dk3162app8

4
APPENDIX 8 Matrix Calculation Review A matrix A (n m) is rectangular array containing n rows and m columns: Aðn mÞ¼ a 11 a 12 ... a 1n a 21 a 22 ... a 2n ... ... ... ... ... ... ... ... a m1 a m2 ... a mn 2 6 6 6 6 4 3 7 7 7 7 5 ¼½a ij , i ¼ 1, ... ,m, n ¼ 1, ... ,n A transposed matrix A T ðn mÞ is the matrix, in which rows are interchanged with the columns: A T ðn mÞ¼ Aðm nÞ Two matrices of the same order n m can be added and/or subtracted, by adding and/or subtracting individual elements: Aðn mÞþ Bðn mÞ¼½a ij þ b ij Two matrices can be multiplied only if the number of columns, ‘‘m’’ of the first matrix A (n m) equals to the number of rows of the second matrix B (m p). The product is the matrix of the order (n p): Aðn mÞ Bðm pÞ¼ Cðn pÞ The elements of the matrix C are corresponding sums of products: ½c kl ¼ X m j¼1 a kj b jp " # , k ¼ 1, ... ,n, l ¼ 1, ... p EXAMPLE 1 a 11 a 12 a 13 a 21 a 22 a 23 " # b 11 b 12 b 21 b 22 b 31 b 32 2 6 6 4 3 7 7 5 ¼ a 11 b 11 þ a 12 b 21 þ a 13 b 31 a 11 b 12 þ a 12 b 22 þ a 13 b 32 a 21 b 11 þ a 22 b 21 þ a 23 b 31 a 21 b 12 þ a 22 b 22 þ a 23 b 32 " # 1019 © 2005 by Taylor & Francis Group, LLC

Upload: farouk-hamdoon

Post on 22-Jan-2016

215 views

Category:

Documents


0 download

DESCRIPTION

rotordynamics

TRANSCRIPT

Page 1: DK3162app8

APPENDIX 8

Matrix Calculation Review

A matrix A (n�m) is rectangular array containing n rows and m columns:

Aðn�mÞ ¼

a11 a12 . . . a1na21 a22 . . . a2n. . . . . . . . . . . .. . . . . . . . . . . .am1 am2 . . . amn

266664

377775 ¼ ½aij�, i ¼ 1, . . . ,m, n ¼ 1, . . . ,n

A transposed matrix ATðn�mÞ is the matrix, in which rows are interchanged with the

columns:

ATðn�mÞ ¼ Aðm� nÞ

Two matrices of the same order n�m can be added and/or subtracted, by adding and/orsubtracting individual elements:

Aðn�mÞ þ Bðn�mÞ ¼ ½aij þ bij�

Two matrices can be multiplied only if the number of columns, ‘‘m’’ of the first matrix A(n�m) equals to the number of rows of the second matrix B (m� p). The product is thematrix of the order (n� p):

Aðn�mÞ � Bðm� pÞ ¼ Cðn� pÞ

The elements of the matrix C are corresponding sums of products:

½ckl� ¼Xmj¼1

akjbjp

" #, k ¼ 1, . . . ,n, l ¼ 1, . . . p

EXAMPLE 1

a11 a12 a13

a21 a22 a23

" #�

b11 b12

b21 b22

b31 b32

2664

3775 ¼

a11b11 þ a12b21 þ a13b31 a11b12 þ a12b22 þ a13b32

a21b11 þ a22b21 þ a23b31 a21b12 þ a22b22 þ a23b32

" #

1019

© 2005 by Taylor & Francis Group, LLC

Page 2: DK3162app8

EXAMPLE 2

1 2

3 4

" #x

y

" #¼

xþ 2y

3xþ 4y

" #

Generally, the matrices in the product cannot be interchanged, because AB 6¼ BA.A product of a number and a matrix is a matrix, in which each element is multiplied by

this number:

�A ¼ �½aij� ¼ ½�aij�

EXAMPLE 3

51 2

3 4

� �¼

5 10

15 20

� �

Two matrices are equal, when all their corresponding elements are equal:

Aðn�mÞ ¼ Bðn�mÞ, aij ¼ bij, i ¼ 1, . . . ,m, j ¼ 1, . . . ,n

Cofactor of the matrix ½aij� is:

Cof aij ¼ ðminorÞð�1Þiþj

EXAMPLE 4

Cof

a b c

d f g

h i j

2664

3775 ¼

fj� gi gh� dj di� hf

ic� bj aj� ch bh� ai

bg� cf ag� cd af� bd

2664

3775

EXAMPLE 5

Cof ¼1 2

3 4

� �¼

4 �3

2 1

� �

The adjoint matrix is the transpose of the cofactor matrix:

adj A ¼ ðcof AÞT

EXAMPLE 6

adj ¼1 �23 4

� �¼

4 2�3 1

� �

Determinant, det A can be calculated for any square matrix A, that is, when n¼m.

1020 ROTORDYNAMICS

© 2005 by Taylor & Francis Group, LLC

Page 3: DK3162app8

EXAMPLE 7

det

a b c

d e f

h i j

2664

3775 ¼

a b c

d e f

h i j

��������

�������� ¼ aðfj� igÞ þ bðgh� djÞ þ cðdi� fhÞ

Diagonal matrix is the square matrix, which has nonzero elements on the main diagonaland the off-diagonal elements equal zero:

a 0 0 . . . 0

0 b 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 0 . . . z

2666666664

3777777775

The unit diagonal matrix, I, has all diagonal elements equal one:

I ¼

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 0 . . . 1

2666666664

3777777775

The inverse matrix, A�1 of the matrix A is the matrix, which multiplied by A (from theleft or from the right) gives in product the unit matrix:

AA�1¼ I, A�1A ¼ I

The inverse matrix is as follows:

A�1¼

adjA

detA

EXAMPLE 8

A ¼a b

c d

" #, det A ¼ ad� bc, adj A ¼

d �b

�c a

" #, A�1

¼1

ad� bc

d �b

�c a

" #

A�1A ¼1

ad� bc

d �b

�c a

" #a b

c d

" #¼

1

ad� bc

da� bc db� bd

�acþ ac �bcþ ad

" #¼

1 0

0 1

" #

The matrix equation

AX ¼ B

MATRIX CALCULATION REVIEW 1021

© 2005 by Taylor & Francis Group, LLC

Page 4: DK3162app8

can be solved for X if the matrix A is square. Multiplying both sides of this equation fromthe left by the inverse matrix A�1 this equation results as follows:

A�1AX ¼ A�1B

IX ¼ A�1B

X ¼ A�1B

EXAMPLE 9

Ax1x2

� �¼

72

� �where A ¼

2 13 �2

� �

Calculate inverse matrix A:

A�1¼

1

� 4� 3

�2 �1�3 2

� �¼

1

7

2 13 �2

� �

x1x2

� �¼ A�1 7

2

� �¼

1

7

2 13 �2

� �72

� �¼

1

7

14þ 221� 4

� �¼

16=717=7

� �

Thus x1 ¼ 16=7, x2 ¼ 17=7:

1022 ROTORDYNAMICS

© 2005 by Taylor & Francis Group, LLC