dna damage signaling factors protecting cancer cells against replication stress · 2017-12-07 ·...

87
DNA damage signaling factors protecting cancer cells against replication stress Tine Therese Henriksen Raabe Master thesis in Molecular Bioscience Department of Biosciences Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO June 2016

Upload: others

Post on 25-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

DNA damage signaling factors protecting cancer cells against replication stress

Tine Therese Henriksen Raabe

Master thesis in Molecular Bioscience

Department of Biosciences

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

June 2016

Page 2: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

2

 

 

 

©  Tine  Therese  Henriksen  Raabe  

2016  

DNA  damage  signaling  factors  protecting  cancer  cells  against  replication  stress  

Tine  Therese  Henriksen  Raabe  

http://www.duo.uio.no/  

Print:  Reprosentralen,  University  of  Oslo  

Page 3: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

3

Abstract    

DNA  damage  signaling  is  important  for  maintaining  genomic  stability  of  human  cells.  In  response  to  

DNA  damage,  the  cell  can  activate  a  network  of  signaling  pathways  that  coordinates  DNA  repair  and  

cell  cycle  progression.  This  helps  the  cell  to  survive.  Cancer  cells  often  have  increased  levels  of  

replication  stress,  seen  as  replication  arrest  and  DNA  breakage  in  S-­‐phase.  Therefore,  cancer  cells  

may  likely  depend  more  on  DNA  damage  signaling  compared  to  normal  cells  in  order  to  survive.  It  is  

therefore  important  to  find  factors  of  these  signaling  pathways  that  can  be  used  for  targets  in  

cancer  treatment.  The  WEE1  and  ATR  kinases  are  two  such  factors,  and  inhibitors  selectively  

targeting  them,  MK1775  and  VE822  respectively,  are  currently  in  clinical  trials  as  anti-­‐cancer  drugs.  

Among  other  effects,  inhibition  of  WEE1  and  ATR  can  cause  massive  replication  stress  and  DNA  

damage  leading  to  cancer  cell  death.  Hypoxia  is  a  common  trait  of  cancer  cells  that  is  caused  by  

rapid  growth  of  cancer  cells  that  outgrows  its´  blood  supply,  resulting  in  inadequate  oxygen  delivery  

to  tumor  cells.  This  can  cause  resistance  to  radiation-­‐  and  chemotherapy.  It  is  previously  shown  that  

severe  hypoxia  can  activate  DNA  damage  signaling  and  replication  stress  in  S-­‐phase.    

 

In  this  thesis,  we  wanted  to  investigate  the  effects  of  inhibiting  DNA  damage  signaling  factors  in  

U2OS  cancer  cells  experiencing  hypoxia-­‐induced  replication  stress.  We  found  increased  levels  of  the  

DNA  damage  marker  γH2AX  after  hypoxic  exposure  when  WEE1  or  ATR  was  depleted  by  siRNA  

transfection.  Furthermore,  the  WEE1  and  ATR  inhibitors  MK1775  and  VE822  also  caused  more  DNA  

damage  in  S-­‐phase  cells  in  hypoxia-­‐exposed  compared  to  normoxic  cells.  Interestingly,  we  saw  a  

synergistic  increase  of  S-­‐phase  DNA  damage  upon  combined  inhibition  of  WEE1  and  ATR.  This  effect  

was  also  seen  in  cancer  cells  without  hypoxic  exposure,  and  was  accompanied  by  a  synergistic  

reduction  of  clonogenic  survival.  We  subsequently  examined  some  mechanisms  behind  this  

synergistic  effect,  and  found  that  the  synergy  unlikely  can  be  explained  by  elevated  CDK  (Cyclin  

Dependent  Kinase)  activity.  Our  results  indicate  that  combining  ATR  and  WEE1  inhibitors  may  be  a  

possible  option  to  be  considered  for  future  cancer  treatment.  

   

Page 4: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

4

Table  of  content  

ABSTRACT  ...................................................................................................................................  3  

TABLE  OF  CONTENT  .....................................................................................................................  4  

1  INTRODUCTION  ........................................................................................................................  7  1.1  GENERAL  INTRODUCTION  .................................................................................................................  7  1.2  THE  DNA  DAMAGE  AND  REPLICATION  STRESS  RESPONSE  ........................................................................  8  1.2.1  DNA  damage  response  ......................................................................................................  8  1.2.2  Replication  stress  ...............................................................................................................  9  1.2.3  DDR  kinases  .....................................................................................................................  10  1.2.4  Phosphatases  ...................................................................................................................  16  1.2.5  DNA  damage  induced  cell  cycle  checkpoints  ...................................................................  16  1.2.7  DNA  repair  .......................................................................................................................  18  

1.4  HYPOXIA  ....................................................................................................................................  19  1.4.1  Hypoxia  in  human  tumors  ...............................................................................................  19  1.4.2  Hypoxia-­‐induced  genomic  instability  and  replication  stress  ............................................  20  1.4.3  Targeting  hypoxic  cells  for  cancer  therapy  ......................................................................  21  1.4.4  Desferrioxamine  (DFO)  as  a  hypoxia-­‐mimetic  agent  .......................................................  22  

2  AIM  ........................................................................................................................................  23  

3  MATERIALS  .............................................................................................................................  25  3.1  CELL  CULTURE  .............................................................................................................................  25  3.2  SIRNA  TRANSFECTION  ..................................................................................................................  25  3.3  FLOW  CYTOMETRY  .......................................................................................................................  26  3.4  IMMUNOFLUORESCENCE  MICROSCOPY  .............................................................................................  26  3.5  SDS-­‐PAGE  AND  WESTERN  BLOT  ....................................................................................................  27  3.6  CLONOGENIC  SURVIVAL  ASSAY  ........................................................................................................  28  3.7  BUFFERS  AND  SOLUTIONS  ..............................................................................................................  29  

4  METHODS  ...............................................................................................................................  31  4.1  CELL  CULTURE  AND  CELL  SEEDING  ....................................................................................................  31  4.2  WEE1-­‐  AND  ATR-­‐INHIBITION  ........................................................................................................  32  4.3  SIRNA  TRANSFECTION  ..................................................................................................................  32  4.4  HYPOXIA  TREATMENTS  ..................................................................................................................  33  4.5  FLOW  CYTOMETRY  .......................................................................................................................  33  4.6  IMMUNOFLUORESCENCE  MICROSCOPY  .............................................................................................  36  4.7  SDS-­‐PAGE  ................................................................................................................................  37  4.8  WESTERN  BLOT  ...........................................................................................................................  37  4.9  CLONOGENIC  SURVIVAL  ASSAY  ........................................................................................................  38  

5  RESULTS  .................................................................................................................................  39  5.1  VALIDATE  CANDIDATE  HITS  WITH  SIRNA  SCREEN  ................................................................................  39  5.2  DETERMINE  CONCENTRATION  OF  ATR-­‐INHIBITOR  VE822  ....................................................................  42  

Page 5: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

5

5.3  EFFECTS  OF  MK1775  AND  VE822  TREATMENT  IN  COMBINATION  WITH  HYPOXIA  .....................................  43  5.4  EFFECTS  OF  MK1775  AND  VE822  TREATMENT  AFTER  HYPOXIA  ............................................................  46  5.5  MEASUREMENT  OF  CELL  SURVIVAL  ...................................................................................................  51  5.6  FLUORESCENCE  IMAGING  OF  MK1775  AND  VE822  TREATED  CELLS  .......................................................  52  5.7  EXPLORING  THE  MECHANISM  BEHIND  THE  SYNERGISTIC  EFFECT  BETWEEN  MK1775  AND  VE822  .................  54  5.8  DESFERRIOXAMINE  AS  A  REPLACEMENT  FOR  HYPOXIA  CHAMBER  .............................................................  59  

6  DISCUSSION  ............................................................................................................................  61  6.1  GENERAL  DISCUSSION  ...................................................................................................................  61  6.2  VALIDATION  OF  SIRNA  SCREEN  .......................................................................................................  61  6.3  COMBINED  WEE1  AND  ATR  INHIBITION  LEADS  TO  SYNERGISTIC  INCREASE  OF  S-­‐PHASE  DNA  DAMAGE.  .........  63  6.4  DO  BOTH  WEE1  AND  ATR  INHIBITION  LEAD  TO  ELEVATED  CDK  ACTIVITY?  ..............................................  63  6.5  COMBINATION  TREATMENT  WITH  MK1775  AND  VE822  AS  A  POTENTIAL  ANTI-­‐CANCER  STRATEGY  ...............  64  6.6  MICRONUCLEI  IN  RESPONSE  TO  ATR  INHIBITION  .................................................................................  65  6.7  EXPERIMENTAL  CONSIDERATION  ......................................................................................................  65  6.7.1  Cell  culture  .......................................................................................................................  65  6.7.2  siRNA  transfection  ...........................................................................................................  66  6.7.3  WEE1  and  ATR  inhibition  .................................................................................................  67  6.7.4  Hypoxia  treatments  .........................................................................................................  67  6.7.5  Measuring  protein  levels  by  flow  cytometry  ...................................................................  68  6.7.6  Measuring  protein  levels  by  western  blotting  .................................................................  69  

6.8  CONCLUDING  REMARKS  .................................................................................................................  70  

7  SUPPLEMENT  ..........................................................................................................................  71  

8  ACKNOWLEDGEMENTS  ...........................................................................................................  73  

9  LIST  OF  ABBREVIATIONS  .........................................................................................................  75  

10  REFERENCES  .........................................................................................................................  79  

   

Page 6: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

6

 

Page 7: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

7

1  Introduction  

1.1  General  introduction    The  risk  of  getting  cancer  is  known  to  increase  with  age,  but  people  of  all  ages  can  get  the  disease,  

and  there  is  also  increased  number  of  people  that  get  cancer  at  earlier  ages.  Only  in  2014,  there  

were  31651  new  cases  of  cancer  in  Norway,  and  some  of  the  most  common  cancer  types  are  linked  

to  lifestyle,  such  as  melanoma,  colorectal,  and  lung  cancer  (www.kreftregisteret.no).  A  paradox  is  

that  these  cancer  types  can  be  prevented,  but  are  the  ones  that  have  the  highest  increased  rates.  

Even  though  more  people  with  diagnosed  cancer  survive,  current  cancer  treatment  has  severe  side  

effects  and  more  cancer-­‐specific  therapy  is  needed,  leading  to  the  focus  onto  targeting  cancer  

treatment  or  personalized  medicine.  The  idea  is  to  exploit  phenotypic  or  genotypic  characteristics  

of  individual  tumors  and  to  target  properties  of  cancer  cells  that  are  not  shared  in  normal  and  

healthy  cells,  giving  high  cancer  cell  destruction  but  minimal  side  effects.    

 

DNA  replication  is  a  vulnerable  cellular  process,  where  defects  in  the  DNA  damage  response  and  

hypoxia  can  lead  to  genomic  instability,  an  important  hallmark  of  cancer  (Gaillard  et  al.,  2015;  

Hanahan  and  Weinberg,  2011).  Conditions  that  increase  levels  of  DNA  damage  can  cause  

replication  stress,  a  major  source  for  genomic  instability.  The  negative  aspects  of  replication  stress,  

is  that  it  can  cause  tumorgenesis,  but  the  positive  aspect  is  that  it  is  a  potential  target  for  cancer  

therapy.  Several  therapeutic  drugs  targeting  the  DNA  damage  response  and  hypoxia  are  in  clinical  

trials,  but  as  cancer  is  a  heterogeneous  disease,  this  is  not  a  straightforward  process.  In  this  project,  

we  will  focus  on  the  effect  of  inhibiting  some  DNA  damage  response  targets,  with  or  without  

hypoxic  conditions.  

 

 

 

 

Page 8: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

8

1.2  The  DNA  damage  and  replication  stress  response   1.2.1  DNA  damage  response    

To  maintain  genomic  integrity,  the  cell  has  developed  mechanisms  to  detect  and  repair  DNA  

damage.  DNA  damage  can  cause  cancer,  but  is  also  a  main  mechanism  of  cancer  cell  death  during  

treatment  with  radiotherapy  or  chemotherapy,  and  is  responsible  for  side  effects  of  this  treatment  

(Kastan  and  Bartek,  2004).  Every  day  the  cell  faces  105  of  spontaneously  arised  DNA  lesions  that  are  

caused  by  internal  processes  or  environmental  agents,  such  as  metabolic  byproducts  like  free  

radicals,  replication  errors,  ionizing  radiation  (IR),  ultraviolet  (UV)  light  and  chemical  agents.  These  

lesions  can  create  single-­‐stranded  DNA  (ssDNA)  or  double-­‐strand  breaks  (DSBs)  which  can  cause  

genomic  instability.  Therefore,  mechanisms  to  repair  DNA  damage  are  critical  (Ciccia  and  Elledge,  

2010;  Zhou  and  Elledge,  2000).    

The  cell  has  developed  a  network  of  interacting  pathways,  called  the  DNA  damage  response  (DDR),  

to  coordinate  DNA  repair  and  cell  cycle  progression  (Figure  1).  DNA  damage  is  detected  by  sensor  

proteins,  which  send  information  signals  to  transducers,  which  again  activate  protein  kinase  

cascades,  involving  posttranslational  modifications  such  as  phosphorylation  (Ciccia  and  Elledge,  

2010).  Downstream  of  transducers  are  the  effector  proteins,  that  regulate  DNA  repair,  cell  cycle,  

transcription,  and  cell  death  pathways  such  as  apoptosis  or  senescence  at  severe  damage  (Jackson  

and  Bartek,  2009;  Zhou  and  Elledge,  2000).  The  DDR  can  also  induce  other  cellular  responses  like  

replisome  stability,  chromatin  remodeling,  RNA  processing,  and  energy  production  (Jackson  and  

Bartek,  2009).  The  outcome  of  DDR  depends  on  the  type  of  DNA  lesions,  the  severity  of  the  lesion,  

and  the  signaling  repertoire  of  the  cell  (Ciccia  and  Elledge,  2010;  Zhou  and  Elledge,  2000).  

 

Page 9: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

9

 Figure  1.  The  DNA  damage  response.  Sensors  react  to  stalled  replication  forks  and  DNA  damage,  and  can  be  induced  by  chemicals  or  radiation.  Sensors  can  then  activate  or  inhibit  downstream  transducer,  which  pass  on  signals  to  different  effectors  that  leads  to  different  DNA  damage  responses.  Figure  adapted  from  (Jackson  and  Bartek,  2009).    

1.2.2  Replication  stress   Replication  stress  can  be  defined  as  slowing  and  stalling  of  the  replication  fork  progression,  which  

can  lead  to  replication  fork  collapse  and  DNA  breaks.  This  can,  as  mentioned,  induce  genomic  

instability  and  possible  cell  death  (Zeman  and  Cimprich,  2014).  Replication  stress  can  be  caused  by  

both  external  agents  and  internal  factors,  which  damage  the  DNA  template  or  inhibit  replication  

proteins.  For  instance,  several  cancer  therapies  target  replicating  cells  and  cause  replication  stress,  

such  as  the  nucleoside  analog  gemcitabine  or  topoisomerase  inhibitor  camptotechin  (Kotsantis  et  

al.,  2015).  Replication  fork  stalling  is  crucial  for  the  action  of  these  treatments  because  small  lesions  

can  be  converted  into  DNA  double  strand  breaks  (DBS)  (Saintigny  et  al.,  2001).  Replication  stress  

can  also  be  due  to  abnormal  initiation  of  genomic  replication  origins.  In  human  cells,  replication  can  

start  from  thousands  of  defined  sites  along  the  chromosome  at  the  so-­‐called  replication  origins,  and  

form  bidirectional  replication  forks  (Zeman  and  Cimprich,  2014).  The  origins  are  licensed  in  G1  

phase  when  binding  of  the  origin  recognition  complex  (ORC)  recruits  MCM2-­‐7  helicase  to  form  the  

prereplicative  complex  (pre-­‐RC).  In  early  S-­‐phase,  this  pre-­‐RC  initiates  replication  by  recruitment  of  

CDC45  and  the  GIN-­‐S  complex.  These  will,  together  with  MCM2-­‐7,  form  the  active  replicative  

helicase  that  unwinds  the  DNA  helix,  finally  allowing  activation  of  the  DNA  polymerase  (Reviewed  in  

(Kotsantis  et  al.,  2015)).    

Page 10: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

10

The  origins  are  activated  at  different  times  during  S-­‐phase.  However,  only  a  fraction  of  the  origins  

fire  under  normal  S-­‐phase,  the  rest  serves  as  back  up  under  DNA  damage  and  replication  stress  

(Zeman  and  Cimprich,  2014).  Upon  overexpression  of  oncogenes  like  Ras,  Myc  and  Cyclin-­‐E  (Di  

Micco  et  al.,  2006),  origin  firing  can  therefore  be  increased  abnormally.  Furthermore,  certain  

agents,  such  as  inhibitors  of  the  checkpoint  kinases  Chk1,  Wee1  and  ATR  (see  §1.2.3)  can  also  

increase  origin  firing.  The  increased  replication  initiation  leads  to  nucleotide  shortage  and  stalled  

forks.  The  stalled  forks  may  continue  to  unwind  the  DNA  helix  by  MCM2-­‐7,  creating  single-­‐stranded  

DNA  (ssDNA)  that  is  covered  with  RPA  (Zeman  and  Cimprich,  2014).  This  will  lead  to  induction  of  the  

intra-­‐S  checkpoint  that  halts  the  cell  cycle  and  suppresses  the  origin  firing  (see  §1.2.5).  However,  if  

the  cell  does  not  manage  to  restart  replication,  the  fork  will  eventually  collapse,  creating  DNA  

breakage  (Magdalou  et  al.,  2014)).  Collisions  between  the  replication  and  transcription  machineries  

may  further  contribute  to  replication  stress.  During  S-­‐phase  replication  and  transcription  operate  

on  the  same  DNA  template,  can  lead  to  collisions  that  cause  replication  stalling.  When  more  origins  

are  fired,  due  to  for  example  oncogene  expression,  the  number  of  such  collisions  is  increased  (Jones  

et  al.,  2013;  Petermann  et  al.,  2010).  

 

1.2.3  DDR  kinases   Upon  DNA  damage  and  replication  stress,  the  DDR  is  activated  to  protect  the  cell.  As  mentioned  

above,  phosphorylation  events  are  central  in  the  DDR  signaling  cascades.  Several  kinases  are  

therefore  highly  important.  ATM,  DNA-­‐PK  and  ATR  are  three  fundamental  kinases  of  the  PIKK  

(phospho-­‐inositide3-­‐kinase  related  kinases)  family  that  act  relatively  upstream  in  the  DDR    

(Figure  2).  ATM  and  DNA-­‐PK  are  activated  by  DNA  damaging  agents  that  create  DSBs  (Reviewed  in  

(Ciccia  and  Elledge,  2010)).  ATR  is  activated  when  recruited  to  RPA-­‐coated  ssDNA  at  stalled  

replication  forks  or  at  resected  (processed)  DSBs  (Zou  and  Elledge,  2003).  All  three  kinases  can  

phosphorylate  histone  H2AX  at  the  C-­‐terminal  Ser139  (γH2AX)  (Stucki  and  Jackson,  2006).  Chk1  and  

Wee1  are  two  other  important  kinases,  which  act  downstream  in  the  DDR  in  induction  of  cell  cycle  

checkpoints.  

