase reversal protection on all legs.

Bearings to be L-10, 100,000 hour rated or better. Re-greasable except where motor is in-accessible for regular maintenance.

Provide “quiet” rating on motors. 80 DB or less at full speed and power.

Motors to have an expected useful of life 17 years.

Specify Invertor rated for use with Variable Frequency Drives.

Motors to be manufactured by Baldor, US, Reliance, WEG or GE. Variable Frequency Drives

Drive shall be manufactured by Danfoss ,Graham,Toshiba, Mitsubishi, ABB

Specify extended warranty – 3 year minimum

Provide manual bypass

REFRIGERATION Air Conditioning Equipment - Electrical Centrifugal Chillers

All piping systems for Centrifugal chillers shall be designed to pump through the chiller.

Water flow switches shall be wired into control circuit so that chiller will not operate unless water flows are proven and maintained.

Provide two pumps each for chilled and condenser water systems. One primary and one stand-by for full redundancy.

Centrifugal chillers shall be designed with self contained electronic controls.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-20

Sequence of operations – Chiller systems shall be activated by the Building Automation System based on time of day, outdoor air temperature or load depending on the building or system function. (NOTE: BAS shall be provided with only the points listed in the controls and Instrumentation section. Complete “open protocol” interface with the chiller control panel is required.)

All functions initiated from the chiller control panel start / stop command from BAS. Start / Stop command initiates chilled water pump, proof of flow initiates condenser water pump, proof of condenser flow initiates chiller functions.

Provide the services of a factory trained mechanic employed by the chiller manufacturer to provide test and start-up services, and field training for maintenance personnel.

Compressor driven equipment to have 4 year extended warranty

Chillers shall be eddy current tested at commissioning for warranty and baseline purposes.

Acceptable manufacturers: Trane, Carrier, or McQuay. Others as approved by Facilities Management

Cooling Towers

Avoid the use of ground level towers

Cooling towers to be supplied with drain outlet in bottom of sump. Drain line to be piped to nearest roof drain.

All towers to have access ladders, full height and platforms to service hot decks and motors.

Tower fan is to be controlled by entering condenser water temperature.

Tower by-pass valve to be full size to completely bypass tower in low ambient conditions.

Include VFD’s for tower control where appropriate

Acceptable manufacturers: Marley, BAC. Others as approved by Facilities Management

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-21

Construction material – stainless steel hot and cold decks. WATER TREATMENT

All closed water systems are to be equipped with a pressure pot feeder, sized to accept water treatment chemicals in any common commercial form.

Heating and cooling systems shall be freeze protected with inhibited propylene glycol Dowfrost or approved equal. System concentration as defined by Facilities Management. Approx. 30-35% concentration provides –4 deg F freeze and –40 deg F burst protection. Verify with Facilities Management.

Automatic make-up water systems are prohibited on glycol filled systems

Condenser water chemical treatment systems shall be automated to feed corrosion inhibitor and biocides. System components shall include Advantage Controls Inc. Megatron MGCF3E-H11 controllers with Stenner #45MPHP22 pumps as defined by Facilities Management.

Provide CAT-6 data drop for BAS connection

Refer to the water treatment drawing in the appendix. AIR HANDLING/FANS General

All connections between fans and ductwork shall be with flexible connections.

All fan wheels shall be statically and dynamically balanced after installation.

Do not operate fans for any purpose, temporary or permanent, until ductwork is clean, filters in place, bearings lubricated, fan has been test run, and approval has been received from Facilities Management.

Air Handling Units

All major air handling equipment shall be installed in a mechanical room accessible from inside the building. Roof top air handling units may be considered. If specified, piping and valves for rooftop units must be installed within the unit or an approved enclosure.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-22

Avoid ground level air intakes. Outside air intakes must be oriented so that they are protected from the North and West prevailing winds.

Systems should be designed for economy cycle that automatically allows the quantity of outside air supplied to the building to be varied.

No humidity control shall be provided unless specifically required by the program plan. When humidity control is necessary, steam is the preferred method. Dri-steam or approved equal.

Units shall be provided with external bearings only. Shafts 3/4" and larger shall have spherical roller bearings. All bearings shall be accessible for lubrication and maintenance. Bearings to be greaseable, L20, 200,000 rated.

Most air handlers over 10 HP should be specified with synchronous drive belts, Goodyear Eagle PD or approved equivalent. Specify soft start for AHU motor.

Acceptable manufacturers: Trane, Carrier, York, Temptrol, M+I, Pace Coils

Coils shall be drainable and have manual relief vent located at high point.

Allow access to both coil faces for cleaning. Provide space for removing and repairing.

Coils longer than 10’ shall be split to allow for future removal.

Cooling coils to have drain from condensate pans piped to the nearest floor drain. Drain line shall be copper, with trap and union at connection to pan. Trap to be sized per manufacturers recommendations. Condensate pans to be stainless steel or galvanized coated with approved coating.

Filters / Belts

Provide throwaway pleated media filters, 2" thick non woven cotton fabric, 25-35 % efficiency. Some buildings may require washable type filters or bag type filters in addition to the throwaway filters as determined by Facilities Management.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-23

Provide a start-up set of filters for all air handling units. Remove and replace with clean filters at substantial completion, and sooner if necessary. Provide an additional set of spare filters for use by the owner.

Most air handlers over 10 HP should be specified with synchronous drive belts, Goodyear Eagle PD or approved equivalent. Specify soft start for AHU motor.

Provide one spare set of belts for each belt driven air handling unit. Exhaust Fans

Provide back draft dampers on all fans

Provide factory wired, non-fused disconnect switch on each unit.

Provide 1/4" mesh screen installed securely in place.

Acceptable manufacturers: Engineer shall define the minimum component specifications. Prefer Cook, Greenheck or approved equivalent.

DUCTWORK

No fiberglass ductwork shall be used.

Duct systems shall be designed to allow balancing of air quantities. Main duct runs must be dampered to permit proper division of air quantities in the duct system. Each supply and exhaust branch must have a damper control. Do not provide manual damper control on medium/high pressure duct branches. Dampers which are integral parts of supply or exhaust grilles may be uses for air balancing only with prior approval from Facilities Management. No OBD's on grilles where they can be accessed from within the room are allowed.

Duct liner may be used for sound control within 20’ of supply air fan discharge, Return air ductwork and inside exposed round ductwork. If used, liner shall be installed per manufacturers instructions to assure no air entrapment of fibers at less than or equal to 3000 fpm.

DUCTWORK TO BE COVERED AND ALL OPENINGS PROTECTED AT

ALL TIMES DURING CONSTRUCTION.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-24

Air intakes and louvered openings must be arranged to exclude all types of moisture. Screens shall have 1/2" minimum openings. Provide bird screening on exterior side to prevent entry of birds or debris.

CONTROLS AND INSRUMENTATION University of Northern Colorado BAS Specification June 2015 This specification section is a living document due to the nature of the rapid changes in technology. Please consult UNC as to any new changes. This is not intended to be the final version of the specification section to be inserted into a project manual. The Engineer is responsible for the review and adaptation that is required for each individual project application. It is requested that the Engineer red-line this document for UNC to review for each individual project. SECTION 15971 -BUILDING AUTOMATION INSTRUMENTATION AND

CONTROLS SYSTEM

PART 1 - GENERAL

1.01 SUMMARY

A. This Section covers the requirements for the Building Automation System hardware, software, instrumentation and control equipment for HVAC systems and components, lighting, energy and utility monitoring, and security including but not limited to:

1. Furnish and install a complete, fully functional BAS control system per this specification and construction documents including all computer software and hardware, licensing, construction supervision, startup and commissioning, demonstration and training, and warranty service.

2. Actuators, thermostats, sensors, transmitters, transducers, relays, local control panels, thermowells, instrument air compressors, filter/dryers, gauges.

3. Control valves, dampers, linkages, and mounting hardware as applicable.

4. Control components for terminal heating and cooling units not supplied with factory-wired controls.

B. Related Sections include the following: 1. Division 15 Section "Meters and Gages" for measuring

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-25

equipment that relates to this Section.

2. Division 15 Section "Sequence of Operation" for requirements that relate to this Section.

3. Division 16 Section “Panelboards” for measuring requirements that relate to this Section. 4. Division 16 Section “Interior Lighting” for requirements related to this Section. 5. Division 16 Section “Exterior Lighting” for requirements related to this Section. 6. Division 16 Section “Fire Detection and Alarm” for requirements related to this Section. 7. Division 16 Section “Basic Electrical Requirements” and “Basic Electrical Materials and Methods” for requirements related to this Section.

C. Products Supplied, But Not Installed Under This Section: 1. The Controls Contractor shall provide all automatic temperature control dampers for installation by the Mechanical Contractor under the Control Contractor’s supervision.

1.02 DEFINITIONS

A. It is the intent of these specifications and drawings to call for finished work, tested, and ready for operation. Whenever the word “provide” is used, it shall mean “furnish and install complete and ready for use”.

B. DDC/BAS: Direct Digital Control/Building Automation System.

C. I/O: Input/output.

D. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.

E. MS/TP: Master slave/token passing.

F. PC: Personal computer.

G. PID: Proportional plus integral plus derivative.

H. RTD: Resistance temperature detector.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-26

1.03 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.

2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.

3. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:

a. Water Temperature: Plus or minus 1 deg F.

b. Water Flow: Plus or minus 5 percent of full scale.

c. Water Pressure: Plus or minus 2 percent of full scale.

d. Space Temperature: Plus or minus 1 deg F.

e. Ducted Air Temperature: Plus or minus 1 deg F.

f. Outside Air Temperature: Plus or minus 2 deg F.

g. Dew Point Temperature: Plus or minus 3 deg F.

h. Temperature Differential: Plus or minus 0.25 deg F.

i. Relative Humidity: Plus or minus 5 percent.

j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.

k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.

l. Airflow (Terminal): Plus or minus 10 percent of full scale.

m. Air Pressure (Space): Plus or minus 0.01-inch wg.

n. Air Pressure (Ducts): Plus or minus 0.1-inch wg.

o. Carbon Dioxide: Plus or minus 50 ppm.

p. Electrical: Plus or minus 5 percent of reading.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-27

1.04 SUBMITTALS

Submittals must meet the requirements under specification section 01300.

A. Product Data: Include manufacturer's technical literature for each

control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.

1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.

2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications. Include all necessary licensing documentation.

3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Drawings shall be prepared using AutoCAD 2005 or latest version. Final or record drawings shall be submitted in electronic PDF format, and three 11x 17 printed and bound sets, and one 11x 17 laminated set. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Bill of materials of equipment indicating quantity, manufacturer, and model number.

2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.

3. Wiring Diagrams: Power, signal, and control wiring.

4. Details of control panel faces, including controls, instruments, and labeling.

5. Written description of sequence of operation.

6. Schedule of dampers including size, leakage, fail position, and

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-28

flow characteristics.

7. Schedule of valves including flow characteristics.

8. DDC System Hardware:

a. Wiring diagrams for control units with termination numbers.

b. Schematic diagrams and floor plans for field sensors and control hardware.

c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.

9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.

10. Controlled Systems:

a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.

b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.

c. Scaled floor and roof plan drawings showing the location of control panels, sensors, etc…

d. Written description of sequence of operation including schematic diagram.

e. Points list.

C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.

D. Qualification Data: For Installer and manufacturer.

E. Field quality-control test reports.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-29

F. Project Record Documents. Submit three copies of record (as-built) documents upon completion of installation for approval prior to final completion. Submittal shall consist of:

1. Project Record Drawings. As-built versions of submittal shop drawings provided as AutoCAD 2004 (or newer) compatible files (file format: .DWG, .DXF, .VSD, or comparable) and 6 prints of each drawing on 11" x 17" paper and a PDF electronic version of the final as-built control drawings.

2. Testing and Commissioning Reports and Checklists. Completed versions of reports, checklists, and trend logs used to meet requirements of Section 15900 Article 3.16 (Control System Demonstration and Acceptance).

3. Operation and Maintenance (O&M) Manual. Printed and electronic PDF documentation of the following:

a. As-built versions of submittal product data.

b. Names, addresses, and telephone numbers of installing contractors and service representatives for equipment and control systems.

c. Operator's manual with procedures for operating control systems: logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing setpoints and variables.

d. Programming manual or set of manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.

e. Engineering, installation, and maintenance manual or set of manuals that explains how to design and install new points, panels, and other hardware; how to perform preventive maintenance and calibration; how to debug hardware problems; and how to repair or replace hardware.

f. Documentation of programs created using custom programming language including setpoints, tuning parameters, and object database. Electronic copies of programs shall meet this requirement if control logic, setpoints, tuning parameters, and objects can be viewed using furnished programming tools.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-30

g. Graphic files, programs, and database on magnetic or optical media.

h. List of recommended spare parts with part numbers and suppliers.

i. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.

j. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation or web server software, and graphics software.

k. Licenses, guarantees, and warranty documents for equipment and systems.

l. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.

4. Ownership Of Proprietary Material

a. Project-specific software and documentation shall become Owner's property. This includes, but is not limited to:

1. Graphics

2. Record drawings

3. Database

4. Application programming code

5. Documentation

1.05 QUALITY ASSURANCE

A. Installer Qualifications: An independent contractor who is an automatic control system manufacturer's authorized representative and is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-31

C. Comply with ASHRAE 135 for DDC system components.

D. Comply with LonWorks communication protocols for each DDC system component.

E. Wiring shall be a Class A installation per the requirements of NEC and Division 16. F. Generic End Devices – input devices and controlled devices. Includes temperature, humidity, pressure, flow sensors for input, valve and damper actuators, etc. for output. For a retrofit project, all existing end devices and wiring thereto can be re-used by the contractor provided they are compatible with installed BAS product. Confirm that existing sensors meet the criteria in other parts of this document. Notify the engineer of any end devices that are not in working condition.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.

1.07 COORDINATION

A. Coordinate location of thermostats, and other exposed control sensors with plans and room details before installation.

F. Coordinate equipment with Division 16 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.

G. Coordinate equipment with Division 16 Section "Electrical Power Monitoring and Control" to achieve compatibility of communication interfaces.

H. Coordinate equipment with Division 16 Section "Motor Control Centers" to achieve compatibility with motor starters and annunciation devices.

1.08 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-32

and that are packaged with protective covering for storage and identified with labels describing contents.

1. One of each type of controller, actuator and sensor.

2. Allow spare configurable controller space of 10% for ach different type of point on each controller.

1.09 Codes and Standards

A. Work, materials, and equipment shall comply with the most restrictive of local, state, and federal authorities' codes and ordinances or these plans and specifications. As a minimum, the installation shall comply with current editions in effect 30 days prior to receipt of bids of the following codes:

1. National Electric Code (NEC)

2. International Building Code (IBC)

a. Section 719 Ducts and Air Transfer Openings

b. Section 907 Fire Alarm and Detection Systems

c. Section 909 Smoke Control Systems

d. Chapter 28 Mechanical

3. For BACnet systems, ASHRAE/ANSI 135-2001: Data Communication Protocol for Building Automation and Control Systems (BACNET)

4. For LON systems, the product shall be LONMark certified.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.02 CONTROL SYSTEM

A. Acceptable DDC System Manufacturers:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-33

1. Schneider Electric installed by Long & Associates.

2. Honeywell installed by Honeywell.

3. Staefa Talon installed by Carrier West 4. Distech EC/Net installed by Carrier West

5. Schneider Electric installed by Westover

B. Control system shall consist of sensors, indicators, actuators, final

control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

C. AHU controllers and terminal unit controllers will be same brand as BAS. Chiller controllers will come with the chillers and have a BACnet I/P or LonWorks interface. Boilers controls can be done either way (by boiler manufacturer of BAS supplier). Chiller and Boiler management will be performed by the BAS. VFD’s will have a BACnet or LON interface to directly communicate with the BAS as any other controller

D. All equipment interfacing directly to JACE’s are [referred to be BACnet

IP or LonWorks.

2.03 OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURES

A. The intent of this specification is to provide a peer-to-peer networked, stand-alone, distributed control system that is compliant with the ASNI/ASHRAE Standard 135-1995 BACnet, LonWorks and Modbus communication protocols, into one open interoperable system.

B. The University currently has in place a server and Tridium front end and is based on the AX format. The Controls Contractor shall provide the new equipment, hardware, software, and licensing to be fully integrated and compatible with the current system. BACnet IIP for all JACE’s on AX

C. The supplied computer software shall employ object-oriented technology (OOT) for representation of all data and control devices within the system. In addition, adherence to industry standards including ANSI / ASHRAE™ Standard 135-1995, BACnet and LonMark to assure interoperability between all system components is required. For each

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-34

LonWorks device that does not have LonMark certification, the device supplier must provide an XIF file for the device. For each BACnet device, the device supplier must provide a PICS document showing the installed device’s compliance level. Minimum compliance is Level 3; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet.

D. All components and controllers supplied under this contract shall be true “peer-to-peer” communicating devices. Components or controllers requiring “polling” by a host to pass data shall not be acceptable.

E. The supplied system must incorporate the ability to access all data using Java or HTML5enabled browsers without requiring proprietary operator interface and configuration programs. An Open DataBase Connectivity (ODBC) or Structured Query Language (SQL) compliant server database is required for all system database parameter storage. This data shall reside on a supplier-installed server for all database access. Systems requiring proprietary database and user interface programs shall not be acceptable.

F. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer’s internal Intranet network. Systems employing a “flat” single tiered architecture shall not be acceptable.

1. Maximum acceptable response time from any alarm occurrence

(at the point of origin) to the point of annunciation shall not exceed 5 seconds for network connected user interfaces.

2. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 60 seconds for remote or Internet connected user interfaces.

G. The Local Area Network (LAN) shall be either a 10 or 100 Megabits/sec Ethernet network supporting BACnet, Java, XML, SOAP, HTTP, and CORBA IIOP for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Network Area Controllers (NACs), user workstations and, if specified, a local host computer system.

H. Local area network minimum physical and media access requirements:

a. Ethernet; IEEE standard 802.3

b. Cable; 10 Base-T, UTP-8 wire, category 6

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-35

c. Minimum throughput; 10 Mbps, with ability to increase to 1 Gbps

I. Network Access

1. Remote Access.

a. For Local Area Network installations, provide access to the LAN from a remote location, via the Internet. The owner shall provide a connection to the Internet to enable this access via the Owner’s Intranet to a corporate server providing access to an Internet Service Provider (ISP).

J. Licensing 1. All licensing needed for BAS system to be provided by contractor. 2. No protocol convertors or gateways that communicate using

different protocols will be allowed unless approved by UNC.