 

Page 11: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

11

 Figure  2.  Model  of  activation  of  the  main  DDR  kinases  ATM,  ATR  and  DNA-­‐PK,  and  their  downstream  response.  Figure  modified  from  (Xiaofei  and  Kowalik,  2014).  

ATM   ATM  (Ataxia  Telangiectasia  Mutated)  kinase  is  named  after  the  disease  Ataxia  Telangiectasia  (A-­‐T)  

caused  by  mutations  in  the  ATM  gene,  giving  hypersensitivity  to  radiation,  genomic  instability  ,  

increased  risk  of  cancer,  immunodeficiency  and  neurodegeneration  (Lavin,  2008).  ATM  is  recruited  

to  DSBs  by  interacting  with  Nbs1  in  the  MRN  (Mre11-­‐Rad50-­‐Nbs1)  complex  (Lee  and  Paull,  2004)  

(Figure  2).  Activated  ATM  can  phosphorylate  itself  on  Ser1981,  allowing  ATM  to  dissociate  from  an  

inactive  dimer  complex  into  an  active  monomer.  Freed  ATM  can  then  phosphorylate  other  

substrates,  included  H2AX  on  Ser139  (Bakkenist  and  Kastan,  2003).  γH2AX  recruits  mediator  protein  

MDC1  (mediator  of  DNA  damage  checkpoint  protein  1)  which  has  a  BRCT-­‐domain  that  can  bind  

directly  to  γH2AX  (Lukas  et  al.,  2004).  MDC1  can  form  a  bridge  between  ATM  an  γH2AX,  and  

together  they  form  a  positive  feedback  loop,  which  accumulate  ATM  activation  at  DNA  damage  

sites.  This  facilitates  further  ATM  phosphorylation  on  H2AX  and  amplifies  DNA  damage  signals.  

H2AX  and  MDC1  are  also  responsible  for  accumulation  of  DNA  damage  factors,  like  MRN,  BRCA1,  

and  53BP1  (Lou  et  al.,  2006).  Full  ATM  activation  however,  is  shown  to  require  ATM  acetylation,  

mediated  by  Tip60  histone  acetyltransferase  (Sun  et  al.,  2005).  ATM  phosphorylates  and  activates  a  

number  of  downstream  substrates,  such  as  p53  (Canman  et  al.,  1998)  and  Chk2  (Matsuoka  et  al.,  

1998).    

Page 12: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

12

DNA-­‐PK   DNA  dependent  protein  kinase  (DNA-­‐PK)  is  a  key  enzyme  in  the  non-­‐homologous  end-­‐joining  

(NHEJ),  one  of  the  DSB  repair  pathways  (see  §  1.2.7).  DNA-­‐PK  is  brought  to  DSB  by  Ku  heterodimer,  

which  consists  of  Ku70  and  Ku80  (Figure  2).  Activation  of  DNA-­‐PK  kinase  at  the  DSBs  then  support  

NHEJ  repair  (Davis  et  al.,  2014).  DNA-­‐PK  has  a  lower  affinity  than  ATM  to  the  DSBs  and  normally  

does  not  activate  downstream  proteins  in  the  checkpoint  response,  but  it  can  phosphorylate  γH2AX  

in  the  absence  of  ATM  (Stiff  et  al.,  2004).  

ATR  activation   Ataxia  telangiectasia  and  Rad3-­‐related  (ATR)  protein  kinase  is  a  third  members  of  the  

phosphoinositide  3-­‐kinase  related  kinase  (PIKK)  family  and  is  a  key  enzyme  in  the  DDR  that  activates  

Checkpoint  kinase  1  (Chk1)  (Engelman  et  al.,  2006).  ATR  is  activated  by  ssDNA  during  S-­‐phase  to  

promote  genomic  stability  in  response  to  DNA  damage,  this  includes  cell  cycle  arrest,  stabilization  

and  repair  of  replication  forks,  inhibition  of  replication  origin  firing  (reviewed  in  (Cimprich  and  

Cortez,  2008).  RPA-­‐coated  ssDNA  recruits  ATRIP,  a  regulatory  partner  of  ATR,  which  directly  allows  

ATR  to  bind  to  the  RPA  covered  ssDNA  (Zou  and  Elledge,  2003)  (Figure  2).  RPA  also  recruits  the  9-­‐1-­‐

1  (Rad9-­‐Rad1-­‐Hus1)  complex  which  is  loaded  onto  the  ssDNA  by  clamp-­‐loading  complex  containing  

Rad17  (Maréchal  and  Zou,  2013).  9-­‐1-­‐1  complex  allows  TOPBP1-­‐binding  to  the  damaged  sites  and  

to  stimulate  kinase  activity  of  ATR-­‐ATRIP  (Kumagai  et  al.,  2006).  Once  activated,  ATR  can  activate  

checkpoints  in  response  to  DNA  damage  or  replication  stress.  The  best  studied  ATR-­‐target  is  Chk1.  

With  the  help  of  mediator  proteins,  such  as  CLASPIN,  ATR  recognizes  and  phosphorylates  Chk1  

(Kumagai  and  Dunphy,  2000).  ATR  is  also  shown  to  signal  DNA  damage  to  p53.  This  can  be  done  

either  directly  (Lakin  ND,  1999),  or  via  Chk1  or  Chk2  (Shieh  et  al.,  2000).  P53  is  then  phosphorylated  

and  stabilized,  which  leads  to  upregulation  of  CDK  inhibitor  p21  and  cell  cycle  arrest  (AJ,  1997).    

ATR-­‐inhibition  as  an  anti-­‐cancer  strategy   ATR  is  important  for  cell  survival  in  normal  cells.  Inactivation  of  ATR  in  mouse  embryo  is  shown  to  

be  lethal  (Cimprich  and  Cortez,  2008).  In  adult  mice  tissue,  inactivation  of  ATR  has  shown  to  cause  

premature  aging,  defects  in  tissue  homeostasis,  and  depletion  of  progenitor  cells  in  rapidly  

proliferating  tissues  (Ruzankina  et  al.,  2007).  In  tumor  cells,  ATR  is  however  more  important  than  it  

is  in  normal  cells.  Multiple  events  drive  tumorgenesis  and  can  cause  a  synthetic  lethality  for  ATR  

inhibition.  Oncoproteins,  such  as  Ras,  Myc  and  Cyclin-­‐E,  disrupt  normal  cell  cycle  regulations  and  

Page 13: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

13

cause  genomic  instability  and  replication  stress.  The  ATR  pathway  is  critical  for  the  tumor  cells  to  

survive,  and  in  cells  with  high  levels  of  oncogene-­‐induced  replication  stress,  inhibition  of  ATR  

pathway  has  been  shown  to  be  selectively  toxic  (Gilad  et  al.,  2010;  Toledo  et  al.,  2011).  ATR  

inhibition  leads  to  increased  replication  stress  causing  lethal  damage  and  cancer  cell  death  (López-­‐

Contreras  Aé  and  Fernandez-­‐Capetillo,  2010).  In  addition,  tumor  cell  lines  become  more  sensitive  to  

ATR  inhibition  when  they  lack  specific  DNA  repair  proteins,  such  as  XRCC1  and  ERCC1  (Mohni  et  al.,  

2014;  Sultana  et  al.,  2013).  Furthermore,  since  hypoxia  is  shown  to  cause  replication  stress,  hypoxic  

cells  are  also  sensitive  to  ATR  inhibition  (Hammond  et  al.,  2004;  Pires  et  al.,  2010;  Pires  et  al.,  2012).  

In  addition,  some  tumor  cells  rely  on  the  alternative  lengthening  of  telomeres  (ALT)  pathway.  ATR  

has  a  role  in  the  homologous  recombination  reaction  that  maintains  these  telomeres,  so  that  these  

tumor  cells  are  also  more  sensitive  to  ATR  inhibition  (Flynn  et  al.,  2015).    

 

Moreover,  a  common  feature  of  cancer  cells  is  loss  of  the  G1  checkpoint,  because  of  deficient  pRB  

(Retinoblastoma  protein),  ATM  and/or  p53.  Therapeutic  inhibition  of  ATR  can  therefore  selectively  

sensitize  cancer  cells  and  increase  tumor  cell  killing  (Reviewed  in  (Fokas  et  al.,  2014)).  Both  G1  and  

S/G2  cell  cycle  checkpoints  are  intact  in  normal  cells,  were  genotoxic  stimuli  activate  the  

checkpoints  via  ATM  and  ATR-­‐dependent  pathways.  Since  cancer  cells  often  have  loss  of  G1/S  

checkpoint  control,  they  are  dependent  on  the  ATR/Chk1  pathway  to  repair  DNA  damage.  This  gives  

specificity  for  ATR  inhibition  in  cancerous  cells.  Normal  cells  with  intact  G1  checkpoint  control  are  

less  affected  (Fokas  et  al.,  2014).  (See  also  discussion  about  Wee1  inhibition  and  mitotic  

catastrophe  below).  The  first  ATR  inhibitor  discovered  was  caffeine  that  disrupted  DNA  damage  

induced  cell  cycle  arrest  and  sensitized  cells  to  DNA  damage.  It  is  not  very  specific  for  ATR  and  very  

toxic  (Sarkaria  et  al.,  1999).  In  2011  the  first  selective  inhibitor  of  ATR  was  discovered,  called  VE821,  

that  was  100  times  more  selective  for  ATR  than  the  other  PIKK-­‐kinases  (Charrier  et  al.,  2011).  

Recently  its  analog,  VE822  (VX-­‐970),  has  been  proved  to  have  higher  solubility,  potency,  selectively,  

and  pharmacodynamics  properties.  VE822  is  currently  in  clinical  trials  (Asmal  et  al.,  2015).  VE822  

elevates  the  levels  of  DNA  damage  markers,  like  γH2AX,  and  causes  checkpoint  abrogation  and  cell  

death  (Hall  et  al.,  2014).  VE822  is  also  used  in  the  experiments  in  this  master  project.  

 

Chk1   Chk1  was  initially  identified  as  a  Serine/Threonine  protein  kinase  that  controls  the  G2/M  phase  

transition  in  response  to  DNA  damage  in  fission  yeast  (Walworth  et  al.,  1993).  Later  it  has  been  

Page 14: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

14

shown  that  Chk1  impacts  various  stages  of  the  cell  cycle  that  also  includes  S-­‐phase  and  G2/M-­‐phase  

(Bartek  and  Lukas,  2003;  Zhang  and  Hunter,  2014).  

Chk1  is  regulated  by  ATR  through  phosphorylation,  creating  the  ATR-­‐Chk1  pathway.  Activation  of  

Chk1  occurs  primarily  through  phosphorylation  of  Ser317  and  Ser345  (Zhang  and  Hunter,  2014),  

and  after  activation,  Chk1  can  phosphorylate  a  number  of  substrates  that  have  several  functions.  

One  major  substrate  downstream  of  Chk1  is  the  cdc25A  phosphatase  (Furnari  et  al.,  1997;  Sanchez  

et  al.,  1997)  that  regulates  cell  cycle  progression  by  activation  of  the  cyclin-­‐dependent  kinases  

(CDKs)  (Sanchez  et  al.,  1997).  The  ATR-­‐Chk1  pathway  in  shown  not  only  to  be  activated  in  response  

to  DNA  damage,  but  also  is  important  during  normal  cell  cycle  progression,  for  instance  in  S-­‐phase  

(Syljuåsen  et  al.,  2005).  

WEE1   WEE1  tyrosine  kinase  is  an  important  regulator  of  the  G2/M  checkpoint  (Domingo-­‐Sananes  et  al.,  

2011),  as  it  negatively  regulates  entry  into  mitosis  by  catalyzing  inhibitory  phosphorylation  on  CDK1.  

This  gives  an  inactivation  of  CDK1/cyclin  B  complex,  and  leads  to  G2/M  checkpoint  arrest.  Such  

checkpoint  arrest  is  also  mediated  by  Chk1  inhibition  of  CDC25  phosphatase,  which  removes  

inhibitory  phosphorylation  on  CDK1  (Domingo-­‐Sananes  et  al.,  2011;  Mueller  and  Haas-­‐Kogan,  

2015).  Recently  it  was  shown  that  WEE1  also  is  important  during  S-­‐phase,  and  controls  both  CDK1  

and  CDK2  by  an  inhibitory  phosphate  on  Tyr15.  This  means  that  WEE1  and  also  Chk1  both  control  

CDK  activity  during  DNA  replication  in  S-­‐phase  to  avoid  DNA  damage  and  maintain  genomic  stability  

(Beck  et  al.,  2010;  Sørensen  and  Syljuåsen,  2012).  WEE1  inhibition  increases  CDK  activity  that  can  

increase  replication  initiation  and  lead  to  depletion  of  the  nucleotide  pool.  This  can  result  in  

replication  stalling  and  endonuclease  Mus81  cleavage  of  stalled  replication  forks  that  eventually  

creates  DNA  damage  (Beck  et  al.,  2012;  Domínguez-­‐Kelly  et  al.,  2011).  Forced  CDK  activity  after  

WEE1  inhibition  can  also  lead  to  DNA  damage  through  causing  impaired  homologous  

recombination  (HR)  repair  in  interphase  cells  (Krajewska  et  al.,  2013).    

WEE1  activity  is  increased  during  S  and  G2  phase  but  is  inactivated  and  degraded  during  mitosis,  

suggesting  that  there  are  mechanisms  for  regulating  WEE1  (McGowan  and  Russell,  1995;  Watanabe  

et  al.,  1995).  Polo-­‐like  kinase  1  (PLK1)  and  CDK1  itself  can  negatively  regulate  WEE1  by  

phosphorylating  Ser53  and  Ser123,  respectively,  promoting  ubiquitination  and  subsequent  

proteasomal  degradation.  CDK1  can  also  activate  CDC25  by  phosphorylation,  and  by  this  create  a  

positive  feedback-­‐loop  that  increase  CDK  activity  when  entering  mitosis  (Watanabe  et  al.,  2005;  

Watanabe  et  al.,  2004;  Watanabe  et  al.,  1995).  

Page 15: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

15

WEE1-­‐inhibition  as  an  anti-­‐cancer  strategy    As  mentioned  above,  common  traits  of  human  cancer  cells  are  that  they  have  mutations  in  p53  or  

the  pRB  that  leads  to  malfunction  of  the  G1/S  checkpoint.  Because  of  this,  the  cancer  cells  become  

more  reliant  of  the  G2/M  checkpoint  for  DNA  damage  survival  (AJ,  1997).  Since  inhibition  of  WEE1  

causes  abrogation  of  the  G2/M  checkpoint,  cells  that  already  lack  the  G1/S  checkpoint  would  not  be  

able  to  halt  the  cell  cycle  for  repair  of  DNA  damage  (Figure  3).  Cells  will  start  to  divide  with  

unrepaired  DNA  lesions,  leading  to  abnormal  chromosome  segregation  and  apoptosis,  a  process  

often  termed  mitotic  catastrophe  (Castedo  et  al.,  2004;  Kawabe,  2004).  WEE1  inhibition  can  cause  

mitotic  catastrophe  when  combined  with  conventional  DNA  damaging  therapy,  such  as  radiation  

and  different  cytostatics  (De  Witt  Hamer  et  al.,  2011;  Hirai  et  al.,  2009).  Recently  the  cytotoxic  

effects  WEE1  inhibitors  have  on  cancer  cell  survival  as  single  agents  have  also  gained  more  

attention  (Kreahling  et  al.,  2012).  Oncogene  activity  and  elevated  CDK  activity  can  result  in  

replication  stress  in  cancer  cells  (Halazonetis  et  al.,  2008),  and  by  inhibiting  WEE1,  CDK  activity  

becomes  too  high  and  results  in  DNA  damage,  and  eventually  cancer  cell  death  (Sørensen  and  

Syljuåsen,  2012).  The  selective  WEE1  small  molecule  inhibitor,  MK1775,  inhibits  CDK  

phosphorylation  on  Tyr15,  which  leads  to  abrogation  of  the  G2/M  checkpoint  and  subsequent  

mitotic  catastrophe.  This  is  shown  to  be  a  possible  anti-­‐cancer  strategy  in  p53-­‐defective  cancer  cells  

(De  Witt  Hamer  et  al.,  2011;  Hirai  et  al.,  2009),  but  can  also  can  cause  significant  cell  death  in  

sarcoma  cells  with  wild-­‐type  p53,  suggesting  that  mitotic  catastrophe  can  also  occur  independent  

of  p53  status  (Kreahling  et  al.,  2012).  MK1775  is  also  shown  to  abrogate  S  phase  arrest  and  cause  

more  cell  death  in  combination  with  the  cytostatic  drug,  Gemcitabine  (Kreahling  et  al.,  2013).  

 

 Figure  3.  Principle  behind  the  selectively  targeted  cancer  cells,  taking  advantage  of  the  lost  DNA  damage  response  pathway.  When  targeting  G2/M  checkpoint,  a  normal,  healthy  cell  can  survive  DNA  damage  because  it  still  has  the  compensatory  G1/S  checkpoint,  that  will  arrest  the  cell  for  DNA  repair.  In  cancer  cells,  where  this  compensatory  pathway  is  abrogated,  the  cells  will  die  because  of  massive  DNA  damage  that  will  not  be  abled  to  be  repaired.  Modified  from  (Curtin,  2012).  

Page 16: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

16

1.2.4  Phosphatases   DNA  damage  and  replication  stress  activate  DDR,  and  as  discussed,  serine/threonine  kinases  are  the  

key  players  for  phosphorylating  a  wide  range  of  substrates  that  execute  DDR.  However,  this  

response  needs  to  be  inactivated  when  the  damage  has  been  resolved.  (Harper  and  Elledge,  2007;  

Zhou  and  Elledge,  2000).  

Phosphatases  are  therefore  important  for  dephosphorylating  these  substrates.  

Reversible  protein  phosphorylation  at  serine  (Ser),  threonine  (Thr),  and  tyrosine  (Tyr)  residues  is  the  

most  common  post-­‐translational  modification  in  eukaryotic  cells  (Rebelo  et  al.,  2015).  

Protein  phosphatases  are  divided  into  three  families  based  on  sequence,  structure,  and  catalytic  

mechanisms,  and  whether  they  can  dephosphorylate  Ser/Thr  residues  alone,  Tyr  residues  alone,  or  

have  dual  specificity.  The  Ser/Thr  family  can  be  further  divided  into  three  families.  One  of  them  is  

the  large  phosphoprotein  phosphatase  (PPP),  including  proteinphosphatase-­‐1  (PP1),  which  is  

involved  in  many  cellular  functions,  including  DNA  repair  and  checkpoint  activation.  However,  there  

are  more  than  ten  times  more  Ser/Thr  kinases  than  phosphatases.  (Moorhead  et  al.,  2007).  PP1  is  

therefore  associated  with  different  regulatory  subunits.  PP1  can  form  as  many  as  650  distinct  

complexes  with  PP1-­‐  interacting  proteins  (PIPs),  which  bind  to  the  targeting  RVxF  motif  (Bollen  et  

al.,  2010;  Lee  and  Chowdhury,  2011).  In  addition  to  DDR,  PP1  is  also  involved  in  regulation  of  

metabolic  processes  by  inactivating  the  cAMP  response  element  (CREB),  a  transcriptional  regulator  

of  metabolic  genes  and  processes.  Under  hypoxic  conditions,  Nuclear  inhibitor  of  PP1  (NIPP1)  can  

bind  to  the  isoform  PP1γ.  This  leads  to  degradation  of  CREB.  It  is  suggested  that  NIPP1,  by  binding  

to  PP1γ,  may  be  important  in  helping  the  cell  adapt  metabolically  in  order  to  survive  under  hypoxic  

conditions  (Comerford  et  al.,  2006).  

 

1.2.5  DNA  damage  induced  cell  cycle  checkpoints   The  cell  cycle  is  divided  into  four  phases:  The  first  gap  (G1)  phase,  Synthesis  (S)  phase,  second  gap  

(G2)  phase,  and  the  Mitotic  (M)  phase.  The  different  phase-­‐transitions  are  thoroughly  controlled  by  

ordered  activation  of  different  CDKs  that  bind  to  specific  cyclins  to  create  cyclin/CDK  complexes  

(Figure  4A).  These  complexes  activate  multiple  targets  that  are  specific  for  the  next  cell  cycle  phase  

to  drive  the  cell  cycle  forward,  and  this  is  tightly  regulated  to  ensure  that  each  process  in  one  phase  

is  completed  before  the  cell  can  enter  the  next  phase  (Malumbres  and  Barbacid,  2009).  

Page 17: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

17

There  are  three  different  DNA-­‐damage  induced  cell  cycle  checkpoints  in  mammalian  cells.  The  two  

main  checkpoints  are  at  the  G1/S  and  G2/M  transitions,  which  halt  the  cell  cycle  progression  before  

S-­‐  and  M-­‐phase.  In  addition,  the  Intra-­‐S  checkpoint  can  slow  down  the  replication  (Figure  4B).  

   

 Figure  4.  Regulation  pathways  of  the  cell  cycle  and  DNA  damage  checkpoint  pathways.  A)  The  cell  cycle  phases  and  the  corresponding  CDK-­‐cyclin  complexes  that  derived  the  cell  cycle  progression.  Modified  from  (Verbon  et  al.,  2012).  B)  Induction  of  G1/S,  intra  S,  and  G2/M  checkpoints.  G1/S  and  G2/M  checkpoints  induce  cell  cycle  arrest  that  allow  time  for  DNA  repair  (stop),  while  intra-­‐S  checkpoint  leads  to  slowing  of  replication  and  decreased  initiation  of  origin  firing  (slow).  Modified  from  (Kastan  and  Bartek,  2004).  

G1/S  checkpoint   The  G1/S  checkpoint  is  important  to  prevent  damaged  cells  to  enter  S-­‐phase.  This  is  mainly  

mediated  by  the  ATM-­‐Chk2-­‐cdc25  pathway  and  the  ATM-­‐p53-­‐p21  pathway.  Targeting  of  cdc25  is  a  

rapid  response  after  DNA  damage  (Deckbar  et  al.,  2011).  Activated  ATM  recruits  and  activates  Chk2  

by  phosphorylation  and  the  active  Chk2  will  phosphorylate  cdc25  phosphatase  that  will  be  

degraded.  Cdc25  is  necessary  for  CDK2  activation  and  upon  degradation  it  can  no  longer  remove  

inhibitory  phosphorylation  on  CDKs.  CDK  activity  is  decreased  which  leads  to  rapid  G1/S  arrest.  The  

Page 18: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

18

activation  of  p53  is  slower  than  the  cdc25  response.  Prolonged  G1/S  arrest  is  dependent  on  p53  

and  p21  (Bartek  and  Lukas,  2001).  Increased  p53  activation  transcriptionally  upregulates  p21,  which  

binds  to  and  inactivate  cyclin-­‐E/CDK2,  preventing  the  cell  to  enter  S-­‐phase  (Sherr  and  Roberts,  

1999).  

 

Intra-­‐S  checkpoint   Activation  of  the  intra-­‐S  phase  checkpoint  can  only  delay  cell  cycle  progression  and  not  induce  

permanent  arrest.  This  delay  is  mediated  by  ATM  and  ATR  that,  as  mentioned,  phosphorylate  and  

activate  Chk2  and  Chk1  kinases,  which  in  turn  phosphorylate  and  inactivate  CDC25.  This  leads  to  

degradation  of  CDC25  and  decreased  CDK  activity  (Sørensen  et  al.,  2003).  Decreased  CDK  activity  

will  prevent  firing  of  new  replication  origins,  and  slow  down  replication  fork  progression  (Bartek  and  

Lukas,  2001).  Increased  CDK  activity  is  induced  by  WEE1  inhibition  in  the  cyclin-­‐A/CDK2  complex  

(Enders,  2010).  

G2/M  checkpoint   The  G2  to  M  phase  is  mediated  by  the  cyclin-­‐B/CDK1  complex.  The  G2/M  checkpoint  prevent  cells  

from  entering  into  mitosis  with  DNA  damage.  The  damage  may  have  occurred  either  in  the  G2  

phase  or  be  a  result  of  unrepaired  damage  occurred  in  S-­‐phase  (Kastan  and  Bartek,  2004;  

Malumbres  and  Barbacid,  2009).  Cell  cycle  arrest  is  dependent  on  either  ATR-­‐Chk1-­‐CDC25  pathway  

or  ATM-­‐p53-­‐p21  pathway.  Unrepaired  damage  from  S-­‐phase  activates  ATR,  which  phosphorylates  

Chk1  and  thereby  inactivate  CDC25.  This  inactivation  leads  to  cyclin-­‐B/CDK1  inhibition.  DSBs  in  G2  

activate  ATM  that  can  directly  phosphorylate  p53,  or  indirectly  through  Chk2,  and  upregulate  p21,  

leading  to  CDK1  inhibition  (Medema  and  Macurek,  2012).  Similar  to  in  S-­‐phase,  WEE1  can  also  

inhibit  CDK1  in  G2  phase  and  thereby  lead  to  G2/M  cell  cycle  arrest  (Watanabe  et  al.,  2004).  

 

1.2.7  DNA  repair   The  cell  is  facing  different  types  of  DNA  damage  and  has  developed  several  types  of  repair  systems  

according  to  cell  cycle  phases  and  lesion  types.  For  instance,  Base  excision  repair  (BER)  deals  with  

damaged  nucleotides  and  ssDNA,  Mismatch  repair  (MMR)  deals  with  damage  under  replication,  like  

insertion/deletion  of  the  wrong  base,  and  nucleotide  excision  repair  (NER)  deals  with  various  types  

of  lesions.  DSBs  have  two  main  pathways  for  DNA  repair:  homologous  recombination  (HR)  and  non-­‐

homologous  end-­‐joining  (NHEJ)  (Ciccia  and  Elledge,  2010;  Dexheimer,  2013).  

Page 19: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

19

Homologous  recombination  repair   HR  is  dependent  on  a  sister  chromatid  that  that  is  used  as  a  template  for  break  repair.  The  

requirement  of  a  homologous  sequence  restricts  this  repair  mechanism  to  S-­‐  and  G2-­‐phase,  and  

makes  this  repair  pathway  to  be  error-­‐free.  HR  is  initiated  by  binding  of  the  MRN  complex  to  the  

DSB  and  Mre11  in  cooperation  with  CtBP-­‐interaction  protein  (CtIP)  create  short  stretches  of  ssDNA  

(resection)  (Reviewed  in  (Stracker  and  Petrini,  2011)).  This  process  also  depends  on  BRCA1  (breast  

cancer  1  susceptibility  protein)  (Yun  and  Hiom,  2009).  Further  resection  is  carried  out  by  Exo1,  

DNA2,  and  BLM  (Stracker  and  Petrini,  2011).  This  results  in  long  stretches  of  3´-­‐ended  ssDNA,  that  

are  quickly  coated  by  RPA.  RPA  is  then  replaced  with  Rad51,  in  a  manner  dependent  on  BRCA2  

(breast  cancer  2  susceptibility  protein)  and  PALB2  (partner  and  localizer  of  BRCA2)  (Holloman,  

2011).  Rad51  forms  a  nucleoprotein  filament,  and  initiates  strand  invasion  and  DNA  synthesis  by  a  

DNA  polymerase.  This  forms  Holliday  junction  that  is  cut  and  ligated  at  crossover  points  

(Holthausen  et  al.,  2010).  

Non-­‐homologous  end  joining   NHEJ  is  more  error-­‐prone  but  also  more  efficient  than  HR,  and  is  initiated  in  all  phases  in  the  cell  

cycle.  This  repair  mechanism  is  initiated  by  a  Ku  complex  that  binds  to  DSBs.  As  previously  

mentioned,  the  Ku  complex  is  a  heterodimer  which  consists  of  Ku70  and  Ku80.  Ku  complex  quickly  

recruit  DNA-­‐PK  to  the  damaged  site  (Davis  et  al.,  2014).  After  activation  of  DNA-­‐PK,  the  

endonuclease  Artemis  is  recruited  together  with  repair  proteins  (Polymerase  µ  and  γ)  and  ligase  

complex  (DNA  ligase  IV  with  XLF  and  XRCC4)  that  ligate  the  ends  together  (Mahaney  et  al.,  2009).  

 

1.4  Hypoxia   1.4.1  Hypoxia  in  human  tumors   All  cells  need  blood  supply  for  delivery  of  oxygen  and  nutrients,  including  cancer  cells.  As  the  solid  

tumor  grows,  it  outgrows  its  oxygen  and  nutrient  supply,  and  it  needs  to  induce  formation  of  new  

blood  vessels  from  pre-­‐existing  blood-­‐vessels  in  order  to  grow  further,  called  tumor  angiogenesis.  

The  new  blood  vessels  are  usually  quickly  formed  and  often  have  structural  abnormalities.  This  

leads  to  unstable  blood  flow  and  thereby  oxygen  levels  to  parts  of  the  tumor,  causing  

subpopulations  of  the  cancer  cells  to  experience  hypoxia  (Bristow  and  Hill,  2008;  Vaupel  et  al.,  

1989).  Hypoxia  is  defined  as  an  oxygen  range  between  normal  levels  (approximately  6%),  mild  

Page 20: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

20

hypoxia  (0,5-­‐3%),  and  anoxia  (0%)  (Vaupel  et  al.,  1989).  Tumor  hypoxia  can  be  divided  into  two  

main  subgroups,  acute  or  chronic  hypoxia  (Pires  et  al.,  2010).  Acute  hypoxia,  or  cycling  hypoxia,  is  

repeated  periods  of  hypoxia  with  subsequent  reoxygenation  that  last  from  minutes  to  a  few  hours.  

It  is  caused  by  temporary  occlusions  of  blood  and  oxygen  (Bristow  and  Hill,  2008;  Dewhirst  et  al.,  

2008).  Chronic  hypoxia  is  found  in  regions  deep  inside  the  tumor,  far  from  blood  vessels.  Extreme  

chronic  hypoxia  often  has  O2  levels  close  to  anoxia  (Bristow  and  Hill,  2008).  Hypoxic  cells  are  more  

resistant  to  chemotherapeutics  than  normal,  well-­‐oxygenated  cells,  because  rich  blood  supply  is  

necessary  for  delivery  of  oxygen  and  thereby  better  drug  transport  (Bussink  et  al.,  2003).  In  

addition,  hypoxic  cells  are  resistant  to  radiotherapy  and  hypoxia  is  an  important  factor  for  

development  of  angiogenesis  and  tumor  aggressiveness  (Overgaard,  2007;  Tatum  et  al.,  2006).  Due  

to  this,  hypoxia  is  generally  related  to  poor  outcome  for  cancer  patients.  Since  hypoxia  affects  many  

basic  cellular  processes,  including  metabolism,  cell  cycle  progression,  and  translation  and  

transcription,  cells  have  developed  three  response  pathways:  the  stabilization  of  hypoxia-­‐inducible  

factors  (HIFs),  the  mammalian  target  of  rapamycin  (mTOR)  pathway,  and  the  unfolded  protein  

response  (UPR)  (Ebbesen  et  al.,  2009;  Wouters  and  Koritzinsky,  2008).    

 

HIFs  are  transcription  factors  that  form  a  heterodimer  composed  of  an  α-­‐  and  a  β-­‐  subunit  when  

active.  These  transcription  factors  are  critical  regulators  of  cellular  responses  in  hypoxia  (Semenza,  

1998).  In  the  presence  of  oxygen,  HIF1-­‐α  is  hydroxylated  by  oxygen-­‐activated  propylhydroxylases  

(PHDs),  which  is  leads  to  ubiquitination  and  degradation  of  HIF1-­‐α  by  interaction  of  von  Hippel-­‐

Lindau  complex  (vHL).  Hypoxia  leads  to  stabilization  and  accumulation  of  HIF1-­‐α  by  inactivation  of  

PHDs,  which  leads  to  activation  of  downstream  target  genes  of  HIF1  inducing  factors.  This  is  

involved  in  promoting  pathways,  such  as  angiogenesis  by  vascular  endothelial  growth  factor  (VEGF),  

metastasis,  and  glycolysis  (Bristow  and  Hill,  2008;  Semenza,  2012).  UPR  and  mTOR  are  two  other  

pathways  that  are  important  for  tumor  cell  behavior  and  are  working  independently  to  influence  

gene  expression.  They  help  regulating  energy  consumption  in  hypoxic  cells  by  inhibition  of  mRNA  

translation,  which  is  a  highly  energy-­‐consuming  process  (Wouters  and  Koritzinsky,  2008).    

1.4.2  Hypoxia-­‐induced  genomic  instability  and  replication  stress   In  addition  to  causing  resistance  to  radiation  and  chemotherapy,  hypoxia  represses  many  essential  

components  of  the  DNA  repair  pathways  (Bristow  and  Hill,  2008).  Hypoxic  conditions  have  been  

shown  to  induce  less  effective  HR,  MMR,  and  possibly  NHEJ  repair  (Bindra  et  al.,  2007;  Bristow  and  

Hill,  2008;  Kumareswaran  et  al.,  2012).  The  key  members  of  HR  pathway,  Rad51  and  BRCA1,  are  

Page 21: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

21

shown  to  be  downregulated  in  hypoxia  (Bindra  and  Glazer,  2006).  MLH1  and  MLH2,  both  

components  of  the  MMR  pathway  are  also  repressed  under  hypoxic  conditions  (Chen  et  al.,  2006;  

Olcina  et  al.,  2010).  It  is  suggested  that  repression  of  genes  involved  in  DNA  repair  causes  increased  

genomic  instability  in  hypoxia,  and  may  contribute  to  aggressive  tumor  development  (Bristow  and  

Hill,  2008).  

Severe  levels  of  hypoxia  (<0.02%  O2)  also  induces  several  hypoxic  responses,  including  DDR,  that  

induce  rapid  S-­‐phase  or  replication  arrest  (Green  et  al.,  2001).  The  oxygen-­‐dependent  enzyme  

ribonucleotide  reductase  (RNR)  is  responsible  for  production  of  the  four  deoxyribonucleotide  

triphosphates  (dNTPs)  that  are  required  for  DNA  replication  and  DNA  repair.  In  response  to  severe  

hypoxia  this  enzyme  is  severely  repressed  (Nordlund  and  Reichard,  2006),  and  this  gives  a  rapid  and  

significant  decrease  of  nucleotides  (Pires  et  al.,  2010).  In  response  to  replication  arrest,  ATRIP  can  

recognize  RPA  complexes  that  bind  to  ssDNA  and  lead  to  activation  of  ATR.  Severe  hypoxia  results  in  

regions  of  ssDNA  within  S-­‐phase  (Zou  and  Elledge,  2003),  but  hypoxia  does  not  always  lead  to  DNA  

breaks  directly.  It  has  been  suggested  that  reoxygenation  creates  reactive  oxygen  species  (ROS)  that  

will  genereate  SSBs  and  possibly  DSBs,  and  elicits  ATM-­‐Chk2-­‐dependent  G2  checkpoint  arrest  for  

DNA  repair.  In  tumor  cells  lacking  Chk2,  a  reduced  reoxygenation-­‐induced  cell  cycle  arrest  and  

increased  apoptosis  was  shown  (Freiberg  et  al.,  2006).    

1.4.3  Targeting  hypoxic  cells  for  cancer  therapy   Since  hypoxic  cells  are  known  to  cause  negative  prognosis,  it  is  important  to  target  these  cells  

during  cancer  therapy.  In  the  last  years,  there  have  been  developed  several  treatment  strategies  for  

targeting  hypoxic  cells  specifically.  One  strategy  is  to  use  fractionated  radiotherapy,  where  radiation  

is  given  in  a  series  of  small  doses  rather  than  one  large  dose,  which  allows  reoxygenation  between  

therapy  (Reviewed  in  (Horsman,  2009;  Overgaard,  2007)).  Other  strategies  involved  are  inhibitors  of  

DDR,  as  hypoxia  affects  DDR  and  induces  genomic  instability.  There  are  several  performed  and  

ongoing  studies  with  the  use  of  different  inhibitors.  During  and  after  chronic  hypoxia  the  decreased  

HR  repair  can  resensitize  tumor  cells  to  IR  and  some  chemotherapeutic  drugs  (Chan  et  al.,  2008).  

HR-­‐defected  cells  are  shown  to  be  synthetically  lethal  with  poly  (ADP-­‐ribose)  polymerase  1  (PARP1),  

involved  in  base  excision  repair  pathway  of  SSBs.  Inhibition  of  PARP1  results  in  accumulation  of  SSBs  

that  may  eventually  lead  to  DSBs  in  encounter  with  replication  fork.  These  breaks  require  HR  for  

DNA  repair  and  replication  (Chan  et  al.,  2010).  Therefore,  PARP1  inhibitors  can  increase  clonogenic  

killing  in  HR-­‐deficient  hypoxic  cells.  

Page 22: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

22

 

The  key  roles  of  ATR  and  ATM  during  hypoxia-­‐induced  replication  stress  and  reoxygenation,  are  

suggesting  these  kinases  as  potential  therapeutic  targets  (Hammond  et  al.,  2007).  By  using  potent  

and  specific  inhibitors  of  cellular  ATR  activity,  such  as  VE821  and  VE822,  promising  sensitizing  

effects  were  found  for  a  variety  of  cancer  cells  (Fokas  et  al.,  2012;  Pires  et  al.,  2012).  Furthermore,  

inhibition  of  Chk1  is  also  reported  to  selectively  sensitize  cancer  cells  after  being  exposed  to  

prolonged  hypoxia  and  reoxygenation  (Hasvold  et  al.,  2013).  Especially  ATR  and  Chk1  inhibitors  play  

critical  roles  in  the  cellular  response  to  hypoxia  followed  by  reoxygenation,  and  represent  new  

hypoxic  cell  cytotoxins  (Hammond  et  al.,  2004).    