2.04 NETWORK AREA CONTROLLER (NAC)

A. The Network Area Controller (NAC) shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control devices connected to the NAC. It shall be capable of executing application control programs to provide:

1. Calendar functions

2. Scheduling

3. Trending

4. Alarm monitoring and routing

5. Time synchronization

6. Integration of LonWorks controller data and BACnet controller data

7. Network Management functions for all LonWorks based devices

B. The Network Area Controller must provide the following hardware features as a minimum:

1. One Ethernet Port -10 / 100 Mbps

2. One RS-232 port

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-36

3. One LonWorks Interface Port – 78KB FTT-10A

4. Battery Backup

5. Flash memory for long term data backup (If battery backup or flash memory is not supplied, the controller must contain a hard disk with at least 1 gigabyte storage capacity)

6. The NAC must be capable of operation over a temperature range of 0 to 55°C

7. The NAC must be capable of withstanding storage temperatures of between 0 and 70°C

8. The NAC must be capable of operation over a humidity range of 5 to 95% RH, non-condensing

C. The NAC shall be fully enclosed in a NEMA 1 constructed cabinet for indoor installations and NEMA 12 for outdoor installations. It shall have a hinged door, key lock, baked enamel finish, and be wall-mounted. All panels shall be keyed alike.

D. All panels shall house the NAC, network connections (one for the controller and another port for the purpose of connecting via a laptop), power supply, a 120v duplex outlet, and EDCO HSP121BT-1RU surge suppression/protection device, powered from a UPS that is sized to handle the load of the controls and the JACE (minimum 400 va). For exterior panels include fan and heat strip to regulate the temperature in the panel within the NAC’s operation range. Fan and heat strip shall be controlled via a temperature sensor in the panel. The cabinet installation and layout shall match the University’s standard.

E.The NAC shall provide multiple user access to the system and support for ODBC or SQL. A database resident on the NAC shall be an ODBC-compliant database or must provide an ODBC data access mechanism to read and write data stored within it.

F. The NAC shall support standard Web browser access via the Intranet/Internet. It shall support unlimited simultaneous users.

G. Event Alarm Notification and actions

1. The NAC shall provide alarm recognition, storage; routing, management, and analysis to supplement distributed capabilities of equipment or application specific controllers.

2. The NAC shall be able to route any alarm condition to any defined user location whether connected to a local network or

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-37

remote via dial-up, telephone connection, or wide-area network.

3. Alarm generation shall be selectable for annunciation type and acknowledgement requirements including but limited to:

a. To alarm

b. Return to normal

c. To fault

4. Provide for the creation of an unlimited number of alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc.

5. Provide timed (schedule) routing of alarms by class, object, group, or node.

6. Provide alarm generation from binary object “runtime” and /or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control.

H. Control equipment and network failures shall be treated as alarms and annunciated.

I. Alarms shall be annunciated via Vykon Alarm Interface program in any of the following manners as defined by the user:

1. Screen message text

2. Email of the complete alarm message to multiple recipients. Provide the ability to route and email alarms based on:

a. Day of week

b. Time of day

c. Recipient

3. Pagers via paging services that initiate a page on receipt of email message

4. Graphic with flashing alarm object(s)

5. Printed message, routed directly to a dedicated alarm printer

J. The following shall be recorded by the NAC for each alarm (at a

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-38

minimum):

1. Time and date

2. Location (building, floor, zone, office number, etc.)

3. Equipment (air handler #, accessway, etc.)

4. Acknowledge time, date, and user who issued acknowledgement.

5. Number of occurrences since last acknowledgement.

K. Alarm actions may be initiated by user defined programmable objects created for that purpose.

L. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.

M. A log of all alarms shall be maintained by the NAC and/or a server (if configured in the system) and shall be available for review by the user.

N. Provide a “query” feature to allow review of specific alarms by user defined parameters.

O. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.

P. An Error Log to record invalid property changes or commands shall be provided and available for review by the user.

2.05 AUXILIARY DEVICES

A. Time delay relays shall be UL listed solid-state plug-in type with adjustable time delay. Delay shall be adjustable plus or minus 200% (minimum) from setpoint shown on plans. Contact rating, configuration, and coil voltage suitable for application. Provide NEMA 1 enclosure when not installed in panel. Seimens series CK or Engineer-approved equal.

B. Control transformers shall be UL listed, Class 2 current-limiting type, or shall be furnished with overcurrent protection with a resetable circuit breaker.

C. Manual control switches shall be UL listed for use in NEMA 1 enclosures with contact arrangement and rating suitable for application. Bat handle or knob actuator with nameplate clearly indentifying function of

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-39

each switch position.

D. Power Supplies: 1. Unit output shall match the required output current and voltage

requirements. Current output shall allow for a 50% safety factor. Output ripple shall be 3.0 MV maximum P-P. Regulation shall be 0.10% line and load combined, with 50-microsecond response time for 50% load changes. Unit shall have built-in over voltage protection.

2. Unit shall operate between 0 degrees C and 50 degrees C.

EM/RF shall meet FCC Class B and VDE 0871 for Class B, and MIL Standard 810C for shock and vibration.

3. Unit shall be UL recognized. 4. Functional Devices, MAMAC Systems, Inc. or Engineer-

approved equal.

E. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

1. Electric Heating Thermostats: Equip with off position on dial

wired to break ungrounded conductors.

2. Selector Switch: Integral, manual on-off-auto.

F. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual-reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.

1. Bulb Length: Minimum 20 feet.

2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

G. Equipment safeties (freeze, smoke detectors, etc.) will be hardwired into the start circuits for equipment shutdown. All safety devices will be 2-pole devices – one to shut down equipment and one to alarm the BAS.

2.06 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-40

duct mounting as required.

B. Thermistor Temperature Sensors and Transmitters:

1. Manufacturers:

a. MAMAC Systems, Inc.

b. Schneider Electric

c. Siemens

d. Honeywell

2. Accuracy: Plus or minus 0.5 deg F at calibration point.

3. Wire: Twisted, shielded-pair cable.

4. Insertion Elements in Ducts: Single point, 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.

5. Averaging Elements in Ducts: 36 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft.

6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.

7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

8. Room Security Sensors for high traffic areas as required by Owner: Stainless-steel cover plate with insulated back and security screws.

C. RTDs and Transmitters:

1. Manufacturers:

a. MAMAC Systems, Inc.

b. Schneider Electric

c. Siemens

d. Honeywell

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-41

2. Accuracy: Plus or minus 0.2 percent at calibration point.

3. Wire: Twisted, shielded-pair cable.

4. Insertion Elements in Ducts: Single point, 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.

5. Averaging Elements in Ducts: 48 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.

6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.

7. Outside-Air Sensors: Watertight inlet fitting, provide sun shields.

8. Room Security Sensors for high traffic areas as required by Owner: Stainless-steel cover plate with insulated back and security screws.

D. Pressure Transmitters/Transducers:

1. Manufacturers:

a. Schneider Electric

b. Honeywell

c. MAMAC Systems, Inc.

2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.

a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.

b. Output: 4 to 20 mA.

c. Building Static-Pressure Range: 0- to 0.25-inch wg.

d. Duct Static-Pressure Range: 0- to 5-inch wg.

3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-42

4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.

5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.

6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

7. Electropneumatic Transducers: 100% solid-state piezorestive silicon pressure sensor, high air flow capacity (output of 25psig), field selectable 4 to 20 mA, o to 5 VDC or o0 to 10 VDC input. For service with HTHW control valves. 8. Electropneumatic Transducers: 100% solid-state piezorestive silicon pressure sensor, low air flow capacity (output of 15psig), field selectable 4 to 20 mA, o to 5 VDC or o0 to 10 VDC input.

E. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.

F. Room sensor accessories include the following where required by Owner:

1. Insulating Bases: For sensors located on exterior walls.

2. Guards: Locking; heavy-duty, transparent plastic; mounted on separate base.

3. Adjusting Key: As required for calibration and cover screws.

G. Flood detector: 24VAC, latching relay, LED indicators, isolated contactors with reset button. Manufactured by Wagner Manufacturing. 2.07 STATUS SENSORS

A. Status Inputs for Fans: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump, provide ball valves and union for isolation of

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-43

differential-pressure switch.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure, provide isolation valves.

1. Manufacturers:

a. MAMAC Systems, Inc.

b. I.T.M. Instruments Inc.

c. Schneider Electric

d. Honeywell

I. Control relays shall be UL listed plug-in type with dust cover and LED “energized” indicator. Contact rating, configurable, and coil voltage suitable for application. Manufactured by IDEC. J. Control relays shall be UL listed with HOA and LED “energized” indicator. Contact rating, configurable, and coil voltage suitable for application. Manufactured by Functional Devices. 2.08 GAS DETECTION EQUIPMENT

A. Manufacturers:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-44

1. AirSense by Honeywell International Inc.

3. Schneider Electric

4. Honeywell International Inc.

5. Vulcain Inc.

6. Macurco

B. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-

state infrared sensors; suitable over a temperature range of 23 to 130 deg F and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output;, for wall mounting.

2.09 PROGRAMABLE EQUIPMENT CONTROLLERS (PEC)

A. Manufacturers:

1. Schneider Electric

2. Siemens/Staefa

3. Distech 4. Honeywell

B. Programmable Equipment Controllers (PEC’s) shall be stand-alone,

multi-tasking, real-time digital control processors.

C. The PEC’s shall communicate via native LonTalk protocol and be compatible with the LonMark standards. Provide a minimum of 4MB Random Access Memory in each PEC.