1.4.4  Desferrioxamine  (DFO)  as  a  hypoxia-­‐mimetic  agent   The  iron  chelator  desferrioxamine  (DFO)  is  a  commonly  used  hypoxia-­‐mimetic  agent,  and  like  

hypoxia,  it  can  block  the  degradation  and  induce  accumulation  of  hypoxia-­‐inducible  factor-­‐1alpha  

(HIF-­‐1α)  (An  et  al.,  1998).  DFO  has  been  shown  to  induce  cell  death  with  features  of  an  apoptotic  

cell,  like  shrinking,  chromatin  condense,  and  nuclear  fragmentation  inside  the  cell  wall  (Guo  et  al.,  

2006).  DFO  can  also  cause  genetic  instability  by  inducing  replication  arrest  similar  to  hypoxia  

(Hammond  et  al.,  2002).  

 

Page 23: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

23

2  Aim    The  overall  aim  of  this  master  project  was  to  identify  some  factors  protecting  cancer  cells  against  

replication  stress,  and  investigate  whether  hypoxia  influenced  the  DNA  damage  in  S-­‐phase  cells  

caused  by  WEE1  inhibitor  MK1775  and  ATR  inhibitor  VE822.  

 

Specific  aims  of  this  project  are:  

(I) To  validate  candidate  hits  from  a  previous  performed  siRNA  screen    

(II) To  investigate  the  effect  of  WEE1  and  ATR  inhibition  in  combination  with  hypoxia  

(III) To  examine  some  of  the  mechanisms  behind  the  synergistic  effect  after  combined  

treatment  of  WEE1  and  ATR  inhibitors  

 

Page 24: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

24

 

Page 25: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

25

3  Materials  

3.1  Cell  culture   Material   Product   Vendor   Cat.  #  

Medium   DMEM,  high  glucose,  GlutaMAX™  Supplement,  pyruvate   Life  Technologies   31966-­‐047  

FBS   Fetal  Bovine  Serum  Origin:  EU  Approved  (South  American)   Life  Technologies   10270-­‐106  

Antibiotic   Penicillin-­‐Streptomycin  (10,000  U/ml)   Life  Technologies   15140-­‐122  

PBS   Phosphate-­‐Buffered  Saline  (1x),  pH  7.2   Life  Technologies   20012-­‐068  

Trypsin   Trypsin-­‐EDTA  (0.25%),  phenol  red   Life  Technologies   25200-­‐056  

Wee1-­‐inhibitor   MK1775   Axon     Axon  1494    

ATR-­‐inhibitor   VE822     Selleck  

Chemicals   S7102    

Hypoxia  treatment  

   Invivo2  200  hypoxia  chamber      

Ruskinn      

3.2  siRNA  transfection   Material   Product   Vendor   Cat.  #  

Transfection  reagent   Lipofectamine™  RNAiMAX   Life  Technologies   13778075  

Medium   Opti-­‐MEM®  in  Reduced  Serum  Medium,    GlutaMAX™  supplement   Life  Technologies   51985-­‐026  

Buffer   5x  siRNA  buffer   Thermo  Scientific   B-­‐002000-­‐UB-­‐100  

siRNA  (control)   Non-­‐targeting  siRNA  #4   GE  Dharmacon      

siRNA   siATR,  sense  sequence:  5´GAACAACACUGCUGGUUUGUU(dT)(dT)   Sigma      

siRNA   siNIPP1,  sense  sequence:  5´GGAACCUCACAAGCCUCAGCAAAUU(dT)(dT)   Sigma      

siRNA   siNIPP1,  sense  sequence:  5´GGGUUGAAAUAGCCCAUAA(dT)(dT)   GE  Dharmacon      

siRNA   siRAD17,  sense  sequence:  5´CAACAAAGCCCGAGGAUAU(dT)(dT)   Sigma      

siRNA   siWEE1,  sense  sequence:  5´GGAAAAAGGGAAUUUGAUG(dT)(dT)   Sigma      

   

 

Page 26: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

26

3.3  Flow  cytometry  

3.4  Immunofluorescence  microscopy  

Material   Product   Vendor   Cat.  #  

Primary  antibody   Mouse  anti-­‐phospho-­‐Histone  H2AX  (S139),  1:500   Millipore     05-­‐636  

Secondary  antibody  

Alexa  Fluor®  488  conjugated  donkey  Anti-­‐mouse  IgG,  1:1000   Life  Technologies   A-­‐21202  

Fixing  agent   Ethanol,  absolute   VWR   20821.310  

PBS   Phosphate-­‐Buffered  Saline  (1x),  pH  7.2   Life  Technologies   20012-­‐068  

Fixing  agent   Formalin  solution  10%,  neutral  buffered  with  4%  formaldehyde   SIGMA-­‐ALDRICH   HT501128  

DNA  dye   VECTASHIELD  Mounting  medium  with  DAPI   Vector  Laboratories   H-­‐1200  

Coverslips   Coverslips,  13  mm  diameter   Thermo  Scientific   13100  

Glass  slides   Microscope  slides,  76x26  mm   Thermo  Scientific   51101  

Material   Product   Vendor   Cat.  #  

PBS   Phosphate-­‐Buffered  Saline  (10x),  pH  7.4   Life  Technologies   70011-­‐051  

FBS   Fetal  Bovine  Serum  Origin:  EU  Approved  (South  American)   Life  Technologies   10270-­‐106  

Non-­‐ionic  detergent   Igepal  CA630   SIGMA-­‐ALDRICH   13021  

Fixing  agent   Ethanol,  absolute   VWR   20821.310  

Milk  Powder   Skim  milk  powder  for  microbiology   SIGMA-­‐ALDRICH/Fluka   70166-­‐500G  

DNA  stain   Hoechst  33258   SIGMA-­‐ALDRICH   94403-­‐1ML  

Primary  antibody   Mouse  anti-­‐phospho-­‐Histone  H2AX  (S139),  1:500   Millipore   05-­‐636  

Primary  antibody   Rabbit  anti-­‐phospho-­‐Histone  H3  (S10),  1:500   Millipore   06-­‐570  

Secondary  antibody   Alexa  Fluor®  647  conjugated  goat  Anti-­‐mouse  IgG,  1:250   Life  Technologies   A-­‐21235  

Secondary  antibody   Alexa  Fluor®  488  conjugated  donkey  Anti-­‐rabbit  IgG,  1:250   Life  Technologies   A-­‐21026  

Flow  tubes   BD  Falcon  Round  bottomed  test  tubes,  polystyrene,  cell  strainer  cap,  5  ml   VWR   734-­‐0001  

Page 27: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

27

3.5  SDS-­‐PAGE  and  Western  blot  

Material   Product   Vendor   Cat.  #  

Acrylamide  gel   4-­‐15%  Mini-­‐PROTEAN®  TGX™  precast  gel,  15  well,  15µl   Bio-­‐Rad   456-­‐1086  

Acrylamide  gel   4-­‐20%  Mini-­‐PROTEAN®  TGX™  precast  gel,  15  well,  15µl   Bio-­‐Rad   456-­‐1096  

Acrylamide  gel   4-­‐15%  Criterion™  TGX™  precast  gel,  26  well,  15µl   Bio-­‐Rad   567-­‐1085  

Running  buffer   10x  Tris/glycine/SDS   Bio-­‐Rad   161-­‐0772  

Transfer  buffer   5x  Trans-­‐Blot®  Turbo™     Bio-­‐Rad   10026938  

Marker   Full-­‐Range  Rainbow  Molecular  Weight  Marker   VWR   RPN800E  

Sample  buffer   Lane  marker  reducing  Sample  Buffer   VWR   PIER39000  

Nitrocellulose  membrane   Trans-­‐Blot®  Turbo™  RTA  Mini  Nitrocellulose  Transfer  Kit   Bio-­‐Rad   170-­‐4270  

Transfer  stacks   Trans-­‐Blot®  Turbo™  RTA  Mini  Nitrocellulose  Transfer  Kit   Bio-­‐Rad   170-­‐4270  

Transfer  buffer   Trans-­‐Blot®  Turbo™  RTA  Mini  Nitrocellulose  Transfer  Kit   Bio-­‐Rad   170-­‐4270  

Nitrocellulose  membrane   Trans-­‐Blot®  Turbo™  RTA  Midi  Nitrocellulose  Transfer  Kit   Bio-­‐Rad   170-­‐4271  

Transfer  stacks   Trans-­‐Blot®  Turbo™  RTA  Midi  Nitrocellulose  Transfer  Kit   Bio-­‐Rad   170-­‐4271  

Transfer  buffer   Trans-­‐Blot®  Turbo™  RTA  Midi  Nitrocellulose  Transfer  Kit   Bio-­‐Rad   170-­‐4271  

Ponceau  stain   Ponceau  S  solution   SIGMA-­‐ALDRICH   P7170-­‐1L  

PBS   Phosphate-­‐Buffered  Saline  (10x),  pH  7.4   Life  Technologies   70011-­‐051  

Tween   10%  Tween  20   Bio-­‐Rad   161-­‐0781  

Milk  Powder   Skim  milk  powder  for  microbiology   SIGMA-­‐ALDRICH/Fluka  

70166-­‐500G  

Primary  antibody   Rabbit  anti-­‐ATR,  1:1000   Cell  Signaling   2790  

Primary  antibody   Mouse  anti-­‐CDK1,  1:400   Santa  Cruz  

Biotechnology   sc-­‐54    

Primary  antibody   Rabbit  anti-­‐CDK1  pY15,  1:1000   Cell  Signaling   9111  

Primary  antibody   Rabbit  anti-­‐CDK2,  1:400   Santa  Cruz  

Biotechnology   sc-­‐163    

Primary  antibody   Rabbit  anti-­‐CDK2  pY15,  1:5000   AbCam   Ab76146    

Primary  antibody   Mouse  anti-­‐CHK1,  1:400   Santa  Cruz  

Biotechnology   DCS310.1  

Primary  antibody   Mouse  anti-­‐CHK1  pS317,  1:400   Cell  Signaling   2344    

Page 28: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

28

Primary  antibody   Mouse  anti-­‐CHK2,  1:50   Santa  Cruz  

Biotechnology   DCS270.1    

Primary  antibody   Rabbit  anti-­‐CHK2  pT68,  1:400   Cell  Signaling   2197    

Primary  antibody   Rabbit  anti-­‐DNApk  pS2056,  1:400   Abcam     ab18192    

Primary  antibody   Mouse  anti-­‐NIPP1,  1:400   Santa  Cruz  

Biotechnology   sc-­‐393991  

Primary  antibody   Mouse  anti-­‐ATM  pS1981,  1:1000   Cell  Signaling   4526    

Primary  antibody   Mouse  anti-­‐PNUTS,  1:1000   BD  Biosciences   BD  611060  

Primary  antibody   Rabbit  anti-­‐RPA  pS33,  1:1000   Nordic  Biosite     A300-­‐

246A    Primary  antibody   Rabbit  anti-­‐RPA  pS4/S8,  1:1000   Nordic  Biosite     A300-­‐245  

Primary  antibody   Mouse  anti-­‐𝛾Tubulin,  1:1000   SIGMA-­‐ALDRICH   T6557  

Secondary  antibody  

Horseradish-­‐peroxidase  conjugated  donkey  anti-­‐mouse  IgG,  1:10  000  

Jackson  ImmunoResearch  

715-­‐035-­‐150  

Secondary  antibody  

Horseradish-­‐peroxidase  conjugated  goat  anti-­‐rabbit  IgG,  1:10  000  

Jackson  ImmunoResearch  

111-­‐035-­‐144  

ECL   SuperSignal®  West  Pico  Chemiluminescent  Substrate   VWR   PIER34080  

ECL   SuperSignal®  West  Dura  Extended  Duration  Substrate   VWR   PIER34075  

ECL   SuperSignal®  West  Femto  Maximum  Sensitivity  Substrate   VWR   PIER34095  

3.6  Clonogenic  survival  assay   Material   Product   Vendor   Cat.  #  

Colony  counter  pen  

E-­‐Count  Colony  Counter  with  pen      

Heathrow  Scientific     120000    

Fixing  agent   Ethanol,  absolute   VWR   20821.310  

Staining   Methylene  blue-­‐2-­‐hydrat   KEBOlab   1.1283-­‐100  

Staining   Sodium  hydroxide  (NaOH)   SIGMA-­‐ALDRICH   S8045  

Page 29: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

29

3.7  Buffers  and  solutions  

Buffer   Content  

Lysis  Buffer    2  %  SDS  10  mM  TrisHCL,  pH  7.5  100  µM  Na3VO4  (added  before  use)  

Transfer  Buffer    200  mL  5x  Transfer  buffer  600  mL  distilled  H2O  200  mL  ethanol  

Running  Buffer     10x  TGS  (25  mM  Tris,  192  mM  Glycine,  0.1%  SDS)  pH  8.3  following  dilution  to  1x  with  distilled  H2O  

Flow  Staining  Buffer  

6.5  mM  Na2HPO4  1.5  mM  KH2PO4  2.7  mM  KCl  137  mM  NaCl  0.5  mM  EDTA  Giving  pH  7.5  100  µL  Igepal  per  100  ml  buffer  

Extraction  Buffer  

0.5  %  TritonX-­‐100  20  mM  Hepes,  pH  7.4  50  mM  NaCl  3  mM  MgCl2  300  mM  Sucrose  

Staining  solution  30-­‐part  saturated  Methylene  blue  solution  70-­‐part  distilled  H2O  1-­‐part  1%  NaOH  

 

Page 30: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

30

 

Page 31: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

31

4  Methods  

4.1  Cell  culture  and  cell  seeding    In  this  study,  all  experiments  were  done  using  the  human  osteosarcoma  U2OS  cell  line,  derived  in  

1964  from  a  tumor  of  the  tibia  from  a  15-­‐year-­‐old  girl  (Niforou,  2008).  This  cell  line  has  both  wild  

type  RB  and  TP53  genes  (Diller  et  al.,  1990).  However,  the  proteins  p16(INK4a)  and  p14(ARF)  

promoters  in  the  INK4a/ARF  locus  were  inhibited  by  methylation  in  this  cell  line  (Park  et  al.,  2002).  

The  p14  protein  stabilized  p53  by  inhibiting  MDM2  and  induce  cell  cycle  arrest  in  G1  and  G2/M.  

MDM2  is  a  E3  ubiquitin-­‐protein  ligase  and  a  negative  regulator  of  the  p53  tumor  suppressor,  and  is  

blocked  by  p14  (Stott  et  al.,  1998).  p16  is  a  tumor  suppressor,  which  can  induce  G1  arrest  by  

inhibiting  the  phosphorylation  of  pRb  that  is  facilitated  by  CDK4/CDK6  (Hara,  1996).  Inactivation  of  

both  p14  and  p16,  and  thereby  pRB  and  p53,  appears  to  be  essential  for  the  development  of  

osteosarcoma  (Park  et  al.,  2002).  

 Cells  were  grown  in  tissue  culture  flasks  containing  Dulbecco´s  Modified  Eagle  Medium  (DMEM),  

complemented  with  10%  Fetal  Bovine  Serum  (FBS)  and  50  U/mL  Penicillin/Streptomycin.  Cells  were  

kept  in  a  humidified  incubator  at  37°C  with  5%  CO2.  

Mycoplasma  tests  were  performed  regularly  (by  R.G.  Syljuåsen  using  Mycoalert  Mycoplasma  kit)  

and  cell  line  verified  by  short  tandem  repeat  assay,  which  is  a  rapid,  PCR-­‐based  assay  for  forensic  

DNA  profiling.  

 

For  subculturing  the  cells,  they  were  first  examined  with  a  microscope  for  estimation  of  confluence.    

The  growth  medium  was  then  aspirated  and  the  cells  were  first  washed  with  10  ml  1%  phosphate  

buffered  saline  (PBS),  then  2  ml  Trypsin/EDTA.  Following  5  minutes  incubation  at  37°C,    cell  

detachment  from  the  bottom  of  the  flask  was  examined  with  a  microscope.  Cells  were  re-­‐

suspended  in  fresh  medium,  and  a  fraction  of  this  cell  suspension  was  retained  in  the  flask  before  

adding  additional  fresh  medium.  Subculturing  was  done  twice  a  week.  

 

Cell  seeding  was  done  by  trypsination  and  re-­‐suspension,  following  the  same  procedure  as  

subculturing.  Cell  density  in  the  suspension  was  assessed  using  a  hemacytometer,  a  glass  slide  used  

for  counting  cells  manually.    The  cell  suspension  was  diluted  in  medium  to  a  desired  concentration  

Page 32: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

32

and  seeded  on  polystyrene  dishes.  Cell  density  of  2⋅105  cells  per  3  ml  medium  was  used  for  this  

purpose.  

4.2  WEE1-­‐  and  ATR-­‐inhibition   WEE1-­‐  and  ATR  inhibition  was  obtained  by  using  the  small  nuclear  inhibitors  MK1775  and  VE822  

respectively.  These  are  both  ATP-­‐competitive  compounds  that  bind  the  active  site  of  the  kinases.  

MK1775  inhibits  WEE1-­‐activity  in  an  ATP-­‐competitive  manner  and  with  an  IC50  of  5.2  nM  

(www.selleckchem.com).  In  this  thesis,  concentrations  of  50nM  to  300nM  were  used.    

VE822  inhibits  ATR  activity  and  phosphorylation  of  H2AX.  It  as  an  IC50  of  19  nM  

(www.selleckchem.com).  It  is  a  modified,  and  more  ATR-­‐specific  homolog  of  VE821,  also  a  potent  

and  selective  ATP-­‐competitive  inhibitor  of  ATR.  VE821  has  a  minimal  cross-­‐reactivity  against  related  

PIKKs,  such  as  ATM  (inhibitor  concentration  of  16µM),  DNA-­‐PK  (2.2µM),  mTOR  (>1µM),  and  PI3K  

(3.9µM).  I  used  VE822  concentrations  of  50nM  to  500nM,  and  it  has  an  IC50  of  19  nM.    

 

4.3  siRNA  transfection    RNA  interference  (RNAi)  is  a  process  that  can  lead  to  mRNA  degradation  or  transcriptional  silencing.  

In  response  to  double-­‐stranded  RNA  (dsRNA),  the  enzyme  DICER  is  activated  and  cuts  the  dsRNA  

into  small  fragments  (-­‐21-­‐23  nt),  resulting  in  small  interfering  RNAs  (siRNAs)  (Reviewed  in  (Rana,  

2007)).  These  siRNAs  can  form  part  of  a  multi-­‐protein  siRNA  complex  called  RISC  (RNA-­‐induced  

silencing  complex).  This  complex  binds  to  complementary  mRNA,  resulting  in  knockdown  of  gene  

expression.  SiRNA  delivery  into  the  cell  is  performed  by  a  lipid  based  transfection  reagent  called  

Lipofectamine®  RNAiMAX  (Invitrogen).  Cationic  lipids  and  negatively  charged  siRNA  forms  

lipoplexes,  lipid  and  plasmid-­‐based  complexes,  that  can  be  added  to  the  cell  medium.  Lipoplexes  

are  then  transported  into  the  cell  by  endocytosis.  The  siRNA  is  released  into  the  cytoplasm,  and  is  

then  further  trafficked  into  nucleus  where  siRNA  is  incorporated  into  the  RNAi  pathway  (Unciti-­‐

Broceta  et  al.,  2010).    

 

SiRNA  oligos  were  dissolved  in  1x  siRNA  buffer  with  RNase-­‐free  H2O,  to  create  a  stock  solution  of  

20µM,  which  was  aliquoted  and  stored  at  -­‐20°C.  

For  optimal  transfection,  2⋅105  cells  were  seeded  in  3ml  growth  medium  on  6  cm  polystyrene  

dishes  the  day  before  transfection.  The  Lipofectamine  RNAiMAX  transcription  protocol  from  

InVitrogen  was  used  as  described  below.  

Page 33: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

33

4µl  Lipofectamine  was  added  to  500µl  Opti-­‐MEM  per  siRNA  (2  dishes)  to  prepare  a  mastermix.    

Then  4µl  of  20µM  stock  oligos  was  added  to  500µl  Opti-­‐MEM  in  separate  tubes.  500µl  of  master  

mix  was  added  to  500µl  of  stock  oligo  solution  and  mixed  together  before  incubating  at  room  

temperature  for  20  minutes.  Cells  were  given  1,5ml  freshly  medium  and  then  500µl  of  siRNA  

solution.  The  cells  were  then  split  after  24  hours  and  fixated  after  62-­‐75  hours.    

4.4  Hypoxia  treatments   Hypoxia  treatments  were  performed  in  an  Invivo2  hypoxia  chamber  (Ruskinn).  The  chamber  

functions  as  a  humidified  CO2  incubator  for  the  cells,  but  in  contrast  to  a  normal  incubator,  it  is  

airtight.  Settings  of  temperature,  humidity,  CO2  levels  and  O2  levels  can  be  strictly  controlled.  The  

chamber  has  a  cuff  and  sleeve  system  that  allows  direct  access  to  the  samples,  and  an  interlock  

function  that  allows  you  to  insert  and  take  out  materials  during  the  experiment  without  disrupting  

the  hypoxic  atmosphere.  O2  levels  can  be  set  as  low  as  0.1%  with  N2  gas  flushed  into  the  chamber.  

With  use  of  H2N2  gas  in  combination  with  a  palladium  catalyst,  further  reduction  of  O2  levels  to  0.0%  

(anoxia)  can  be  achieved.  The  hypoxia  chamber  measured  O2  levels  every  minute  and  these  data  

were  checked  after  every  experiment.  

4.5  Flow  cytometry   Principles   Flow  cytometry  can  be  used  to  measure  properties  of  individual  cells  in  a  sample,  by  using  laser  

light  of  specific  wavelengths  focused  onto  a  fluid  stream  of  single  cells.  Several  detectors  measure  

light  changes  (e.g.  wavelength  and  direction)  from  the  stream  of  cells,  and  these  changes  are  

transformed  into  information  about  cell  properties  by  computer  software.    

In  order  to  analyze  one  cell  at  a  time,  flow  cytometry  is  based  on  the  principles  behind  fluid  

mechanics  ((Rahman,  2006)  page  4).  A  solution,  containing  the  sample,  is  injected  into  the  center  of  

a  faster  flowing  sheath  stream  in  the  cytometer,  where  movement  of  the  sheath  fluid  creates  a  

drag  effect  on  the  sample  inside  the  narrowing  central  chamber.  This  drag  effect  initiate  changes  of  

the  sample  fluid  velocity,  and  creates  a  single  flow  of  cells  that  will  not  mix  with  the  sheath  fluid  

(laminar  flow).  Light  that  hits  the  cell  will  be  deflected  and  change  direction  (scatter)  ((Rahman,  

2006)  page  5).  Forward  scatter  channel  (FSC)  collect  light  that  is  scattered  forwards,  and  gives  

information  about  cell  size,  while  side  scatter  channel  (SSC)  gives  information  about  the  inner  

complexities  of  the  cell,  like  granular  content.  Every  cell  has  a  unique  FSC  and  SSC.    

Page 34: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

34

In  addition  to  light  scatter  detectors,  the  flow  cytometer  may  also  have  several  fluorescence  

detectors  ((Rahman,  2006)  page  9-­‐11).  These  detectors  can  measure  fluorescent  light  with  different  

wavelengths  to  give  qualitative  and  quantitative  information  about  fluorochrome-­‐labeled  cell  

surface  receptors  or  intracellular  molecules,  such  as  DNA.  The  fluorochromes,  or  fluorescent  dye,  

can  absorb  fluorescent  light  at  a  given  wavelength  and  re-­‐emit  fluorescent  light  with  a  longer  

wavelength  (lower  energy).  This  shift  in  energy,  absorbed  versus  emitted  light,  is  called  the  Stokes  

shift.  The  fluorescent  detectors  detect  light  emitted  from  fluorophores  at  the  cells,  and  the  specific  

detection  is  controlled  by  optical  filters,  which  can  block  light  of  certain  wavelengths  while  

transmitting  others.  By  using  multiple  fluorochromes  we  can  measure  several  parameters  of  the  

sample  simultaneously,  but  it  is  important  that  the  emission  light  of  one  fluorochromes  does  not  

overlap  too  much  with  the  absorbed  light  to  another,  as  that  could  give  us  misleading  information  

((Rahman,  2006)  page  14).    

Staining  with  Hoechst  and  antibodies   The  fluorescent  dye  Hoechst,  which  binds  to  the  minor  groove  in  DNA,  can  be  used  to  measure  DNA  

content  of  cells.  In  the  experiments  we  have  used  Hoechst  33258,  which  has  an  absorption  

maximum  at  346  nm  and  an  emission  maximum  at  460  nm  (www.sigmaaldrich.com).  Information  

about  cell  distribution  of  a  sample  according  to  cell  cycle  phase,  can  be  viewed  in  a  DNA  histogram  

where  number  of  cells  are  plotted  against  Hoechst  signal  (Figure  5A).  Normal  cells  in  G1  or  G0  

phase  can  contain  2N  DNA,  G2  or  M  phase  cells  can  contain  4N  DNA,  and  S  phase  cells  can  contain  

between  2N  and  4N  DNA.  Two  or  more  cells  can  clump  together  and  be  measured  as  a  single  event,  

which  will  deviate  from  the  actual  cell  cycle  events  (Wersto,  2001).  These  clumps  need  to  be  

excluded  from  data  analysis  and  this  can  be  done  by  gating  based  on  width  and  area  of  the  Hoechst  

signal,  since  a  doublet  will  be  wider  than  a  singlet  with  the  same  area  (Figure  5B).  Then  we  can  gate  

out  only  single  events  and  only  include  these  in  futher  analysis  (Figure  5C).  

 

Two  primary  antibodies  have  been  used  in  this  project.  One  is  from  rabbit,  specific    against  the  

phosphorylated  Ser10  residue    of  Histone  H3,  a  mitotic  marker  (Pérez-­‐Cadahía  et  al.,  2009).  The  

other  from  mouse,  against  the  phosphorylated  Ser139  residue    of  Histone  H2AX,  a  marker  for  DNA  

damage  (Bakkenist  and  Kastan,  2003).  Additional  secondary  Alexa-­‐fluorophore  conjugated  

antibodies  are  used:  Alexa  Fluor  488  (donkey  anti-­‐rabbit  IgG)  with  maximum  absorption  at  496  nm  

and  maximum  emission  at  519  nm,  and  Alexa  Fluor  647  (goat  anti-­‐mouse  IgG)  with  maximum  

absorption  at  650  nm  and  maximum  emission  at  665  nm  (www.lifetechnologies.com).  

Page 35: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

35

           

       

Figure  5.  DNA  profile  and  gating  based  on  Hoechst  staining.  A)  Among  the  singlets,  the  G1/G0  phase  cells  contain  2N  DNA  and  G2/M  phase  cells  contain  4N  DNA.  Cells  with  an  intermediate  DNA  content  are  considered  as  S  phase  cells.  The  DNA  stain  Hoechst  is  used  to  produce  the  cell  cycle  profile  of  the  sample,  and  gives  information  about  the  distribution  of  cell  cycle  phase  versus  cell  population.  B)  These  signals  have  the  same  area,  but  width  can  differ  and  is  used  to  distinguish  singlets  from  doublets.  C)  Picture  showing  singlets  that  are  being  separated  from  doublets  that  adhered  together  in  the  sample  and  registered  as  one  cell.  Singlets  are  gated  out  from  can  be  analyzed  further.  When  the  area  is  plotted  against  width  in  the  DNA  signal,  we  can  separate  G2/M  singlets  that  have  4N  DNA  and  G1/G0  doublets  that  also  have  4N  DNA  by  measuring  width.  

 

Sample  preparation   Cells  were  harvested  by  trypsination  and  fixed  in  70%  EtOH.  Samples  were  stored  at  -­‐20°C  until  

staining.  On  the  day  of  experiment,  the  samples  were  washed  with  5  ml  PBS  with  1%  FBS,  spun  

down  for  5  minutes,  and  supernatant  was  aspirated.  The  pellet  was  blocked  by  re-­‐suspending  with  

50  µl  of  flow  staining  buffer  with  4%  milk  for  5  minutes,  before  50  µl  primary  antibody  solution  with  

antibody  and  flow  staining  buffer  with  4%  milk  was  added  and  incubated  for  1  hour.  The  pellet  was  

then  again  washed  with  5  ml  PBS  with  1%  FBS  as  described  above.  The  new  pellet  was  now  re-­‐

Page 36: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

36

suspended  in  a  secondary  antibody  solution  and  incubated  in  a  dark  place  for  1  hour,  and  the  

washed  again  with  5  ml  PBS  with  1%  FBS.  Pellet  was  then  re-­‐suspended  in  0.5  ml  PBS  with  1.5  µl  

Hoechst  per  1  ml  of  PBS.  The  samples  were  wrapped  in  aluminum  foil  and  stored  at  4°C  overnight.  

The  day  after  the  samples  were  transferred  into  5  ml  flow  tubes  and  all  the  samples  were  vortexed  

briefly  before  running  them  on  the  flow  cytometer.  Gating  was  set  after  the  untreated  sample.    

4.6  Immunofluorescence  microscopy    Immunofluorescent  (IF)  microscopy  shares  some  of  the  basic  principles  with  flow  cytometry  analysis  

regarding  fluorophores,  light  absorption  and  fluorescent  light  emission.  In  a  fluorescent  

microscope,  the  cells  are  illuminated  with  light  of  a  specific  wavelength  that  can  be  absorbed  by  

fluorophores  and  subsequently  emit  light  with  longer  wavelength,  which  can  be  detected  by  

florescence  detectors  ((Shapiro,  2003)  page  8).  There  can  be  several  excitation  filters  in  a  

microscope  that  each  is  specific  for  different  wavelengths  that  can  be  used  in  combination  with  

different  fluorophores  to  examine  several  cell  properties  of  a  sample.  Immunofluorescence  can  be  

a  useful  technique  to  label  proteins  and  other  molecules  because  of  highly  specific  binding  of  an  

antibody  to  an  antigen.    

 

2⋅105  cells  per  2ml  medium  were  plated  out  on  sterile  glass  coverslips  in  35mm  polystyrene  dishes.  

After  24  hours  the  coverslips  were  washed  with  PBS,  fixed  by  adding  10%  formalin  solution  for  15  

minutes  at  room  temperature,  and  then  washed  with  PBS  again  (3x2mL).  The  cells  were  then  

permeabilized  in  PBS  with  0.5%  Triton  X-­‐100,  a  nonionic  detergent,  for  5  minutes  to  dissolve  lipids  

from  the  cell  membrane  making  them  permeable  to  antibodies.  Following  another  step  of  washing  

with  PBS  (3x2mL)  and  incubated  for  1  hour  at  room  temperature  with  a  γH2AX-­‐specific  antibody  

diluted  1:250  in  DMEM  with  FBS  and  PBS  .  This  was  followed  by  washing  and  30  minutes’  incubation  

with  Alexa  Fluor  anti-­‐mouse  488  antibody  (diluted  1:1000).  Coverslips  were  again  washed  with  PBS,  

rinsed  with  milliQ-­‐H2O  and  left  on  paper  towel  to  dry.  Dried  coverslips  were  mounted  onto  glass  

slides  using  DAPI  in  Vectashield  medium,  and  sealed  using  nail  polish  around  the  edges  of  the  

coverslips.  Samples  were  then  imaged  in  an  Axio  Imager  Z1-­‐microscope,  using  Axio  Vision  release  

4.8  Software.      

 

Page 37: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

37

4.7  SDS-­‐PAGE   Sodium  dodecylsulfate  polyacrylamide  gel  electrophoresis  (SDS-­‐PAGE)  is  a  method  used  for  

separating  proteins  in  response  to  an  electric  field.  Proteins  will  migrate  trough  pores  in  the  gel  

according  to  size.  Larger  proteins  have  greater  resistance  and  will  migrate  slower  through  the  gel  

than  smaller  proteins.  In  preparation  of  SDS-­‐PAGE  the  proteins  are  added  loading  sample  buffer  

(LSB)  that  contains  SDS  (sodium  dodecylsulfate),  DTT  (dithiothreitol),  and  glycerol.  SDS  is  a  

denaturing  detergent  that  binds  to  the  protein  and  gives  them  a  uniform  negative  charge.  DTT  

reduces  disulfide  bonds.  Glycerol  increases  the  density  of  the  samples  so  they  sink  to  the  bottom  of  

the  wells  (Gallagher,  2001).          

Cells  in  dishes  were  washed  with  PBS  and  lysed  by  adding  150µl  lysis  buffer  with  Na3VO4  (sodium  

orthovanadate)  per  dish.  The  lysate  was  gathered  using  a  rubber  scrape  and  transferred  to  an  

Eppendorf  tube.  The  lysates  were  kept  in  -­‐20°C  until  use.    

The  lid  of  the  tube  was  pierced  using  a  needle  and  samples  were  boiled  at  95°C  for  5  minutes  

before  they  were  spun  down.  New  lysates  were  made  by  adding  15  to  22.5  µl  LSB,  and  boiled  again  

at  95°C.  The  samples  were  pipetted  up  and  down  several  times  before  being  loaded  to  a  

polyacrylamide  gel  with  either  4-­‐15%  or  4-­‐20%  acrylamide  content.  Rainbow  molecular  weight  

marker  was  loaded  as  a  guide  for  proteins.  Gels  were  placed  in  Bio-­‐Rad´s  mini  chambers  with  Tris-­‐

Glycine  running  buffer  containing  SDS.  The  gel  was  first  run  at  70V  for  30  minutes  and  then  200V  

for  another  40-­‐60  minutes,  depending  on  the  size  of  protein  of  interest.    

 

4.8  Western  blot   After  separating  proteins  by  gel  electrophoresis,  they  were  transferred  onto  a  nitrocellulose  

membrane  so  that  the  proteins  of  interest  could  be  detected  by  immunoblotting  with  specific  

antibodies.  The  gel  and  membrane  were  stacked  between  filter  paper  wetted  with  transfer  buffer,  

put  into  a  gel  holder  cassette,  and  placed  into  a  chamber  between  two  electrodes.  When  applied  

current,  the  proteins  were  pulled  from  the  gel  towards  the  anode  and  onto  the  membrane.  

Ponceau  S  was  used  for  rapid  detection  of  protein  bands  on  the  membrane,  and  the  membrane  

was  cut  into  smaller  pieces  containing  the  different  proteins.  Blocking  was  done  in  PBS  with  0.1%  

Tween  (PBS-­‐T)  and  5%  milk  for  1  hour  at  a  shaker  to  reduce  non-­‐specific  binding.  All  antibodies  

were  diluted  in  PBS-­‐T  with  5%  milk.  The  primary  antibodies  were  added  to  their  respective  

membrane  pieces,  and  incubated  overnight  at  4°C.  The  day  after,  membrane  pieces  were  washed  in  

Page 38: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

38

PBS-­‐T  3x5  minutes.  HRP  (Horseradish  peroxidase)-­‐conjugated  secondary  antibodies  were  diluted  in  

PBS-­‐T  with  5%  milk,  applied  to  membrane  pieces  and  left  in  room  temperature  for  1  hour.  They  

were  again  washed  in  PBS-­‐T  3x5  minutes,  before  adding  Supersignal  ECL  (Enhanced  

Chemiluminescent)  and  placed  between  two  clear  plastic  films.  The  HRP  converts  the  ECL  into  a  

chemiluminescent  signal  which  can  be  detected  and  then  imaged  using  Chemidoc.    

 

4.9  Clonogenic  survival  assay   Clonogenic  survival  assay  is  used  to  estimate  cell  survival  and  ability  to  continue  proliferation  after  

treatment  (Franken  et  al.,  2006).  In  this  project,  the  cells  were  treated  with  WEE1-­‐inhibitor  MK1775  

and  ATR-­‐inhibitor  VE822  both  alone  and  in  combination,  and  it  was  investigated  for  decreased  

cellular  response  to  the  inhibitors.  

U2OS  cells  can  be  plated  out  directly  in  the  medium  with  the  kinase  inhibitors.    

At  day  1,  medium  was  prepared  with  inhibitor  and  3ml  was  added  to  6cm  dishes.  Then  the  cell  

dilutions  were  prepared,  using  150  cells  per  dish  for  low  toxic  treatments,  and  300  cells  per  dish  for  

more  toxic  treatments.  100µl  of  cell  dilution  was  added  to  the  medium  containing  inhibitors.  The  

dishes  were  placed  in  the  incubator  at  37°C  with  5%  CO2  for  24  hours.  At  day  2,  medium  was  

sucked  out  from  the  dishes  and  replaced  with  4  ml  of  fresh  medium,  and  were  continued  stored  in  

the  incubator.  Additionally,  1  ml  of  fresh  medium  was  added  after  one  week.  After  two  weeks  the  

dishes  was  ready  to  be  fixed.  Medium  was  sucked  off  and  2  ml  of  70%  EtOH  was  added  and  left  in  

the  dishes  for  30  minutes.  The  dishes  were  then  washed  with  distilled  water  and  left  to  dry  up-­‐side  

down  with  the  lid  off.  When  dried,  the  dishes  were  stained  with  methylene  blue  staining  solution  

and  again  washed  with  distilled  water  and  left  to  dry.  When  the  dishes  were  dry,  the  colonies  could  

be  counted.  Only  the  colonies  composed  of  at  least  50  cells  were  counted.  

   

Page 39: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

39

5  Results   Before  I  started  with  my  thesis,  the  previous  master  student  in  our  group  (Håve,  2015)  had  

performed  a  siRNA  screening  test  with  multiple  DNA  damage  signaling  factors.  These  factors  could  

potentially  protect  cancer  cells  from  hypoxia-­‐induced  replication  stress.  Different  siRNA  oligos  were  

used  and  changes  in  replication  stress  response  were  measured  after  hypoxia  treatment.  S-­‐phase  

levels  of  the  DNA  damage  marker  γH2AX  were  compared  before  and  after  hypoxia  treatment.  A  

good  candidate  hit  should  show  a  low  percentage  of  γH2AX  positive  cells  in  the  normoxic  sample,  

similar  to  the  percentage  of  γH2AX  positive  cells  in  the  control  transfected  cells,  and  a  significantly  

higher  percentage  of  γH2AX  positive  cells  in  hypoxic  sample  (Håve  (2015).  My  validation  of  the  

siRNA  screen  is  presented  in  paragraph  5.1.  The  results  of  the  effect  of  WEE1  and  ATR  inhibition  are  

presented  in  paragraphs  5.2-­‐5.6.  The  result  of  using  the  iron  chelator  desferrioxamine  as  a  hypoxia  

mimetic  agent  is  presented  in  paragraph  5.7.  