D. Programming of the PEC shall be accomplished by using graphical software that incorporates drag and drop capabilities. The PEC software database must be able to execute all of the specified mechanical system controls functions. The programming software shall be able to bundle software logic to simplify control sequencing. All values, which make up the PID output value, shall be readable and modifiable at a workstation or portable service tool. Each input, output, or calculation result shall be capable of being shared/bound with any controller or interface device on the network.

E. PEC’s shall allow for free-form programming and be able to execute custom, job-specific processes defined by the user, and to automatically

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-45

perform calculations and special control routines.

1. A single process shall be able to incorporate measured or calculated data from any and all other PEC’s on the network. In addition, a single process shall be able to issue commands to points in any and all other PEC’s on the network.

2. Processes shall be able to generate operator messages and advisories to operator I/O devices.

F. Each PEC shall support firmware upgrades without the need to replace hardware.

G. Each PEC shall continuously perform self-diagnostics, which include communication diagnosis and diagnosis of all components.

H. In the event of the loss of normal power, there shall be an orderly shutdown of all PEC’s to prevent the loss of database or operating system software. Non-volatile memory shall be incorporated for all critical controller configuration data and battery backup shall be provided to support the real-time clock and all volatile memory of minimum of 72 hours.

1. Upon restoration of normal power, the PEC shall automatically resume full operation without manual intervention.

2. All PEC’s control programming and databases must be stored in Flash memory, therefore eliminating data loss, downtime, and re-load time.

I. Spare points will be provided at each controller (except unitary controllers) for each type of point (AI, BI, AO & BO) in a quantity equal to or greater than 10%.

2.10 CONFIGURABLE CONTROLLERS(CC)

Controllers (field and terminal) should allow for free-form programming in lieu of “application specific controllers”.

A. Manufactures:

1. Viconics 2. Schneider Electric

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-46

3. Distech

4. Honeywell

B. Each Configurable controller (CC) shall operate as a stand – alone LonMark compliant controller capable of performing its specified control responsibilities independent of other controllers in the network. Each CC shall be a minimum of 16-Bit microprocessor based, multi-tasking, multi-user, real time digital control processor.

C. Each CC’s application must comply with one of the following LonMark interoperability profile guidelines:

1. Fan coil units

2. Heat pumps.

3. Thermostat controllers.

D. Flash memory reload or updating of an existing control algorithm shall be completed over the network.

E. Network access shall be accomplished at the electrical room NAC. All units are to be networked via looped communications cable.

F. Controllers shall include all inputs and outputs necessary to perform the specified control sequences. Analog and digital outputs shall be industry standard signals such as 0-10V and 3-point floating control allowing for interface to a variety of industry standard modulating actuators. The CC inputs shall consist of industry standards 10K thermistor, 0-10V, 4-20mA and DI. Inputs shall be electrically isolated from outputs, communications, and power. All inputs shall be provided with an auto-calibrate function to eliminate sensing errors.

G. All controller sequences and operation shall provide closed loop control of the intended application. Closing control loops over the network is not acceptable.

H. Thermostat Controllers shall be provided for Fan Coil Unit and/or single or multiple stage HVAC applications where applicable:

1. All FCU thermostats shall be LON Mark microprocessor-based with PI (proportional and integral) control algorithm. Thermostats shall be suitable for control of single or multi-speed fan coil units. Thermostat shall be provided with three control outputs, and capable of supporting both two and four pipe, heating or cooling applications with or without local changeover. Thermostat shall be

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-47

proved with three configurable inputs to, which can support all required local occupancy functions required within the zone being service. Thermostats shall support momentary contact input from motion detector or PIR. Thermostats shall support remote room and duct sensing. The thermostat must contain six levels of keypad accessibility, including the capacity to completely disable the keypad. All installer parameters are to be set using a dedicated key function accessible without removing the cover. Thermostat shall be provided with local configuration utility embedded with device as standard.

2. All installer parameter shall have the option to be set using a dedicated key accessible when the cover is removed or downloaded from the Network Area Controller. Each controller shall be able to be operated as stand-alone preprogrammed devices to facilitate local commissioning and start-up procedures.

I. The control program shall reside in the CC. The application program configuration information shall be stored in non-volatile memory with no battery back up.

J. After a power failure the CC must run the control application using the current set point and configuration. Reverting to default or factory set points are not acceptable.

K. The controller shall be an electrical class-II device constructed form UL tested flame and smoke retardant materials to allow mounting in the return air plenum. The controller shall be listed UL-916. All electrical connections shall be made to a combination base and terminal strip assembly. To ensure long-term reliability, all electrical connections shall be screw type.

L. Spare points will be provided at each controller (except unitary controllers) for each type of point (AI, BI, AO & BO) in a quantity equal to or greater than 10%.

2.11 ACTUATORS

A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.

1. Comply with requirements in Division 15 Section "Motors."

2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-48

with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.

3. Nonspring-Return Motors for Valves Larger than NPS 2-1/2: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.

4. Spring-Return Motors for Valves Larger than NPS 2-1/2: Size for running and breakaway torque of 150 in. x lbf.

5. Nonspring-Return Motors for Dampers Larger than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.

6. Spring-Return Motors for Dampers Larger than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.

B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque. Actuator size and rating shall be suitable for intended purpose. Actuators relying on batteries are unacceptable.

1. Manufacturers:

a. Belimo Aircontrols (USA), Inc.

b. Schneider Electric

c. Seimens

d. Seibe

e. Honeywell.

2. Valves: Size for torque required for valve close off at maximum pump differential pressure.

3. Dampers: Size for running torque calculated as follows:

a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.

b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.

c. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-49

1.5.

d. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.

4. Coupling: V-bolt and V-shaped, toothed cradle.

5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.

7. Power Requirements (Two-Position Spring Return): 24-V ac.

8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.

9. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.

10. Temperature Rating: Minus 22 to plus 122 deg F.

11. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.

12. Run Time: 12 seconds open, 5 seconds closed.

2.12 CONTROL VALVES

A. Manufacturers:

1. Schneider Electric

2. Belimo

3. Fisher

4. Honeywell

B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.

C. Hydronic system globe valves shall have the following characteristics:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-50

1. NPS 2 and Smaller: Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.

2. NPS 2-1/2 and Larger: Class 125 iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.

3. Internal Construction: Replaceable plugs and stainless-steel or brass seats.

a. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.

b. Double-Seated Valves: Balanced plug; cage trim provides seating and guiding surfaces for plugs on top and bottom.

4. Sizing: 3-psig maximum pressure drop at design flow rate or the following:

a. Two Position: Line size.

b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.

c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.

5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.

6. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.

D. Butterfly Valves: 150-psig maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.

1. Body Style: Lug.

2. Sizing: 1-psig maximum pressure drop at design flow rate.

E. Terminal Unit Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-51

ends.

1. Rating: Class 125 for service at 125 psig and 250 deg F operating conditions.

2. Sizing: 3-psig maximum pressure drop at design flow rate, to close against pump shutoff head.

3. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.

2.13 DAMPERS

A. Manufacturers:

1. Greenheck

2. Ruskin

3. Honeywell

B. Dampers: AMCA-rated, opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.

1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.

2. Operating Temperature Range: From minus 40 to plus 200 deg F.

3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.

4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-52

2.14 DATA COLLECTION AND STORAGE

A. The NAC (Network Area Controller) shall have the ability to collect data for any property of any object and store this data for future use.

1. The data collection shall be performed by log objects, resident in the NAC that shall have, at a minimum, the following configurable properties:

2. Designating the log as interval or deviation.

3. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.

4. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.

5. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.

6. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.

B. All log data shall be stored in a relational database in the NAC and the data shall be accessed from a server (if the system is so configured) or a standard Web Browser.

C. All log data, when accessed from a server, shall be capable of being manipulated using standard SQL statements.

D. All log data shall be available to the user in the following data formats:

1. HTML

2. XML

3. Plain Text

4. Comma or tab separated values

E. Systems that do not provide log data in HTML and XML formats at a minimum shall not be acceptable.

F. The NAC shall have the ability to archive its log data either locally (to itself), or remotely to a server or other NAC on the network. Provide the

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-53

ability to configure the following archiving properties, at a minimum:

1. Archive on time of day

2. Archive on user-defined number of data stores in the log (buffer size)

3. Archive when log has reached it’s user-defined capacity of data stores

4. Provide ability to clear logs once archived

2.15 AUDIT LOG

A. Provide and maintain an Audit Log that tracks all activities performed on the NAC. Provide the ability to specify a buffer size for the log and the ability to archive log based on time or when the log has reached its user-defined buffer size. Provide the ability to archive the log locally (to the NAC), to another NAC on the network, or to a server. For each log entry, provide the following data:

1. Time and date

2. User ID

3. Change or activity: i.e., Change setpoint, add or delete objects, commands, programming changes, etc.

2.16 DATABASE BACKUP AND STORAGE

A. The NAC shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time interval.

B. Copies of the current database and, at the most recently saved database shall be stored in the NAC. The age of the most recently saved database is dependent on the user-defined database save interval.

C. The NAC database shall be stored, at a minimum, in XML format to allow for user viewing and editing, if desired. Other formats are acceptable as well, as long as XML format is supported.

2.17 GRAPHICAL USER INTERFACE SOFTWARE

A. Operating System:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-54

1. The GUI shall run on Microsoft Windows NT Workstation 4.0, Service Pack 4 or later, Windows XP or Windows 2000.

B. The GUI shall employ internet browser for ease of navigation. It shall include a tree view (similar to Windows Explorer) for quick viewing of, and access to, the hierarchical structure of the database. In addition, menu-pull downs, and toolbars shall employ buttons, commands and navigation to permit the operator to perform tasks with a minimum knowledge of the HVAC Control System and basic computing skills. These shall include, but are not limited to, forward/backward buttons, home button, and a context sensitive locator line (similar to a URL line), that displays the location and the selected object identification.