 

5.1  Validate  candidate  hits  with  siRNA  screen   In  the  master  project  by  T.  Håve,  it  was  performed  a  siRNA  screen  that  identified  several  potential  

candidate  hits  that  were  suggested  to  selectively  targeting  hypoxic  cancer  cells.  Some  of  these  

potential  candidates  were  selected  for  further  validation  in  this  project,  as  they  showed  an  increase  

of  γH2AX  positive  cells  in  hypoxia-­‐treated  cells  compared  to  normoxic  samples.  The  reason  for  

repeating  some  candidate  hits  was  because  the  previous  screen  was  performed  with  cells  grown  in  

glass  dishes  that  further  increased  γH2AX  signaling,  and  we  wanted  to  repeat  it  with  polystyrene  

dishes.  The  proteins  in  focus  in  this  validation  experiment  were  ATR,  NIPP1,  Rad17,  and  WEE1.  An  

additional  non-­‐targeting  siRNA  was  used  as  a  negative  control.  For  each  siRNA  transfection,  U2OS  

cells  were  seeded  out  in  dishes  the  first  day  (see  experimental  procedure  Figure  6A).  At  day  2,  cells  

were  transfected  with  siRNAs  (see  §  4.3)  and  the  next  day  the  cells  were  split  into  three  dishes,  

each  for  different  analysis.  At  day  4,  one  dish  from  each  siRNA  transfected  triplicates  were  placed  

into  a  hypoxic  chamber  for  a  20  hours´  incubation  at  0.0%  O2,  and  then  continued  with  another  3  

hours´  reoxygenation  at  21%  O2  before  fixation  for  flow  cytometry.  The  other  two  dishes  were  

incubated  at  21%  O2  in  a  humidified  incubator  for  23  hours  before  they  were  fixed  and  harvested  

for  flow  cytometry  and  western  blotting.  An  untreated  Mock  sample  was  always  fixed  inside  the  

hypoxic  chamber  after  20  hours  (Figure  6E)  to  confirm  that  the  cells  have  γH2AX  levels  consistent  

with  hypoxia-­‐induced  replication  stress,  and  an  increase  in  γH2AX  is  shown  in  these  cells.  Normal,  

Page 40: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

40

untreated  Mock  cells  were  also  fixed  for  flow  cytometry  and  western  blotting  analysis.  SDS-­‐PAGE  

followed  by  western  blotting  was  used  to  check  knockdown  of  proteins  and  flow  cytometry  for  

measuring  DNA  damage.  All  of  the  proteins  tested  showed  good  knockdown  after  transfection  with  

their  specific  siRNAs  (Figure  6B).  γ-­‐Tubulin  was  used  as  a  loading  control.  The  flow  cytometry  

analysis  shows  an  increase  of  γH2AX  positive  cells  in  ATR,  NIPP1  and  WEE1  siRNA-­‐transfected  cells  

after  hypoxia  followed  by  reoxygenation,  but  not  in  Rad17  transfected  cells  (Figure  6B).  DNA  cell  

cycle  profiles  in  Figure  6C  show  that  there  is  more  stalling  of  cells  in  early  S-­‐phase  after  hypoxia  

treatment.  As  there  was  no  Mock  fixed  after  reoxygenation,  the  non-­‐targeted  siRNA  (Figure  6C)  

serves  as  a  negative  control  equally  to  the  untreated  sample  and  shows  a  decrease  in  γH2AX  in  

reoxygenated  cells  compared  to  cells  fixed  inside  the  hypoxic  chamber.    

 

Figure  6.  Experiment  1.  Validation  of  siRNA  screen.  A)  Experimental  setup  for  siRNA  transfection.  B)  Western  blot  showing  measurement  of  protein  downregulation.  U2OS  cells  were  transfected  with  the  indicated  siRNAs  and  split  into  3  dishes  after  24  hours,  and  incubated  at  21%  O2  until  cell  harvest  at  72  hours.  C)  Flow  cytometry  dot  plots  showing  γH2AX  versus  DNA  content  for  parallel  samples  in  the  same  experiment  as  in  B.  Gates  and  numbers  indicate  γH2AX  positive  cells.  D)  Cell  cycle  profiles  of  transfected  cells  incubated  at  21%  O2  (upper  panel)  or  20  hours  at  0.0%  O2  followed  by  3  hours  21%  O2  (lower  panel).  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown.  E)  Untreated  Mock  cells  showing  an  increase  of  γH2AX  when  fixed  in  hypoxia  chamber  after  20  hours  incubation.  γH2AX  versus  DNA  content  in  dot  plot  (left  panel),  and  histogram  of  DNA  cell  cycle  profile  (right  panel)  is  shown.    

Page 41: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

41

The  experiments  with  ATR  and  NIPP1  siRNAs  were  repeated  (Figure  7).  Figure  2A  shows  a  small  

increase  of  γH2AX  in  the  cells  fixed  in  hypoxic  conditions  before  it  decreases  after  reoxygenation,  as  

we  indicated  in  experiment  1.  The  DNA  cell  cycle  profile  shows  accumulation  of  cells  in  late  G1  or  

early  S-­‐phase  after  treatment  of  hypoxia  and  reoxygenation,  indicating  that  cells  are  arrested  at  the  

G1/S  checkpoint  and  prevented  from  progressing  further  in  the  cell  cycle.  The  flow  cytometry  

analysis  in  this  experiment  only  shows  a  small  increase  of  γH2AX  after  transfection  with  siATR  and  

none  with  siNIPP1  (Figure  7B).  It  is  difficult  to  know  if  this  is  due  to  poor  protein  knockdown  or  

other  errors,  since  protein  knockdown  with  western  blot  is  missing  due  to  technical  problems.  In  

Figure  7C  we  can  again  see  accumulation  in  early  S-­‐phase  in  NIPP1  siRNA  transfected  cells  after  

hypoxia  treatment,  indicating  cell  cycle  arrest.    

 Figure  7.  Experiment  2.  Validation  of  siRNA  screen.  A)  Untreated  Mock  cells  showing  γH2AX  versus  DNA  content  (left  panel)  and  histogram  of  DNA  cell  cycle  profile  (right  panel).  Mock  cells  were  fixed  after  incubation  in  normoxia,  hypoxia,  and  hypoxia  and  reoxygenation.  B)  Dot  plots  showing  γH2AX  versus  DNA  content  for  same  cells  shown  in  B.  Gates  and  numbers  indicate  percentage  of  γH2AX  positive  cells.  C)  Cell  cycle  profiles  of  transfected  cells  and  incubated  at  21%  O2  (upper  panel)  or  20  hours  at  0.0%  O2  followed  by  3  hours  21%  O2  (lower  panel).  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown.                                    

 

Page 42: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

42

5.2  Determine  concentration  of  ATR-­‐inhibitor  VE822   Since  ATR  was  shown  to  be  a  potential  candidate  hit  several  times  (Figure  6  and  7),  we  wanted  to  

investigate  how  ATR  inhibition  would  affect  cell  cycle  progression.  The  ATR  inhibitor  VE821  has  

previously  been  used  in  our  lab,  but  we  wanted  to  examine  a  new  inhibitor  currently  in  clinical  

trials,  VE822,  which  is  a  homolog  of  VE821.  One  reason  for  this  is  the  need  for  rather  high  

concentrations  of  VE821  to  achieve  full  inhibition  of  ATR  (10µM),  so  we  wanted  to  see  if  lower  

concentration  of  VE822  could  give  the  same  inhibitory  effect  on  ATR.  One  way  to  do  this  is  to  check  

the  levels  of  ATR-­‐dependent  phosphorylations  after  irradiation  with  6Gy,  using  different  

concentrations  of  the  VE822  and  comparing  it  to  the  concentration  that  we  use  in  our  lab  for  VE821  

(10µM).  One  sample  without  inhibitor  was  also  harvested  after  irradiation,  and  one  control-­‐sample  

with  VE822  was  harvested  without  irradiation.  In  figure  8  we  see  that  both  500nM  and  1µM  of  

VE822  gave  equal  inhibition  of  phosphorylation  of  Chk1  on  Ser317  (pChk1  S317)  as  10µM  VE821  

did.  The  ATR-­‐dependent  RPA  phosphorylation  at  Ser33  is  also  inhibited  at  these  concentrations.  

Higher  inhibitor  concentrations  than  needed  can  lead  to  increased  toxicity  and  unspecific  effects,  

which  we  want  to  avoid,  so  we  continued  to  use  500nM  in  the  next  experiments  for  inhibition  of  

ATR.    

Figure  8.  Measuring  ATR  inhibition  with  VE822.  Western  blot  showing  measurement  of  protein  phosphorylations  and  levels.  Cells  with  different  inhibitor  concentrations  were  irradiated  with  6  Gy  and  harvested  1.5  hours  later.    

     

Page 43: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

43

5.3  Effects  of  MK1775  and  VE822  treatment  in  combination  with  hypoxia   Next  we  wanted  to  test  the  effect  of  ATR  inhibition  after  treatment  with  hypoxia  and  also  in  

combination  with  the  WEE1  inhibitor  MK1775,  since  WEE1  was  also  a  candidate  hit  in  the  siRNA  

screen  (Figure  6).  There  has  recently  been  shown  synergy  between  MK1775  and  Chk1  inhibitors,  

and  this  could  potentially  be  a  useful  anti-­‐cancer  strategy  in  therapy  (Carrassa  et  al.,  2012;  Chilà  et  

al.,  2015;  Hasvold  et  al.,  2013;  Russell  et  al.,  2013).  Since  Chk1  is  one  of  the  substrates  downstream  

from  ATR  it  could  be  interesting  to  see  whether  inhibition  of  ATR,  alone  and  in  combination  with  

MK1775,  gives  increased  DNA  damage  during  S-­‐phase.  This  can  be  measured  by  flow  cytometry  

after  inhibition  treatment  (see  §  4.2)  using  γH2AX  as  a  marker  for  DNA  damage  in  S-­‐phase.  The  

experimental  setup  is  showed  in  Figure  9A.  Cells  were  given  medium  containing  each  of  the  

inhibitors,  MK1775  (300nM)  and  VE822  (500nM),  or  both  in  combined  treatment.  One  set  of  dishes  

were  incubated  at  0.0%  O2  in  the  hypoxia  chamber  for  20  hours  followed  by  3  hours  reoxygenation  

at  21%  O2  before  the  cells  were  fixed  (Figure  9B,  lower  panel).  Normoxic  samples,  the  other  set,  

were  also  treated  simultaneously  with  inhibitors  for  23  hours  at  21%  O2  before  the  cells  were  fixed  

(Figure  9B,  upper  panel).  Untreated  Mock  cells  were  also  fixed.  In  response  to  Wee1  inhibition,  

there  is  a  significant  increase  of  γH2AX  in  both  the  hypoxic-­‐  and  normoxic-­‐treated  samples,  

indicating  increased  DNA  damage.  The  effect  does  however  appear  to  be  even  greater  in  the  

hypoxia/reoxygenation-­‐treated  cells  than  in  the  cells  grown  in  normoxia,  consistent  with  the  siRNA  

experiments  for  WEE1  (Figure  6C).  ATR  inhibition  gives  a  smaller  increase  of  γH2AX  after  hypoxic  

treatment  than  WEE1  inhibition,  but  again  the  response  is  greater  in  the  hypoxic/reoxygenated  

samples  than  in  the  normoxic  ones.  However,  the  most  interesting  result  is  the  massive  synergistic  

effect  of  the  combined  treatment  with  MK1775  and  VE822,  particularly  seen  in  normoxic  samples  

(Figure  9B).  The  cell  cycle  profiles  are  shown  in  Figure  9C,  where  we  can  see  a  large  amount  of  cells  

that  are  stalled  or  accumulate  in  S-­‐phase  upon  the  combined  treatment.  

 

Page 44: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

44

Figure  9.  Experiment  1.  S-­‐phase  DNA  damage  after  inhibitors.  A)  Experimental  setup.  B)  Dot  plots  showing  γH2AX  versus  DNA  content.  Cells  were  treated  with  inhibitors  for  23  hours  either  at  0.0%  O2  for  20  hours  followed  by  3  hours  at  21%  O2(Lower  panel)  or  at  21%  O2  (Upper  panel).  Gates  and  numbers  indicate  γH2AX  positive  cells.  C)  Cell  cycle  profiles  of  inhibitor-­‐treated  cells.  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown  with  percentage  cells  in  G1,  S,  and  G2-­‐phase.  

The  effects  of  MK1775  and  VE822  were  also  measured  when  the  inhibitors  were  administered  for  3  

hours  after  hypoxic  incubation  .  The  experimental  setup  is  shown  in  Figure  10A.  Cells  were  

incubated  at  0.0%O2  in  the  hypoxic  chamber  for  20  hours  before  treatment  with  the  inhibitors  

immediately  after  reoxygenation  at  21%  O2  ,  and  fixed  3  hours  later  (Figure  10B,  Lower  panel).  

Normoxic  samples  were  also  collected,  and  were  treated  simultaneously  with  inhibitors  for  3  hours  

(Figure  10B,  Upper  panel).  Compared  to  the  results  observed  in  Figure  9B,  we  see  lower  γH2AX  in  

the  samples  with  MK1775,  but  higher  levels  in  samples  with  VE822.  Again,  we  can  see  the  

synergistic  effect  of  the  combined  treatment  with  both  inhibitors.  The  cell  cycle  profile  (Figure  10C)  

shows  less  accumulation  of  cells  in  S-­‐phase  than  Figure  9C,  but  there  is  a  higher  percentage  of  cells  

Page 45: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

45

both  in  G1  and  S  phase  in  the  hypoxia  samples,  indicating  cell  cycle  arrest.  In  the  next  sections  we  

wanted  to  further  examine  this  synergistic  effect  between  MK1775  and  VE822  treatment.  

 

Figure  10.  Experiment  2.  S-­‐phase  DNA  damage  after  inhibitors.  A)  Experimental  setup.    B)  Dot  plots  showing  γH2AX  versus  DNA  content.  Cells  were  treated  with  inhibitors  for  3  hours  after  incubation  in  0.0%  O2  (Lower  panel)  or  21%  O2  

(Upper  panel).  Gates  and  numbers  indicate  γH2AX  positive  cells.  C)  Cell  cycle  profiles  of  inhibitor-­‐treated  cells.  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown  with  percentage  of  cells  in  G1,  S,  and  G2-­‐phase.                            

 

Page 46: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

46

5.4  Effects  of  MK1775  and  VE822  treatment  after  hypoxia   After  seeing  the  synergistic  effect  of  combination  treatment  for  3  hours  with  MK1775  and  VE822  

(Figure  10),  we  wanted  to  verify  this  effect  by  repeating  the  3  hours´  treatment  with  inhibitors  both  

after  hypoxic  incubation  and  in  normoxic  cells.  The  Mock  samples  in  Figure  11A  show  a  small  

increase  of  γH2AX  in  cells  fixed  inside  hypoxic  chamber  at  0.0%  O2  that  decreases  again  after  

reoxygenation,  as  seen  in  previous  sections.  The  flow  cytometry  analysis  in  Figure  11B  also  show  

the  same  synergistic  effect,  after  combined  MK1775  and  VE822  inhibition  (as  in  §  5.3).  The  S-­‐phase  

DNA  damage  is  slightly  more  severe  in  the  hypoxia  exposed  cells,  yet  with  less  effect  than  in  Figure  

10.  The  effect  of  MK1775  after  hypoxia  was  neither  not  enhanced  as  much  as  in  Figure  10.    

In  addition  to  repeating  the  flow  cytometry  analysis-­‐experiment,  we  also  wanted  to  find  out  

whether  inhibition  of  WEE1  and/or  ATR  activates  or  inhibits  other  cell  cycle  or  DNA  damage  

response  regulators.  We  therefore  collected  both  normoxic  and  hypoxic  samples  for  Western  

blotting  simultaneously  with  the  samples  analyzed  with  flow  cytometry.  Western  blotting  was  used  

with  antibodies  towards  the  component  of  interest,  as  shown  in  Figure  11D.  In  the  combination  

treatment  with  both  inhibitors,  we  see  highly  increased  DNA-­‐PK  phosphorylation  in  both  normoxic  

and  hypoxic  samples.  With  loss  of  ATR  activity  in  S-­‐phase,  cells  will  compensate  by  activating  ATM  

and  DNA-­‐PK  to  induce  DNA  repair  (Buisson  et  al.,  2015).  Activation  of  ATM  was  measured  by  

autophosphorylate  on  Ser1981  (Bakkenist  and  Kastan,  2003)  (Figure  11D).  RPA  S4/S8  

phosphorylation  is  a  marker  for  ssDNA  and  is  also  highly  increased  after  combination  treatment  

with  both  inhibitors.  Activated  ATM  also  phosphorylates  its  downstream  substrate  Chk2  at  

threonine  68,  as  we  also  see  after  combination  treatment.  However,  Chk1  phosphorylation  is  

suppressed  when  inhibiting  ATR,  as  expected,  since  Chk1  is  activated  by  ATR  by  phosphorylation.  

This  experiment  was  repeated  twice  (Figure  12  and  13)  with  the  same  results,  showing  synergistic  

effects  after  combined  treatment  with  inhibitors.  In  the  western  blotting  seen  in  Figure  12D  we  also  

examined  phosphorylation  of  CDK1,  where  it  shows  decreased  inhibitory  phosphorylation  on  

tyrosine  15  on  CDK1  after  WEE1  inhibition.  We  will  examine  CDK  activity  more  closely  in  §  5.7,  as  

this  is  a  possible  mechanism  behind  the  synergistic  effect  between  MK1775  and  VE822.  Since  the  

combination  treatment  also  gives  a  synergistic  effect  on  the  DNA  damage  response  in  normoxic  

cells,  we  repeated  the  inhibition  only  in  normoxic  samples  to  further  verify  the  effects  (Figure  14).  

When  searching  for  the  mechanisms  behind  the  synergistic  effect,  it  is  easier  to  perform  such  

experiments  without  hypoxia.  

 

Page 47: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

47

 

 

Figure  11.  Verification  of  synergistic  effect.  A)  Untreated  Mock  cells  showing  γH2AX  versus  DNA  content  (left  panel)  and  histogram  of  DNA  cell  cycle  profile  (right  panel)  with  percentage  cell  distribution  in  G1,  S,  and  G2  phase.  Mock  cells  were  fixed  after  incubation  in  normoxia,  hypoxic,  and  hypoxia  and  reoxygenation.  B)  Dot  plots  showing  γH2AX  versus  DNA  content.  Cells  were  treated  with  inhibitors  for  3  hours  after  incubation  in  0.0%  O2  (Lower  panel)  or  21%  O2  

(Upper  panel).  Gates  and  numbers  indicate  γH2AX  positive  cells.  C)  Cell  cycle  profiles  of  inhibitor-­‐treated  cells.  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown  with  percentage  of  cells  in  G1,  S,  and  G2-­‐phase.  D)  Western  blot  showing  how  combined  inhibition  of  WEE1  and  ATR  effects  on  different  DDR  components.  Cells  were  treated  with  WEE1  and  ATR  inhibitors,  incubated  for  3  hours  and  harvested.  “Mock  fix”  is  the  sample  fixed  inside  hypoxia  chamber.  