C. Real-Time Displays. The GUI, shall at a minimum, support the following graphical features and functions:

1. Graphic screens shall be developed using any drawing package capable of generating a GIF, or JPG file format. Use of proprietary graphic file formats shall not be acceptable. In addition to, or in lieu of a graphic background, the GUI shall support the use of scanned pictures.

2. Graphic screens shall have the capability to contain objects for text, real-time values, animation, color spectrum objects, logs, graphs, HTML or XML document links, schedule objects, hyperlinks to other URL’s, and links to other graphic screens.

3. Graphics shall support layering and each graphic object shall be configurable for assignment to a layer. A minimum of six layers shall be supported.

4. Modifying common application objects, such as schedules, calendars, and set points shall be accomplished in a graphical manner.

a. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.

b. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.

5. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.

6. Adjustments to analog objects, such as set points, shall be done

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-55

by right-clicking the selected object and using a graphical slider to adjust the value. No entry of text shall be required.

D. System Configuration. At a minimum, the GUI shall permit the operator to perform the following tasks, with proper password access:

1. Create, delete or modify control strategies.

2. Add/delete objects to the system.

3. Tune control loops through the adjustment of control loop parameters.

4. Enable or disable control strategies.

5. Generate hard copy records or control strategies on a printer.

6. Select points to be alarm able and define the alarm state.

7. Select points to be trended over a period of time and initiate the recording of values automatically.

E. On-Line Help. Provide a context sensitive, on-line help system to assist the operator in operation and editing of the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext. All system documentation and help files shall be in HTML format.

F. Security. Each operator shall be required to log on to that system with a user name and password in order to view, edit, add, or delete data. System security shall be selectable for each operator. The system administrator shall have the ability to set passwords and security levels for all other operators. Each operator password shall be able to restrict the operators’ access for viewing and/or changing each system application, full screen editor, and object. Each operator shall automatically be logged off of the system if no keyboard or mouse activity is detected. This auto log-off time shall be set per operator password. All system security data shall be stored in an encrypted format.

G. System Diagnostics. The system shall automatically monitor the operation of all workstations, printers, modems, network connections, building management panels, and controllers. The failure of any device shall be annunciated to the operator.

H. Alarm Console

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-56

1. The system will be provided with a dedicated alarm window or console at the gray Hall police department workstation. This window will notify the operator of an alarm condition, and allow the operator to view details of the alarm and acknowledge the alarm. The use of the Alarm Console can be enabled or disabled by the system administrator.

2. When the Alarm Console is enabled, a separate alarm notification window will supersede all other windows on the desktop and shall not be capable of being minimized or closed by the operator. This window will notify the operator of new alarms and un-acknowledged alarms. Alarm notification windows or banners that can be minimized or closed by the operator shall not be acceptable.

2.18 WEB BROWSER CLIENTS

A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer™ or Netscape Navigator™. Systems requiring additional software (to enable a standard Web browser) to be resident on the client machine, or manufacture-specific browsers shall not be acceptable.

B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the FMCS, shall not be acceptable.

C. The Web browser shall provide the same view of the system, in terms of graphics, schedules, calendars, logs, etc., and provide the same interface methodology as is provided by the Graphical User Interface. Systems that require different views or that require different means of interacting with objects such as schedules, or logs, shall not be permitted.

D. The Web browser client shall support at a minimum, the following functions:

1. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.

2. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-57

objects supported by the GUI shall be supported by the Web browser interface.

3. HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.

4. Storage of the graphical screens shall be in the Network Area Controller (NAC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.

5. Real-time values displayed on a Web page shall update automatically without requiring a manual “refresh” of the Web page.

6. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:

a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.

1. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.

2. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.

b. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.

c. View logs and charts

d. View and acknowledge alarms

7. The system shall provide the capability to specify a user’s (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to just their defined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.

8. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-58

link.

2.19 SERVER FUNCTIONS AND HARDWARE

A. A central server shall be provided where required effective for NAC communication over the Ethernet. The server shall support all Network Area Controllers (NAC) connected to the customer’s network whether local or remote.

B. Local connections shall be via an Ethernet LAN. Remote connections can be via ISDN, ADSL, T1 or dial-up connection.

C. It shall be possible to provide access to all Network Area Controllers via a single connection to the server. In this configuration, each Network Area Controller can be accessed from the Graphical User Interface (GUI) or from a standard Web browser (WBI) by connecting to the server.

D. The server shall provide the following functions, at a minimum:

1. Global Data Access: The server shall provide complete access to distributed data defined anywhere in the system.

2. Distributed Control: The server shall provide the ability to execute global control strategies based on control and data objects in any NAC in the network, local or remote.

3. The server shall include a master clock service for its subsystems and provide time synchronization for all Network Area Controllers (NAC).

4. The server shall accept time synchronization messages from trusted precision Atomic Clock Internet sites and update its master clock based on this data.

5. The server shall provide scheduling for all Network Area Controllers and their underlying field control devices.

6. The server shall provide demand limiting that operates across all Network Area Controllers. The server must be capable of multiple demand programs for sites with multiple meters and or multiple sources of energy. Each demand program shall be capable of supporting separate demand shed lists for effective demand control.

7. The server shall implement the BACnet Command Prioritization scheme (16 levels) for safe and effective contention resolution of

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-59

all commands issued to Network Area Controllers. Systems not employing this prioritization shall not be accepted.

8. Each Network Area Controller supported by the server shall have the ability to archive its log data, alarm data and database to the server, automatically. Archiving options shall be user-defined including archive time and archive frequency.

9. The server shall provide central alarm management for all Network Area Controllers supported by the server. Alarm management shall include:

a. Routing of alarms to display, printer, email and pagers

b. View and acknowledge of alarms

c. Query alarm logs based on user-defined parameters

10. The server shall provide central management of log data for all Network Area Controllers supported by the server. Log data shall include process logs, runtime and event counter logs, audit logs and error logs. Log data management shall include:

a. Viewing and printing log data

b. Exporting log data to other software applications

c. Query log data based on user-defined parameters

2.20 SYSTEM PROGRAMMING

A. The Graphical User Interface software (GUI) shall provide the ability to perform system programming and graphic display engineering as part of a complete software package. Access to the programming functions and features of the GUI shall be through password access as assigned by the system administrator.

B. A library of control, application, and graphic objects shall be provided to enable the creation of all applications and user interface screens. Applications are to be created by selecting the desired control objects from the library, dragging or pasting them on the screen, and linking them together using a built in graphical connection tool. Completed applications may be stored in the library for future use. Graphical User Interface screens shall be created in the same fashion. Data for the user displays is obtained by graphically linking the user display objects to the application objects to provide “real-time” data updates. Any real-time data value or object property may be connected to display its current

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-60

value on a user display. Systems requiring separate software tools or processes to create applications and user interface display shall not be acceptable.

C. Programming Methods

1. Provide the capability to copy objects from the supplied libraries, or from a user-defined library to the user’s application. Objects shall be linked by a graphical linking scheme by dragging a link from one object to another. Object links will support one-to-one, many-to-one, or one-to-many relationships. Linked objects shall maintain their connections to other objects regardless of where they are positioned on the page and shall show link identification for links to objects on other pages for easy identification. Links will vary in color depending on the type of link; i.e., internal, external, hardware, etc.

2. Configuration of each object will be done through the object’s property sheet using fill-in the blank fields, list boxes, and selection buttons. Use of custom programming, scripting language, or a manufacturer-specific procedural language for configuration will not be accepted.

3. The software shall provide the ability to view the logic in a monitor mode. When on-line, the monitor mode shall provide the ability to view the logic in real time for easy diagnosis of the logic execution. When off-line (debug), the monitor mode shall allow the user to set values to inputs and monitor the logic for diagnosing execution before it is applied to the system.

4. All programming shall be done in real-time. Systems requiring the uploading, editing, and downloading of database objects shall not be allowed.

5. The system shall support object duplication within a customer’s database. An application, once configured, can be copied and pasted for easy re-use and duplication. All links, other than to the hardware, shall be maintained during duplication.

2.21 LonWorks NETWORK MANAGEMENT

A. The Graphical User Interface software (GUI) shall provide a complete set of integrated LonWorks network management tools for working with LonWorks networks. These tools shall manage a database for all LonWorks devices by type and revision, and shall provide a software mechanism for identifying each device on the network. These tools shall

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-61

also be capable of defining network data connections between LonWorks devices, known as “binding”. Systems requiring the use of third party LonWorks network management tools shall not be accepted.

B. Network management shall include the following services: device identification, device installation, device configuration, device diagnostics, device maintenance and network variable binding.

C. The Network configuration tool shall also provide diagnostics to identify devices on the network, to reset devices, and to view health and status counters within devices.

D. These tools shall provide the ability to “learn” an existing LonWorks network, regardless of what network management tool(s) were used to install the existing network, so that existing LonWorks devices and newly added devices are part of a single network management database.

E. The network management database shall be resident in the Network Area Controller (NAC), ensuring that anyone with proper authorization has access to the network management database at all times. Systems employing network management databases that are not resident, at all times, within the control system shall not be accepted.

2.22 OBJECT LIBRARIES

A. A standard library of objects shall be included for development and setup of application logic, user interface displays, system services, and communication networks.