Page 48: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

48

Figure  12.  Verification  of  synergistic  effect.  A)  Untreated  Mock  cells  showing  γH2AX  versus  DNA  content  (left  panel)  and  histogram  of  DNA  cell  cycle  profiles  (right  panel)  with  percentage  cell  distribution  in  G1,  S,  and  G2  phase.  Mock  cells  were  fixed  after  normoxic,  hypoxic,  and  hypoxic  and  reoxygenated  incubation.  B)  Dot  plots  showing  γH2AX  versus  DNA  content.  Cells  were  treated  with  inhibitors  for  3  hours  after  incubation  in  0.0%  O2  (Lower  panel)  or  21%  O2  (Upper  panel).  Gates  and  numbers  indicate  γH2AX  positive  cells.  C)  Cell  cycle  profiles  of  inhibitor-­‐treated  cells.  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown  with  percentage  of  cells  in  G1,  S,  and  G2-­‐phase.  D)  Western  blot  showing  how  combined  inhibition  of  WEE1  and  ATR  effects  on  different  DDR  components.  Cells  were  given  WEE1  and  ATR  inhibitors,  incubated  for  3  hours  and  harvested.  “Mock  fix”  is  the  sample  fixed  inside  hypoxia  chamber.  

Page 49: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

49

Figure  13.  Verification  of  synergistic  effect.  A)  Untreated  Mock  cells  showing  γH2AX  versus  DNA  content  (left  panel)  and  histogram  of  DNA  cell  cycle  profiles  (right  panel)  with  percentile  cell  distribution  in  G1,  S,  and  G2  phase.  Mock  cells  were  fixed  after  normoxic,  hypoxic,  and  hypoxic  and  reoxygenated  incubation.  B)  Dot  plots  showing  γH2AX  versus  DNA  content.  Cells  were  treated  with  inhibitors  for  3  hours  after  incubation  in  0.0%  O2  (Lower  panel)  or  21%  O2  (Upper  panel).  Gates  and  numbers  indicate  γH2AX  positive  cells.  C)  Cell  cycle  profiles  of  inhibitor-­‐treated  cells.  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown  with  percentage  of  cells  in  G1,  S,  and  G2-­‐phase.  

Figure  14.  Verification  of  synergistic  effect.  A)  Dot  plots  showing  γH2AX  versus  DNA  content.  Cells  were  treated  with  inhibitors  for  3  hours  in  normoxia  and  harvested.  Gates  and  numbers  indicate  γH2AX  positive  cells.  B)  Cell  cycle  profiles  of  inhibitor-­‐treated  cells.  Flow  cytometric  analysis  of  cell  count  versus  DNA  content  (Hoechst  staining)  is  shown  with  percentage  of  cells  in  G1,  S,  and  G2  phase.  

Page 50: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

50

Figure  15.  Verification  of  synergistic  effect.  Experiment  1  and  2.  Western  blot  showing  effects  after  inhibition.  Experiment  1  with  flow  analysis  in  Figure  14,  and  experiment  2  are  western  blot  for  the  experiment  in  Figure  13.  Both  experiment  show  western  blots  from  normoxic  samples.  Cells  were  given  WEE1  and  ATR  inhibitors,  incubated  for  3  hours  and  harvested.    

 

Page 51: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

51

5.5  Measurement  of  cell  survival   We  wanted  to  examine  whether  treatment  with  WEE1  and  ATR  inhibitors  influences  the  survival  of  

cells.  This  was  done  by  performing  clonogenic  survival  assays  in  normoxic  conditions.  Cells  were  

seeded  with  both  MK1775  and  VE822  with  different  concentrations,  on  their  own  and  in  

combination,  and  incubated  for  24  hours  before  replacing  the  medium  with  inhibitors  with  fresh  

medium,  and  the  cells  were  grown  for  14  days  before  the  colonies  were  counted.  Figure  16A  shows  

dishes  with  surviving  cell  colonies  fixed  and  stained,  ready  to  be  counted.  The  resulting  survival  

curve  shown  in  Figure  16B  suggests  that  cells  treated  with  the  highest  concentration  of  inhibitors  

(200nM)  in  combination  have  very  poor  survival  outcome.  Cells  treated  with  MK1775  alone  show  

little  inhibitor-­‐induced  cell  death.    

Figure  16.  Clonogenic  assay  to  measure  cell  survival.  A)  Picture  of  polystyrene  dishes  with  cell  colonies  ready  to  be  counted.  B)  Survival  of  U2OS  cells  treated  with  MK1775  and/or  VE822,  at  concentrations  0,  50,  100  and  200nM  for  24  hours.  Medium  with  inhibitors  was  then  replaced  with  fresh  medium,  and  cell  colonies  grown  for  14  days  before  fixation.  The  experiment  was  repeated  3  times  and  in  all  experiments  there  were  triplicates  for  each  sample  condition.  Error  bars  indicate  standard  error  of  mean  (SEM).  

 

Page 52: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

52

5.6  Fluorescence  imaging  of  MK1775  and  VE822  treated  cells   Since  we  see  a  synergistic  increase  of  DNA  damage  with  combination  treatment  with  the  inhibitors,  

we  wanted  to  visualize  the  damage  using  immunofluorescence.  Cells  were  stained  for  γH2AX  and  

viewed  in  a  fluorescence  microscope.  In  Figure  17  we  see  a  strong  increase  of  γH2AX  in  the  

combination  treatment  sample.  This  correlates  with  the  flow  cytometry  results,  that  WEE1  and  ATR  

inhibitors  in  combination  gives  high  increase  of  γH2AX  in  S-­‐phase.  Another  interesting  result  that  

we  discovered  was  that  inhibition  with  VE822  results  in  visual  micronuclei  around  the  cells  (Figure  

18).  This  was  also  observed  in  the  combination  treatment.    

Figure  17.  S-­‐phase  effects  of  inhibitors.  Images  taken  by  IF  microscopy  of  U2OS  cells  given  MK1775  and  VE822  with  both  a  concentration  of  200nM,  fixed  after  24  hours,  and  stained  for  γH2AX  to  measure  DNA  damage,  and  DNA  stain  DAPI.  

Page 53: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

53

Figure  18.  DAPI  stained  DNA  with  inhibitors.  Black  and  white  picture  of  DAPI  stained  cells,  showing  that  VE822  causes  micronuclei  outside  of  the  cells.  Some  of  them  are  shown  with  arrows.  

 

Page 54: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

54

5.7  Exploring  the  mechanism  behind  the  synergistic  effect  between  MK1775  and  VE822   After  finding  that  MK1775  and  VE822  synergistically  increase  DNA  damage  in  S-­‐phase,  and  that  they  

synergistically  decrease  clonogenic  survival,  we  wanted  to  investigate  if  CDK1  and  CDK2  activity  

correlates  with  the  DNA  damage  induction  as  a  possible  mechanism  behind  this  effect.  WEE1  and  

ATR  are  normal  regulators  of  the  cell  cycle  progression  (see  §  1.2.3).  Activated  WEE1  can  inactivate  

CDK1  or  CDK2  by  inhibitory  phosphorylation  at  tyrosine  15  (Beck  et  al.,  2010;  Sørensen  and  

Syljuåsen,  2012),  while  active  ATR  phosphorylates  and  activates  Chk1,  leading  to  CDC25  

degradation  (Furnari  et  al.,  1997;  Sanchez  et  al.,  1997).  When  degraded,  CDC25  will  not  be  able  to  

remove  inhibitory  phosphorylation  on  tyrosine  15.  By  inhibiting  both  WEE1  and  ATR,  we  would  thus  

expect  less  inhibitory  phosphorylation  of  CDKs  and  thereby  higher  CDK  activation.  In  order  to  show  

the  phosphorylation  effect  of  WEE1  and  ATR  inhibition,  and  most  importantly  inhibitory  

phosphorylation  of  CDK,  cells  were  treated  with  MK1775  and  VE822,  and  phosphorylation  analyzed  

by  using  SDS-­‐PAGE  and  western  blotting  (Figure  19A).  Flow  cytometry  verified  the  synergy  between  

the  inhibitors  (Figure  19B).  Figure  19A  shows  the  same  activation  of  DNA-­‐PK,  ATM,  Chk2,  as  well  as  

RPA  as  seen  in  §  5.4,  however  only  after  inhibition  with  MK1775  and/or  VE822  for  3  hours  with  the  

combined  treatment  and  not  after  1  hour.  We  also  see,  as  in  §  5.4,  that  pChk1  is  suppressed  when  

ATR  is  inhibited  (Figure  19A).  The  interesting  result  is  that  inhibitory  phosphorylation  of  CDK1  is  only  

downregulated  after  WEE1  inhibition  and  not  after  ATR  inhibition.  This  experiment  was  repeated  

(Figure  20  and  21)  and  the  same  tendency  is  shown  with  inhibitory  phosphorylation  at  tyrosine  15  

on  CDK2  (Figure  20A  and  21A)  as  with  CDK1.  Quantifications  of  western  blot  analysis  from  Figure  20  

are  shown  in  Figure  22,  these  correlate  with  the  results  described  further  up  in  this  section.  Figure  

21A  however,  shows  activation  of  these  proteins  also  after  1-­‐hour  incubation  with  the  inhibitors.  

The  low  activation  seen  after  3  hours  in  experiment  3,  is  likely  due  to  uneven  distribution  when  

performing  SDS-­‐PAGE  or  blotting  with  antibodies.  Figure  23A  indicates  the  average  γH2AX  signaling  

from  flow  cytometry  analysis  from  §  5.3,  §  5.4  and  here  in  §  5.7,  and  shows  the  high  increased  

γH2AX  after  combination  treatment  with  MK1775  and  VE822.  These  results  can  be  calculated  

relative  to  S  phase  cell  distribution,  seen  in  Figure  23B,  and  correlate  well  with  results  seen  in  Figure  

23A.  

 

Page 55: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

55

Figure  19.  Experiment  1.  Analysis  of  synergistic  mechanism.  A)  Western  blot  analysis  for  samples  collected  1  and  3  hours  after  treatment.  U2OS  cells  were  exposed  to  MK1775  (300nM)  and  VE822  (500nM)  for  1  and  3  hours.  12.5%,  25%,  50%  and  100%  of  the  untreated  sample  Mock  was  loaded  in  the  four  first  lanes  to  create  a  standard  curve  for  each  antibody.  B)  Flow  cytometry  analysis  of  the  inhibitors  for  measuring  γH2AX  in  S-­‐phase  cells  after  3  hours  treatment  with  inhibitors.  C)  Cell  cycle  profiles  after  treatment  with  MK1775  and/or  VE822,  indicating  distributions  in  G1,  S  and  G2  phase.      

Page 56: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

56

Figure  20.  Experiment  2.  Analysis  of  synergistic  mechanism.  A)  Western  blot  analysis  for  samples  collected  after  1  and  3  hours’  treatment.  U2OS  cells  were  exposed  to  MK1775  (300nM)  and  VE822  (500nM)  for  1  and  3  hours.  12.5%,  25%,  50%  and  100%  of  the  untreated  sample  Mock  were  loaded  in  the  four  first  lines  to  create  a  standard  curve  for  each  antibody  for  quantification.  B)  Flow  cytometry  analysis  of  the  inhibitors  for  measuring  γH2AX  in  S-­‐phase  cells  after  3  hours  treatment  with  inhibitors.  C)  Cell  cycle  profiles  after  treatment  with  MK1775  and/or  VE822,  indicating  distributions  in  G1,  S  and  G2  phase.  

Page 57: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

57

Figure  21.  Experiment  3.  Analysis  of  synergistic  mechanism.  A)  Western  blot  analysis  for  samples  collected  after  1  and  3  hours´  treatment.  U2OS  cells  were  exposed  to  MK1775  (300nM)  and  VE822  (500nM)  for  1  and  3  hours.  12.5%,  25%,  50%  and  100%  of  the  untreated  sample  Mock  were  loaded  in  the  four  first  lanes  to  create  a  standard  curve  for  each  antibody.  B)  Flow  cytometry  analysis  for  measuring  γH2AX  in  S-­‐phase  cells  after  3  hours  treatment  with  inhibitors.  C)  Cell  cycle  profile  after  treatment  with  MK1775  and/or  VE822,  indicating  distributions  of  cells  in  G1,  S  and  G2  phase.  

Page 58: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

58

Figure  22.  Quantifications  of  western  blotting  analysis  of  DNA  damage  response  and  cell  cycle  regulators.  Experiment  2.  Quantification  analysis  of  western  blotting  from  experiment  2.  Histograms  shows  phosphorylated  kinases  relative  to  Chk1.    

Figure  23.  A)  Histogram  of  average  γH2AX  positive  fractions  from  experiments  in  5.3,  5.4,  and  5.7.  Normoxic  samples  shown  as  the  darkest  bars  (n=8),  and  hypoxic  samples  as  the  lightest  bars  (n=4).  B)  Average  γH2AX  fractions  from  A  relative  to  fraction  of  S  phase  cells  in  the  same  experiments.  Error  bars  indicate  standard  error  of  mean  (SEM).  

   

Page 59: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

59

5.8  Desferrioxamine  as  a  replacement  for  hypoxia  chamber   Due  to  technical  problems,  the  hypoxic  chamber  did  not  always  function  properly,  and  to  prevent  

delay  performing  experiments,  there  could  be  time  saved  by  having  an  alternative  experimental  

setup  for  whenever  it  is  out  of  order.  Desferrioxamine  (DFO)  has  been  shown  to  induce  replication  

arrest  that  can  cause  genetic  instability  similar  to  hypoxic  conditions  (As  mentioned  in  §1.4.4),  and  

it  is  a  commonly  used  hypoxia-­‐mimetic  agent.  To  find  the  proper  concentration  of  DFO  to  induce  

the  same  amount  of  DNA  damage  as  the  hypoxic  incubator,  we  tested  different  concentrations  of  

DFO  in  comparison  to  untreated  Mock  cells.  Half  of  the  dishes  were  fixed  20  hours  after  adding  

DFO,  and  the  other  half  were  treated  with  DFO  for  20  hours,  washed,  and  given  fresh  medium  for  

another  3  hours  before  fixation,  to  mimic  the  experiments  with  reoxygenation  after  hypoxia  

treatment.  As  we  can  see  in  Figure  24,  there  is  an  increase  of  γH2AX  in  S-­‐phase  cells  after  DFO  

treatment  when  we  fixed  the  cells  after  20  hours.  After  washing  with  fresh  medium  and  letting  the  

cells  incubate  for  additional  3  hours,  we  see  a  reversible  effect  in  γH2AX  in  the  cells  treated  with  

10µM  DFO,  whereas  the  cells  treated  with  higher  concentrations  continued  to  have  the  high  levels  

of  γH2AX.  This  indicates  that  DFO  caused  too  much  DNA  damage  or  replication  stress  with  the  

higher  concentrations  for  the  cells  to  repair  it  within  these  three  hours.  If  we  were  going  to  use  DFO  

as  a  substitute  for  hypoxia  chamber,  we  want  to  have  a  reversible  effect  of  the  DNA  damage,  

indicating  that  10µM  of  DFO  is  a  potentially  usable  concentration  for  the  hypoxia-­‐mimetic  agent.  

 

Figure  24.  Cells  treated  with  different  DFO  concentrations.  Flow  cytometry  analysis  of  γH2AX  versus  DNA  content.  Cells  were  treated  with  DFO  for  20  hours  before  fixation  or  treated  with  DFO  for  20  hours  before  washing  and  incubation  for  a  further  3  hours,  before  fixation.  

Page 60: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

60

 

Page 61: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

61

6  Discussion  

6.1  General  discussion    

The  initial  purpose  of  this  study  was  to  examine  the  effect  of  hypoxia-­‐induced  replication  stress  

after  siRNA  knockdown  or  inhibition  of  key  elements  involved  in  cell  cycle  progression  and  DDR.  

First,  we  did  a  validation  of  a  previously  performed  siRNA  screen  test,  with  candidate  hits  involved  

in  the  DDR.  We  examined  recovery  of  the  cells  after  hypoxia-­‐induced  replication  stress  and  

reoxygenation,  and  showed  that  ATR,  NIPP1  and  WEE1  are  potential  targets  for  inhibiting  this  

recovery  in  hypoxic  cells.    

 

Both  WEE1  inhibitor  MK1775  and  ATR  inhibitor  VE822  are  two  targeting  drugs  in  clinical  trials,  and  

further  study  was  to  investigate  the  role  of  MK1775  and  VE822  and  examine  how  they  influence  the  

S  phase  effect  with  or  without  hypoxia.  As  they  showed  high  degree  of  synergy  of  γH2AX  signals  in  

S-­‐phase  cells,  we  also  wanted  to  examine  some  of  the  potential  mechanisms  behind  this  effect.    

 

6.2  Validation  of  siRNA  screen      

In  this  project,  we  started  to  transfect  cells  with  some  candidate  siRNAs  for  protein  knockdown  for  

validation  of  previous  studies  (Håve,  2015).  A  good  candidate  siRNA  would,  as  mentioned,  show  low  

percentage  of  γH2AX  positive  cells  in  normoxic  samples,  and  high  percentage  of  γH2AX  positive  cells  

after  hypoxia  treatment.  As  ATR,  NIPP1,  Rad17,  and  WEE1  all  have  been  shown  to  be  potential  

candidate  hits,  we  repeated  the  siRNA  screen  with  these  proteins.  Based  on  the  criteria  for  elevated  

γH2AX  positive  cells  after  hypoxia,  we  saw  that  ATR,  NIPP1,  and  WEE1  fulfilled  the  criteria,  whereas  

Rad17  did  not  because  of  already  high  levels  of  γH2AX  in  normoxic  cells  (Figure  6B).  In  the  repeated  

experiment  (Figure  7B),  only  siATR  transfected  cells  had  an  increase  of  γH2AX  after  hypoxia  

treatment,  which  was  smaller  than  in  the  first  experiment.  However,  as  mentioned,  protein  

knockdown  was  not  measured  in  the  repeated  experiment.  In  the  first  experiment  we  have  seen  

almost  complete  knockdown  of  ATR  (Figure  6B),  and  it  would  have  been  interesting  to  see  if  poor  

protein  knockdown  in  the  second  experiment  could  explain  the  poor  increase  of  γH2AX.  To  further  

validate  the  siRNA  screen,  these  experiments  could  be  repeated  with  additional  siRNA  oligos  

towards  NIPP1,  ATR  and  Wee1,  due  to  the  possibility  of  off-­‐target  effects.  A  siRNA  oligo  could  

potentially  hit  and  knock  down  other  target  proteins  because  of  partial  sequence  overlap.  In  

Page 62: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

62

addition  to  the  siNIPP1  used  in  §5.1,  we  have  tested  knockdown  with  another  siNIPP1,  and  they  

both  gave  highly  reduced  protein  levels  after  transfection  (Figure  25,  Supplement).  The  next  step  

would  be  to  use  both  siNIPP1  oligos  in  a  hypoxia  experiment  with  flow  cytometry  analysis  to  see  

whether  they  both  increase  γH2AX.  

 

Our  result  that  siRNA  depletion  of  ATR  caused  increased  γH2AX  in  the  hypoxia  exposed  cells,  is  

consistent  with  a  previous  study  where  siRNA  knockdown  of  ATR  caused  sensitization  of  cells  to  

hypoxic  condition  and  promoted  cell  death  of  cancer  cells  (Hammond  et  al.,  2004).  Knockdown  of  

ATR  has  also  been  associated  with  poor  recovery  after  hypoxia-­‐induced  replication  stress.  