B. The objects in this library shall be capable of being copied and pasted into the user’s database and shall be organized according to their function. In addition, the user shall have the capability to group objects created in their application and store the new instances of these objects in a user-defined library.

C. In addition to the standard libraries specified here, the supplier of the system shall maintain an on-line accessible (over the Internet) library, available to all registered users to provide new or updated objects and applications as they are developed.

D. All control objects shall conform to the control objects specified in the BACnet specification.

E. The library shall include applications or objects for the following functions, at a minimum:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-62

1. Scheduling Object. The schedule must conform to the schedule object as defined in the BACnet specification, providing 7-day plus holiday & temporary scheduling features and a minimum of 10 on/off events per day. Data entry to be by graphical sliders to speed creation and selection of on-off events.

2. Calendar Object. . The calendar must conform to the calendar object as defined in the BACnet specification, providing 12-month calendar features to allow for holiday or special event data entry. Data entry to be by graphical “point-and-click” selection. This object must be “linkable” to any or all scheduling objects for effective event control.

3. Duty Cycling Object. Provide a universal duty cycle object to allow repetitive on/off time control of equipment as an energy conserving measure. Any number of these objects may be created to control equipment at varying intervals

4. Temperature Override Object. Provide a temperature override object that is capable of overriding equipment turned off by other energy saving programs (scheduling, duty cycling etc.) to maintain occupant comfort or for equipment freeze protection.

5. Start-Stop Time Optimization Object. Provide a start-stop time optimization object to provide the capability of starting equipment just early enough to bring space conditions to desired conditions by the scheduled occupancy time. Also, allow equipment to be stopped before the scheduled un-occupancy time just far enough ahead to take advantage of the building’s “flywheel” effect for energy savings. Provide automatic tuning of all start / stop time object properties based on the previous day’s performance.

6. Demand Limiting Object. Provide a comprehensive demand-limiting object that is capable of controlling demand for any selected energy utility (electric, oil, and gas). The object shall provide the capability of monitoring a demand value and predicting (by use of a sliding window prediction algorithm) the demand at the end of the user defined interval period (1-60 minutes). This object shall also accommodate a utility meter time sync pulse for fixed interval demand control. Upon a prediction that will exceed the user defined demand limit (supply a minimum of 6 per day), the demand limiting object shall issue shed commands to either turn off user specified loads or modify equipment set points to effect the desired energy reduction. If the list of sheddable equipment is not enough to reduce the demand to below the set point, a message shall be displayed on the users screen (as an alarm) instructing the user to take manual actions to maintain the desired demand. The shed

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-63

lists are specified by the user and shall be selectable to be shed in either a fixed or rotating order to control which equipment is shed the most often. Upon suitable reductions in demand, the demand-limiting object shall restore the equipment that was shed in the reverse order in which it was shed. Each sheddable object shall have a minimum and maximum shed time property to effect both equipment protection and occupant comfort.

F. The library shall include control objects for the following functions. All control objects shall conform to the objects as specified in the BACnet specification.

1. Analog Input Object - Minimum requirement is to comply with the BACnet standard for data sharing. Allow high, low and failure limits to be assigned for alarming. Also, provide a time delay filter property to prevent nuisance alarms caused by temporary excursions above or below the user defined alarm limits.

2. Analog Output Object - Minimum requirement is to comply with the BACnet standard for data sharing.

3. Binary Input Object - Minimum requirement is to comply with the BACnet standard for data sharing. The user must be able to specify either input condition for alarming. This object must also include the capability to record equipment run-time by counting the amount of time the hardware input is in an “on” condition. The user must be able to specify either input condition as the “on” condition.

4. Binary Output Object - Minimum requirement is to comply with the BACnet standard for data sharing. Properties to enable minimum on and off times for equipment protection as well as interstart delay must be provided. The BACnet Command Prioritization priority scheme shall be incorporated to allow multiple control applications to execute commands on this object with the highest priority command being invoked. Provide sixteen levels of priority as a minimum. Systems not employing the BACnet method of contention resolution shall not be acceptable.

5. PID Control Loop Object - Minimum requirement is to comply with the BACnet standard for data sharing. Each individual property must be adjustable as well as to be disabled to allow proportional control only, or proportional with integral control, as well as proportional, integral and derivative control.

6. Comparison Object - Allow a minimum of two analog objects to be compared to select either the highest, lowest, or equality between the two linked inputs. Also, allow limits to be applied to the

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-64

output value for alarm generation.

7. Math Object - Allow a minimum of four analog objects to be tested for the minimum or maximum, or the sum, difference, or average of linked objects. Also, allow limits to be applied to the output value for alarm generation.

8. Custom Programming Objects - Provide a blank object template for the creation of new custom objects to meet specific user application requirements. This object must provide a simple BASIC-like programming language that is used to define object behavior. Provide a library of functions including math and logic functions, string manipulation, and e-mail as a minimum. Also, provide a comprehensive on-line debug tool to allow complete testing of the new object. Allow new objects to be stored in the library for re-use.

9. Interlock Object - Provide an interlock object that provides a means of coordination of objects within a piece of equipment such as an Air Handler or other similar types of equipment. An example is to link the return fan to the supply fan such that when the supply fan is started, the return fan object is also started automatically without the user having to issue separate commands or to link each object to a schedule object. In addition, the control loops, damper objects, and alarm monitoring (such as return air, supply air, and mixed air temperature objects) will be inhibited from alarming during a user-defined period after startup to allow for stabilization. When the air handler is stopped, the interlocked return fan is also stopped, the outside air damper is closed, and other related objects within the air handler unit are inhibited from alarming thereby eliminating nuisance alarms during the off period.

10. Temperature Override Object - Provide an object whose purpose is to provide the capability of overriding a binary output to an “On” state in the event a user specified high or low limit value is exceeded. This object is to be linked to the desired binary output object as well as to an analog object for temperature monitoring, to cause the override to be enabled. This object will execute a Start command at the Temperature Override level of start/stop command priority unless changed by the user.

11. Composite Object - Provide a container object that allows a collection of objects representing an application to be encapsulated to protect the application from tampering, or to more easily represent large applications. This object must have the ability to allow the user to select the appropriate parameters of the “contained” application that are represented on the graphical shell

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-65

of this container.

G. The object library shall include objects to support the integration of devices connected to the Network Area Controller (NAC). At a minimum, provide the following as part of the standard library included with the programming software:

1. LonMark/LonWorks devices. These devices shall include, but not be limited to, devices for control of HVAC, lighting, access, and metering. Provide LonMark manufacturer-specific objects to facilitate simple integration of these devices. All network variables defined in the LonMark profile shall be supported. Information (type and function) regarding network variables not defined in the LonMark profile shall be provided by the device manufacturer.

2. For devices not conforming to the LonMark standard, provide a dynamic object that can be assigned to the device based on network variable information provided by the device manufacturer. Device manufacturer shall provide an XIF file and documentation for the device to facilitate device integration.

3. For BACnet devices, provide the following objects at a minimum:

a. BACnet AI

b. BACnet AO

c. BACnet BI

d. BACnet BO

e. BACnet Device

4. For each BACnet object, provide the ability to assign the object to a BACnet device and object’s instance number.

2.23 DDE DEVICE INTEGRATION

A. The Network Area Controller shall support the integration of device data via Dynamic Data Exchange (DDE), over the Ethernet Network. The Network Area Controller shall act as a DDE client to another software application that functions as a DDE server.

B. Provide the required objects in the library, included with the Graphical User Interface programming software, to support the integration of these devices into the BAS. Objects provided shall include at a minimum:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-66

1. DDE Generic AI Object

2. DDE Generic AO Object

3. DDE Generic BO Object

4. DDE Generic BI Object

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.

B. Connect and configure equipment and software to achieve sequence of operation specified.

C. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.

1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.

D. Install guards on thermostats or blank plate sensors in the following locations:

1. Entrances.

2. Public areas.

3. Gymnasiums

4. Locker rooms.

E. Install automatic dampers according to Division 15 Section "Duct Accessories."

F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

G. Install labels and nameplates to identify control components according to Division 15 Section "Mechanical Identification."

H. Install hydronic instrument wells, valves, and other accessories

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-67

according to Division 15 Section "Hydronic Piping."

I. Install refrigerant instrument wells, valves, and other accessories according to Division 15 Section "Refrigerant Piping."

J. Install duct volume-control dampers according to Division 15 Sections specifying air ducts.

K. Install electronic and fiber-optic cables according to Division 17 Section "Voice and Data Communication Cabling."

L. Exterior Lighting: Provide electronically held contact to BAS for control exterior lighting.

M. Fire Alarm: The fire alarm panel will be provided with three (3) voltage free normally open contacts that need to be monitored by the BAS: 1. Alarm, 2. Trouble, 3. Supervisory. Under normal conditions, all contacts will be open.

N. Intrusion Alarm: Provide (if required) two (2) normally open contacts to be monitored: 1. Intrusion, 2. Trouble.

O. Control drawings will be laminated and mounted in each control panel. P. Emergency generators need to be connected to BAS utilizing LonWorks protocol using all points available. 3.02 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Install raceways, boxes, and cabinets according to Division 16 Section "Raceways and Boxes."

B. Install building wire and cable according to Division 16 Section "Conductors and Cables."

C. Install signal and communication cable according to Division 17 Section "Voice and Data Communication Cabling."

1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.

2. Install exposed cable in raceway.

3. Install concealed cable in raceway.

4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-68

5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.

6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.

7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

8. If no JACE is located in mechanical room, we need one CAT-6 Data drop for connection to BAS for troubleshooting purposes.

D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.

E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

F. Wire labeling of signal points and location at both ends.

G. Interconnections between internal and face-mounted devices prewired with color-coded stranded conductors neatly installed in plastic troughs and/or tie wrapped. Terminal blocks shall be provided for all field connections, and shall be UL listed for 600-volt service, individually identified per control drawings, with adequate clearance for field wiring.

1. Control terminations for field connection shall be individually identified per control drawings.

2. All internal wiring between panel mounted devices and field terminal blocks shall be marked on both ends with the appropriate identifying tag.

H. Internal panel components shall be securely mounted. Each component shall be individually labeled with function and device identification, as shown on the control drawings.

I. Provide and install a properly sized UPS at each control panel location for backup power for all controllers and JACE’s, minimum 400va.

3.03 FIELD QUALITY CONTROL

A. Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-69

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.

2. Test and adjust controls and safeties.

3. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.

4. Test each point through its full operating range to verify that safety and operating control set points are as required.

5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.

6. Test each system for compliance with sequence of operation.

7. Test software and hardware interlocks.

C. DDC Verification:

1. Verify that instruments are installed before calibration, testing, and loop or leak checks.

2. Check instruments for proper location and accessibility.

3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.

4. Check instrument tubing for proper fittings, slope, material, and support.

5. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.

6. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.

7. Check temperature instruments and material and length of sensing elements.

8. Check control valves. Verify that they are in correct direction.

9. Check DDC system as follows:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-70

a. Verify that DDC controller power supply is from emergency power supply, if applicable.

b. Verify that wires at control panels are tagged with their service designation and approved tagging system.

c. Verify that spare I/O capacity has been provided.

d. Verify that DDC controllers are protected from power supply surges.

D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

E. After all required manufacturers checks, DDC verification, adjustments and equipment replacements have been completed and the BAS system is fully functional, coordinate with Owner’s Representative for a Final system functional demonstration and verification to be performed in the presence of the Owner’s Representative. 3.04 ADJUSTING

A. Calibrating and Adjusting:

1. Calibrate instruments.

2. Make three-point calibration test for both linearity and accuracy for each analog instrument.

3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.

4. Control System Inputs and Outputs:

a. Check analog inputs at 0, 50, and 100 percent of span.

b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.

c. Check digital inputs using jumper wire.

d. Check digital outputs using ohmmeter to test for contact making or breaking.

e. Check resistance temperature inputs at 0, 50, and 100

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-71

percent of span using a precision-resistant source.

5. Flow:

a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.

b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:

a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.

b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:

a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.

b. Calibrate temperature switches to make or break contacts.

8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.

9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.

10. Provide diagnostic and test instruments for calibration and adjustment of system.

11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-72

3.05 Control System Demonstration and Acceptance

A. Demonstration. Prior to acceptance, perform the following performance tests to demonstrate system operation and compliance with specification after and in addition to tests specified in Article 3.17 (Control System Checkout and Testing). Provide Engineer with log documenting completion of startup tests.

1. Engineer will be present to observe and review system demonstration. Notify Engineer at least 10 days before system demonstration begins.

2. Demonstration shall follow process submitted and approved under Section 15900 Article 1.10 (Submittals). Complete approved checklists and forms for each system as part of system demonstration.

3. Demonstrate actual field operation of each sequence of operation as specified in Section 15900 Appendix A. Provide at least two persons equipped with two-way communication. Demonstrate calibration and response of any input and output points requested by Engineer. Provide and operate test equipment required to prove proper system operation.

4. Demonstrate compliance with Section 15900 Part 1 (System Performance).

5. Demonstrate compliance with sequences of operation through each operational mode.

6. Demonstrate complete operation of operator interface.

7. Demonstrate each of the following.

a. DDC loop response. Supply graphical trend data output showing each DDC loop's response to a setpoint change representing an actuator position change of at least 25% of full range. Trend sampling rate shall be from 10 seconds to 3 minutes, depending on loop speed. Each sample's trend data shall show setpoint, actuator position, and controlled variable values. Engineer will require further tuning of each loop that displays unreasonably under- or over-damped control.

b. Demand limiting. Supply trend data output showing demand-limiting algorithm action. Trend data shall document action sampled each minute over at least a 30-minute period and shall show building kW, demand-

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-73

limiting setpoint, and status of setpoints and other affected equipment parameters.

c. Building fire alarm system interface.

d. Trend logs for each system. Trend data shall indicate setpoints, operating points, valve positions, and other data as specified in the points list provided with each sequence of operation in Section 15900 Appendix A. Each log shall cover three 48-hour periods and shall have a sample frequency not less than 10 minutes or as specified on its points list. Logs shall be accessible through system's operator interface and shall be retrievable for use in other software programs as specified in Section 15900 Article 2.3 Paragraph E.11 (Trend Configuration).

8. Tests that fail to demonstrate proper system operation shall be repeated after Contractor makes necessary repairs or revisions to hardware or software to successfully complete each test.

B. Acceptance.

1. After tests described in this specification are performed to the satisfaction of both Engineer and Owner, Engineer will accept control system as meeting completion requirements. Engineer may exempt tests from completion requirements that cannot be performed due to circumstances beyond Contractor's control. Engineer will provide written statement of each exempted test. Exempted tests shall be performed as part of warranty.

2. System shall not be accepted until completed demonstration forms and checklists are submitted and approved as required in Section 15900 Article 1.10 (Submittals).

3.06 Training

A. Provide training for a designated staff of Owner's representatives. Training shall be provided via self-paced training, web-based or computer-based training, classroom training, or a combination of training methods.

B. Provide 3-ring binders (quantity?) with a hard copy of the specified

documents prior to the start of training. These documents will be continuously up-dated (slip sheeting is permitted) during the training/warranty period.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-74

C. Adequate training shall be provided to cover the complete operation and maintenance of the BAS

D. Training shall take place over a one-year period. Early sessions will be

longer and closer together; later sessions can be shorter and spaced further apart. This is done so that the operators do not get data overload trying to learn everything in a one week training session.

E. Training shall be done with operation and maintenance manuals

complete and up-to-date.

F. The training will include both generic system and site specific training.

G. At the start of the training period, project documents in electronic form will be provided to the owner on CD, including project as-built control drawings, system software, system graphics and product data.

H. As changes in sequences and points are put in place during the first

year of operation, updated as-builts will be submitted to the owner.

I. At the end of the warranty and training period, the electronic files will be conveyed to the owner in a format specified by the owner so that the owner can alter the documents in the future.

J. Training shall enable students to accomplish the following objectives.

1. Proficiently operate system

2. Understand control system architecture and configuration

3. Understand DDC system components

4. Understand system operation, including DDC system control and optimizing routines (algorithms)

5. Operate workstation and peripherals

6. Log on and off system

7. Access graphics, point reports, and logs

8. Adjust and change system setpoints, time schedules, and holiday schedules

9. Recognize common HVAC system malfunctions by observing system graphics, trend graphs, and other system tools

10. Understand system drawings and Operation and Maintenance manual

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-75

11. Understand job layout and location of control components

12. Access data from DDC controllers

13. Operate portable operator's terminals

14. Create and change system graphics

15. Create, delete, and modify alarms, including configuring alarm reactions

16. Create, delete, and modify point trend logs (graphs) and multi-point trend graphs

17. Configure and run reports

18. Add, remove, and modify system's physical points

19. Create, modify, and delete application programming

20. Add operator interface stations

21. Add a new controller to system

22. Download firmware and advanced applications programming to a controller

23. Configure and calibrate I/O points

24. Maintain software and prepare backups

25. Interface with job-specific, third-party operator software

26. Add new users and understand password security procedures

K. Divide presentation of objectives into three sessions (1-13, 14-23, and 24-26). Participants will attend one or more of sessions, depending on knowledge level required.

1. Day-to-day Operators (objectives 1-13)

2. Advanced Operators (objectives 1-13 and 14-23)

3. System Managers and Administrators (objectives 1-13 and 24-26)

L. Provide course outline and materials according to Section 15900 Article 1.10 (Submittals). Provide one copy of training material per student.

M. Instructors shall be factory-trained and experienced in presenting this material.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-76

N. Perform classroom training using a network of working controllers representative of installed hardware.

3.07 WARRANTY A. Refer to general warranty requirements. B. Special warranty:

1. The warranty period shall begin as authorized by the Owner’s representative in writing. Completion shall not occur before the Contractor has performed all of the required tests and has demonstrated full functionality to the Owner.

2. The control system shall be warranted to be free from defects in

material and workmanship and in software design and operation for a period of one year after completion of the contract. The Contractor shall provide the necessary skills, labor, and parts to ensure that all system component failures are promptly repaired. This warranty shall become effective starting on the date of completion.

3. The Contractor shall coordinate and provide for a site visit at

every change of season during the warranty period to ensure that all systems are functional.

4. The Contractor shall receive calls during the warranty period for

all problems or questions experienced in the operation of the installed equipment and shall take steps to correct any deficiencies that may exist. The response time to critical problems shall be two (2) hours maximum.

5. The Contractor shall maintain a backup of all software installed

in the system. The backup shall be updated monthly or whenever a change to the software is made. A reload of the backup software into the system shall be performed by the Contractor immediately upon notification by the Owner at no extra charge to the Owner.

6. The Contractor shall optimize all control software to ensure

acceptable operating and space conditions and peak energy efficiency. This shall include changes needed to optimize the operation of the systems even if not explicitly described.

7. The Contractor shall provide and install at no extra cost all

hardware, firmware, and software updates released prior to and

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-77

during the warranty period. These updates shall be installed and fully implemented on every device to which they apply, throughout the project. Written authorization by the Owner must be obtained prior to the installation of theses changes.

8. At the end of the warranty period, the Contractor shall supply

updated copies of the latest versions of all project record documentation. This includes final updated drawings, programming, software documentation, and magnetic media backups that include all changes that have been made to the system during the warranty period.

9. The contractor will provide a written guarantee from the

manufacturer that the technology being provided will be supported for a minimum of ten years following completion of the project.

3.08 Commissioning

A. The contractor is expected to completely commission the building

automation system prior to the Commissioning Authority (third-party or owner’s rep) starting their work on the BAS. This commissioning process and documentation will be contained in a written log for submission to the owner.

B. The contractor will submit the commissioning procedure and blank log

book for approval prior to starting commissioning work.

C. The contractor will start with a verification of the control inputs and outputs on a point-to-point basis.

D. Each analog input and output will be properly calibrated. This means

utilizing an independently certified temperature, pressure, etc. measurement device and performing at least a three point calibration. One point shall be at the low end of the operational range, one at the normal operating value and the third point at the high end of the operational range.

E. The sequences of operation will be tested in all normal modes and

verified back to the original final contract documents. Where possible, off-line program simulation should be used prior to actual program operation on equipment.

F. Loop tuning will be performed for all analog outputs under operating

conditions. The P, I and D constants will be logged and noted which ones were utilized.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-78

G. The alarms, safeties, failure and system re-start modes will then be

tested.

H. Next, all the systems will be run for 72 hours in fully automatic mode with no intervention from the operators. All points (inputs, outputs and calculated points) will be trended during this period on a one minute sample basis (or change of value for binary points).

I. The final step in the commissioning process will be the integrated

systems testing. This is defined as testing the dynamic interaction between the electrical, mechanical and life safety systems. This will involve all systems operating in fully automatic mode. During this step, various setpoints and/or pieces of equipment will be manually manipulated to test for electrical system failures, life safety events and mechanical equipment failures including major setpoint changes.

J. At the conclusion of the commissioning and project turn-over, spare

parts will be delivered to the owner in the types and quantities for adequate on-site maintenance.

3.09 Control Software (Sequences of Operation) Requirements

A. The primary principle for Sequences of Operation is the “KISS” principle. Control programs should contain only the logic that is necessary for the purpose intended.

B. Program functionality to reside at the controller level for true stand

alone operation. No control sequences will be allowed at the system front-end or in routers/gateways.

C. Any critical values common to the entire system (outdoor air

temperature, humidity, life safety points) will obviously need to be shared on the network. But to ensure system integrity, we should strive to have these inputs duplicated on separate field controllers so that the failure of one control panel does not cause a failure of critical information. One of the sensors would be designated as primary and the other as secondary. A critical alarm will be generated when the field controllers containing either primary or secondary fail.

D. Each AHU and Central Plant system will have field controllers (some

with expansion modules) to handle the larger point counts of chiller/boiler systems directly connected at the Ethernet level.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-79

E. All manifolded equipment (pairs of fans, pumps, multiple boilers, multiple chillers, etc) that are to be controlled and sequenced together must be controlled from a single controller. They must not rely on the BAS IT network for communication. The BAS field controllers will have enough point capacity (this can be through DDC expanders) and software capacity to handle all control strategies, trends for all points and required alarms within the processor for that field panel. In lieu of all points being contained in one large controller, a mini high-speed sub-network would be allowed for just that set of manifolded equipment.

F. Optimization routines that will be included are major equipment

operation based on the summation of loads at the terminal unit level, then to the air handling unit level and finally to the central palt equipment. This is sometimes referred to as “load based control”.

G. Scheduling unoccupied areas based on time-of-day should be done if

the space use and temperature/pressure requirements permit. A zone status light and override push-button to bring system back to occupied mode will be utilized in areas not open to the public.

H. If any life safety functions (smoke control) are required to be

performed within the BAS software, these points and functions should be protected by the highest level of system access. Where at all possible, these life safety functions should reside in a separate program area and have the highest level of prioritization.

I. Special care should be provided when controlling electronic actuators

so as not to abuse the actuator. An electronic actuator will not last long with “excessive” actuations.

J. The contractor should be prepared to make some adjustments in

the sequence of operation at the time of commissioning at no extra cost to the owner. Systems seldom perform as intended and final configurations are seldom as designed initially.

SPECIFIC SEQUENCES OF OPERATION TO BE COMPLETED BY ENGINEER FOR EACH SPECIFIC APPLICATION

3.10 Points List

A. The following includes a typical points list required. This list is not all inclusive.

1. Condenser Water System:

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-80

a. Cooling tower fan VFD b. Cooling tower fan start/stop c. Cooling tower fan status d. Cooling tower run time e. Cooling tower basin temps f. Condenser water supply temp g. Condenser water return temp h. Condenser water pump status i. Condenser water pump start/stop j. Condenser water pump speed reference k. Condenser water pump differential pressure

2. Chilled Water System:

a. Chilled water supply temp b. Chilled water return temp c. Chilled water pumps status d. Chilled water pumps start/stop e. Chilled water pumps speed reference f. Chilled water supply differential pressure g. Chilled water flow switch h. Chiller start/stop/status i. Outdoor air temp

3. Heating System:

a. Heating water supply temp (both heat exchangers)

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-81

b. Heating water return temp (both heat exchangers) c. Heating water pumps status d. Heating water pumps start/stop e. Heating water pumps speed reference f. Heating water supply differential pressure g. Heating water flow switch (both heat exchangers) h. Heating water alarm at pressure drop i. HTHWS supply temp j. HTHWR return temp k. HTHWS @ domestic hot water heater l. HTHWR @ domestic hot water heater m. HTHWS control valve @ heat exchangers n. HTHWR control valve @ domestic hot water heaters o. HTHW system meters at building entry p. Domestic hot water temp q. Domestic hot water recirc. temp r. Domestic hot water circ. pump status s. Outdoor air tem t. Domestic water booster pump

4. Air Handling Equipment:

a. Supply fan start/stop b. Supply fan status c. Supply fan VFD modulation

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-82

d. Supply fan differential static pressure e. Return fan start/stop f. Return fan status g. Return fan VFD modulation h. Return fan low limit i. Pre filter DP j. Supply air temp k. Heating coil control temp l. Outdoor air temp m. Return air temp n. Outdoor/return air damper o. Exhaust air damper p. Cooling coil control valve q. Mixed air temp r. Freeze stat alarm s. Exhaust fans start/stop (all) t. Exhaust fans status (all) u. Smoke detector SA v. Smoke detector RA w. Supply fan high limit alarm x. AHU space served – room space temp at several

locations

2. Miscellaneous Systems (COORDINATE WITH WORK OR

OTHER SECTIONS)

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-83

a. Fan coil units b. Unit heaters c. VAV boxes with hot water reheat coils d. Pneumatic TC air compressor – low pressure

e. Water Flow switches

f. Energy Management; electrical meters, Btu meters,

water service meters

g. Fire Alarm status (occasionally)

h. Intrusion Alarms

i. Exterior and interior general and security lighting

j. Generators

END OF SECTION 15971

COMMISSIONING The level of commissioning will vary with each project. Some projects will require full 3

rd party commissioning. At a minimum, all projects will require the following:

Specify General Contractor led commissioning of all mechanical, plumbing, controls and electrical systems to verify operational and functional performance and compliance with “design intent”.

Coordinate commissioning requirements with other divisions as needed.

All system tests and inspections are to be full documented.

Complete commissioning of mechanical and electrical systems during initial start-up

Provide advance notice to UNC Facilities Management prior to all commissioning activities.

Contractor to submit for review, an outline of the organizational plan, commissioning schedule, documentation process and commissioning plan specific to the project.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-84

Establish the requirements and plan for the commissioning process throughout the construction phase of the project.

Commissioning shall begin after equipment and systems are complete. Include:

Review and verification of TAB readings

Verify calibration of thermostats and related controls

Verify readings of remote data and control systems

Verify operation of system modes

Verify that total system is performing to provide conditions as outlined in the contract documents.

FIRE PROTECTION SYSTEMS

Fire protection – general

Fire Hydrants – refer to Division 2

All Design information and contractor submittals for fire protection systems will be reviewed by Facilities Management and the Union Colony Fire Protection Authority.

Provide lockable vales for drains and zones in accessible locations where permitted by code.

Specify appropriate training for Owner’s personnel.

Provide O&M manuals with as-built drawings for all fire protection systems.

Automatic Fire Sprinklers

System shall be zoned by floor at a minimum. Each zone shall be annunciated at the building fire annunciator panel. Coordinate with Division 16.

Zone valves shall be located in mechanical spaces of in dedicated closets. Do not locate in Custodial closets or similar spaces. Specify appropriate signage on the door.

Sprinkler heads should be recessed in ceilings 8’ or lower.

UNIVERSITY OF NORTHERN COLORADO June 2015 FACILITY STANDARDS

15-85

Coordinate sprinkler system requirements with the code requirements for elevator shafts and equipment rooms regarding elevator shut down, piping in elevator spaces, etc. Coordinate with Divisions 14 and 16 as required.

Halon extinguishing systems are not acceptable. Provide dry or pre-action systems for spaces requiring special protection.