Furthermore,  the  ATR  inhibitor  VE822,  has  also  been  shown  to  promote  cancer  cell  death  after  

hypoxia,  both  alone  or  in  combination  with  other  DNA  damaging  agents  (Hall  et  al.,  2014).  A  

homolog  precursor  of  VE822,  VE821,  has  been  shown  to  decrease  levels  of  HIF-­‐1α  mediated  

signaling  (Pires  et  al.,  2012).  It  would  be  interesting  to  examine  levels  of  HIF-­‐1α  in  our  experiments,  

which  could  potentially  be  done  by  harvesting  lysate  after  ATR  knockdown  in  hypoxic  condition.    

 

To  our  knowledge,  the  impact  of  hypoxia  on  the  effects  of  Wee1  depletion  by  siRNA  has  not  been  

previously  reported.  However,  the  Wee1  inhibitor  MK1775  was  added  during  hypoxic  incubation  

and  after  reoxygenation  in  a  previous  master  project  in  our  group  (Hauge,  2013).  In  the  previous  

master  project,  the  responses  to  MK1775  were  not  much  influenced  by  hypoxia.  However,  in  the  

previous  study  MK1775  was  washed  off  immediately  after  reoxygenation,  or  added  after  

reoxygenation  but  present  for  longer  times  than  in  our  study.  The  differences  between  our  studies  

may  therefore  be  due  to  different  experimental  setup.  

 

As  mentioned  before,  NIPP1  was  reported  to  alter  the  activity  of  PP1  in  response  to  hypoxia,  and  it  

has  been  proposed  that  this  altered  activity  leads  to  changes  in  metabolic  pathway  that  potentially  

favor  cancer  cells  survival  during  hypoxia  (Comerford  et  al.,  2006).  We  do  not  see  a  clear  

connection  how  this  potentially  could  be  linked  mechanistically  to  the  enhanced  γH2AX  signaling  

after  hypoxia  observed  in  Figure  6.  However,  it  could  have  been  interesting  to  explore  this  further  

after  successful  validation  of  NIPP1  by  the  additional  siRNAs.      

 

 

Page 63: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

63

6.3  Combined  WEE1  and  ATR  inhibition  leads  to  synergistic  increase  of  S-­‐phase  DNA  damage.   In  this  project,  we  also  wanted  to  address  the  effect  of  combined  WEE1  and  ATR  inhibition  in  U2OS  

cells.  Treatment  with  MK1775  combined  with  VE822  caused  strong  increase  of  γH2AX  in  S-­‐phase,  

compared  to  the  inhibitors  as  single  agents  (First  shown  in  Figure  9B  and  10B).  The  increase  in  

γH2AX  upon  the  combined  treatment  was  clearly  higher  than  the  additive  effects  of  the  increases  in  

γH2AX  after  MK1775  and  VE822  as  single  agents,  particularly  in  the  normoxic  samples  (Figure  23).  

The  combined  inhibition  also  gave  strongly  reduced  clonogenic  survival  (Figure  16B)  when  exposed  

for  24  hours  with  the  inhibitors,  consistent  with  a  synergistic  effect.  This  indicates  that  high  S-­‐phase  

DNA  damage  seen  after  combination  treatment  results  in  cell  death.  S-­‐phase  cells  with  high  γH2AX  

also  shows  high  levels  of  phosphorylated  RPA  S4/S8  after  3  hours  combined  inhibitor-­‐treatment  

(First  shown  in  Figure  11D),  indicating  presence  of  ssDNA.  Together  these  data  argue  that  combined  

treatment  with  MK1775  and  VE822  give  synergistic  increase  of  S-­‐phase  DNA  damage  and  

replication  catastrophe.    

 

6.4  Do  both  WEE1  and  ATR  inhibition  lead  to  elevated  CDK  activity?   Since  both  WEE1  and  ATR  negatively  regulate  CDK  activity,  we  wanted  to  address  how  the  

combined  treatment  affects  this  activity  by  examining  the  inhibitory  phosphorylation  tyrosine  15  on  

CDK1  and  CDK2.  We  performed  western  blotting  of  the  samples  harvested  1  or  3  hours  after  

treatment,  and  detected  a  reduction  in  inhibitory  phosphorylation  on  CDK1  after  inhibition  of  WEE1  

and  WEE1/ATR,  but  not  after  ATR  inhibition  alone  (Figure  19A).  The  same  tendency  was  seen  with  

inhibitory  phosphorylation  of  CDK2,  as  it  was  slightly  decreased  after  inhibition  of  WEE1  and  

WEE1/ATR,  but  not  as  obvious  as  with  CDK1  (Figure  20A).  To  further  investigate  CDK2  activity,  we  

could  have  examined  cyclin-­‐E  levels.  Cyclin-­‐E  is  degraded  in  S-­‐phase  in  a  CDK2  dependent  manner,  

but  was  not  examined  in  this  project.  ATR  inhibition  surprisingly  did  not  decrease  inhibitor  

phosphorylation  on  CDKs,  suggesting  that  the  synergistic  induction  of  DNA  damage  in  S-­‐phase  is  not  

only  due  to  higher  CDK1  and  CDK2  activation  upon  inhibition  with  MK1775  and  VE822.  Since  high  

CDK  activity  can  lead  to  unscheduled  replication  initiation,  and  is  known  to  cause  major  replication  

catastrophe  (Petermann  et  al.,  2010;  Sørensen  and  Syljuåsen,  2012),  our  research  group  has  done  

an  examination  of  loading  of  the  replication  initiation  factor  CDC45  after  inhibition  of  WEE1  and  

Page 64: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

64

ATR  (Sissel  Hauge,  unpublished  results).  These  experiments  showed  that  there  is  a  high  increase  of  

CDC45  loading  after  inhibition  of  ATR  and  even  higher  after  WEE1/ATR,  indicating  that  the  

synergistic  effect  between  inhibition  of  WEE1  and  ATR  is  not  only  due  to  elevated  CDK  activity,  but  

also  to  a  CDK-­‐independent  increase  of  CDC45  loading  after  ATR  inhibition.  

6.5  Combination  treatment  with  MK1775  and  VE822  as  a  potential  anti-­‐cancer  strategy     There  are  several  different  studies  on  combined  treatment  of  checkpoint  kinase  inhibitors  and  

other  types  of  drugs  (Kotsantis  et  al.,  2015).  Synergistic  effect  has  been  shown  several  times  with  

combined  treatment  of  WEE1  and  Chk1  inhibitors  (Carrassa  et  al.,  2012;  Chilà  et  al.,  2015;  Mueller  

and  Haas-­‐Kogan,  2015;  Russell  et  al.,  2013),  and  also  combination  of  ATR  and  Chk1  inhibitors  (Sanjiv  

et  al.,  2016).  To  our  knowledge,  synergy  between  WEE1  and  ATR  inhibitors  has  not  been  previously  

reported.  Recently,  our  group  has  done  a  project  to  investigate  the  mechanisms  behind  the  

synergistic  effect  between  WEE1  and  Chk1  inhibitors  (Hauge  et  al.,  2016).  It  was  shown  that  WEE1  

inhibition  alone  caused  higher  CDK  activity,  while  Chk1  inhibition  induced  more  DNA  damage  

correlating  with  higher  CDC45  loading.  When  WEE1  alone  was  inhibited,  Chk1  suppressed  CDC45  

loading  and  thereby  limited  the  degree  of  unscheduled  replication  initiation  even  with  high  CDK  

activity.  This  indicates  a  protection  mechanism  of  the  cells,  and  can  explain  why  combined  

treatment  of  WEE1  and  Chk1  inhibitors  give  synergistic  anti-­‐cancer  effect.  

 

ATR  inhibition  is  a  relative  new  approach  in  cancer  treatment,  and  VE822  is  one  of  the  first  selective  

inhibitor  of  ATR  that  reached  clinical  trials  (Weber  and  Ryan,  2015).  ATR  is  upstream  of  Chk1  and  

may  have  a  broader  clinically  utility.  It  was  recently  shown  that  ATR  inhibition  more  selectively  kills  

cancer  cells  under  high  levels  of  replication  stress  than  Chk1  inhibitors,  because  Chk1-­‐inhibitors  are  

more  cytotoxic  and  kill  cells  under  moderate  replication  stress  (Buisson  et  al.,  2015).    However,  

upon  moderate  replication  stress,  DNA-­‐PK  phosphorylates  Chk1  in  a  backup  pathway  when  ATR  is  

inhibited,  which  could  protect  normal  cells.  But  this  pathway  is  not  yet  fully  understood.  

 

The  approach  of  combined  inhibition  with  MK1775  and  VE822  may  potentially  be  clinically  relevant  

in  the  future.  Our  group  has  recently  started  to  look  for  this  synergistic  effect  in  other  cancer  cell  

lines  including  lung  cancer,  and  also  in  normal  cells.  Some  cell  lines  appear  to  be  very  resistant  to  

MK1775  as  measured  by  clonogenic  survival  assays,  where  VE822  treatment  alone  kills  the  cells  but  

not  much  more  death  is  seen  in  combination  with  MK1775.  Therefore,  the  combined  approach  may  

Page 65: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

65

not  be  effective  in  all  cell  lines,  and  more  work  is  needed  to  understand  the  effects.  The  synergy  

effect  must  be  explored  in  additional  cancer  cell  lines  and  with  the  use  of  additional  inhibitors  of  

WEE1  and  ATR,  and  it  would  also  be  interesting  to  examine  this  effect  in  in  vivo  studies,  but  much  is  

yet  unknown  about  the  synergistic  effect  of  WEE1  and  ATR  inhibition.  

 

6.6  Micronuclei  in  response  to  ATR  inhibition      

When  we  visualized  the  cells  in  IF  microscopy,  we  saw  that  the  cells  formed  micronuclei  after  

inhibiting  ATR  with  VE822  (Figure  18).  Micronuclei  can  derive  either  from  a  whole  chromosome,  

due  to  errors  of  the  mitotic  apparatus,  or  from  broken  chromosomes  (Xu  et  al.,  2011),  and  they  are  

commonly  observed  in  cells  with  intrinsic  genomic  instability.  ATR  is  the  key  player  of  maintenance  

of  stalled  replication  forks  in  S-­‐phase  (See  ATR  activation  §1.2.3).  Experiments  with  knockdown  of  

ATR  have  shown  that  cells  with  incomplete  DNA  replication  can  enter  mitosis,  and  do  so  with  

chromosome  breaks,  and  induce  chromosome  bridges  and  micronuclei  (Jardim  et  al.,  2009).  ATR  is  

also  important  for  avoiding  chromosome  breaks  during  mitosis,  and  thereby  cell  death  known  as  

“mitotic  catastrophe”  (Brown  and  Baltimore,  2003).  Our  result  that  VE822  causes  micronuclei  is  

therefore  consistent  with  previous  reports  that  ATR  can  protect  cells  against  micronuclei  formation.  

6.7  Experimental  consideration  

6.7.1  Cell  culture   In  this  study,  all  our  experiments  have  been  performed  on  human  cells  in  culture.  Using  cell  lines  as  

a  model  system  have  many  advantages  in  research  compared  to  lower  class  organisms  or  other  

animal  model  systems.  Even  though  they  have  been  useful  for  studying  cell  biology,  other  model  

systems  are  not  always  relevant  for  humans.  Cultured  cancer  cells  are  relatively  inexpensive,  are  

easy  to  work  with,  easy  to  store,  and  provide  fewer  ethnical  issues  compared  to,  for  instance,  

mouse  models.  Furthermore,  many  approaches  for  manipulating  protein  expression  in  cancer  cells  

by  different  transfection  methods  are  developed.  However,  most  human  cell  lines  are  immortalized  

cancer  cells  that  can  have  different  genetic  alterations,  and  most  importantly,  the  conditions  for  

storage  of  cells  in  culture  may  not  reflect  normal  physiologic  conditions.  The  cells  are  kept  in  

conditions  with  much  higher  oxygen  levels  than  for  normal  tissues  in  the  body,  and  they  divide  

indefinitely  in  a  monolayer  in  medium  with  highly  enriched  glucose.  After  continued  cell  cycle  

divisions  and  accumulated  mutations,  the  cells  will  no  longer  resemble  the  original  cells.  It  is  

Page 66: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

66

therefore  important  to  keep  aliquots  of  cells  with  low  passage  number  stored  in  liquid  nitrogen,  and  

change  the  cells  at  a  regular  basis.  As  with  all  other  model  systems,  we  need  to  be  aware  of  the  

limitations  of  one  cell  line,  and  new  findings  need  to  be  tested  with  additional  cell  lines.  

 

We  chose  to  perform  all  the  experiments  with  U2OS  cells,  as  this  cell  line  is  well  known  and  is  

involved  in  many  studies  involving  hypoxia  and  DDR  (Beck  et  al.,  2010;  Beck  et  al.,  2012;  Buisson  et  

al.,  2015;  Hasvold  et  al.,  2013;  Syljuåsen  et  al.,  2005).  The  behavior  of  these  cells  is  well  studied,  

both  in  response  to  hypoxia-­‐induced  replication  stress  and  in  response  to  inhibition  of  different  

DDR  factors  in  hypoxia  or  normoxia.  There  has  been  done  much  more  work  with  WEE1  inhibition  

with  this  cell  line  (Beck  et  al.,  2012;  Domínguez-­‐Kelly  et  al.,  2011;  Hirai  et  al.,  2009),  compared  to  

ATR  inhibition  which  is  a  relative  new  approach.  Despite  having  wild-­‐type  p53,  U2OS  cells  do  not  

have  fully  functional  G1/S  checkpoint  (Petersen  et  al.,  2010),  which  is  one  example  of  a  cancer-­‐

specific  trait  this  cell  line  has  acquired.  Cell  lines  in  general  and  cancer  cell  lines  in  particular  can  

vary  a  lot  in  their  responses  to  different  treatments,  so  to  fully  understand  mechanisms  involved  in  

cell  cycle  checkpoints  and  other  DNA  damage  responses,  as  well  as  other  cellular  responses,  it  will  

be  necessary  to  perform  experiments  on  other  cell  lines.  Preferably,  this  should  be  done  both  with  

other  cancer  cell  lines  as  well  as  with  normal  cell  lines,  such  as  BJ  fibroblasts.  The  microenvironment  

involved  in  cancer  development  is  also  lost  in  cell  line  systems,  and  it  would  be  necessary  to  

perform  in  vivo  experiments  for  clinical  trials.    

6.7.2  siRNA  transfection   SiRNA  transfection  is  a  powerful  technique  to  manipulate  cells  and  to  study  phenotypes  of  cells  that  

have  been  depleted  with  different  siRNAs.  This  will  reduce  levels  of  a  protein  when  siRNA  interfere  

with  protein  expression  at  the  mRNA  level.  Both  qPCR  (quantitative  PCR)  and  western  blotting  can  

measure  SiRNA-­‐induced  knockdown,  but  qPCR  will  only  give  information  about  levels  of  mRNA  

expression  and  not  protein  levels.  We  have  therefore  only  used  western  blotting  in  this  study  when  

we  wanted  to  examine  the  effect  of  knockdown.  Since  unspecific  changes  in  gene  expression  may  

be  induced  by  siRNA,  it  is  important  to  use  non-­‐targeting  siRNA  as  a  control,  rather  than  non-­‐

transfected  cells  (Mock)  to  reflect  a  baseline  cellular  response.  This  baseline  can  be  compared  to  

the  response  in  cells  treated  with  target-­‐specific  siRNA.  We  achieved  good  knockdown  to  protein  

levels  of  25%  or  less  of  that  in  untransfected  cells  when  samples  were  harvested  72  hours  after  

siRNA  transfection  (Figure  6B).  As  mentioned  in  §6.2,  siRNA  depletion  can  potentially  give  off-­‐target  

effects,  and  it  is  important  to  use  additional  siRNAs  with  different  sequences  for  one  particular  

Page 67: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

67

protein,  as  we  have  done  for  NIPP1.  However,  interfering  RNA  techniques,  as  siRNA  transfection,  

are  more  target-­‐specific  than  using  inhibitors,  but  are  a  much  more  time  consuming  process.  

6.7.3  WEE1  and  ATR  inhibition   For  inhibition  of  WEE1  and  ATR  we  have  used  the  small  molecule  inhibitors  MK1775  and  VE822  

respectively.  In  experiments  with  hypoxia  treatments,  we  have  used  a  MK1775  concentration  of  

300nM  (Hauge,  2013).  The  experimental  concentration  of  the  ATR  inhibitor,  VE822,  was  found  by  

checking  the  decrease  in  the  levels  of  phosphorylations  on  Chk1  and  RPA,  as  they  are  activated  by  

ATR.  By  using  500nM  of  VE822,  we  saw  that  the  levels  of  ATR-­‐dependent  Chk1  phosphorylation  

were  undetectable  compared  to  those  in  the  uninhibited  sample  (Figure  8).  As  mentioned,  we  only  

saw  a  decrease  in  CDK  inhibitory  phosphorylation  after  WEE1  inhibition,  and  not  after  ATR  

inhibition.  This  was  surprising,  since  we  would  expect  Chk1  inactivation  and  then  upregulated  

CDC25  activity,  caused  by  ATR  inhibition,  to  give  increased  CDK  activity  (Cimprich  and  Cortez,  2008;  

Fokas  et  al.,  2014).  MK1775  is  a  highly  specific  inhibitor  of  WEE1  and  is  useful  to  examine  specific  

effects  of  WEE1  inhibition.  VE822  is  also  shown  to  be  highly  specific  for  ATR  (Hall  et  al.,  2014),  but  

as  with  siRNA  transfection  and  off-­‐target  effects,  it  is  important  to  use  additional  inhibitors  for  

further  validation.  

6.7.4  Hypoxia  treatments   In  this  project,  we  wanted  to  find  out  whether  or  not  low  oxygen  levels  can  influence  the  S-­‐phase  

effect  after  both  siRNA  transfection  and  inhibition  with  MK1775  and  VE822.  As  mentioned,  we  

detected  a  hypoxia-­‐dependent  increase  of  γH2AX  signaling  after  siRNA  knockdown,  but  most  

interesting  was  the  observed  synergistic  effect  induced  by  the  combination  treatment  with  MK1775  

and  VE822.  There  were  some  differences  in  the  results,  but  this  may  be  due  to  experimental  setups  

and  variations  in  the  oxygen  levels,  and  the  fact  that  cellular  responses  might  vary  between  cells.  

The  untreated  cells  fixed  inside  the  hypoxia  chamber  also  varied  between  experiments,  but  this  

might  be  because  of  time  spent  inside  the  chamber  doing  the  fixation,  and  the  possibility  for  oxygen  

leakage  during  this  step.  At  the  end  of  the  project,  we  also  performed  a  hypoxic-­‐mimetic  

experiment  with  DFO.  We  experienced  an  issue  with  gas  leakage  from  the  hypoxia  chamber  during  

this  project,  one  of  several  things  that  can  go  wrong  with  a  device  that  is  dependent  on  stable  

conditions  of  oxygen,  temperature,  and  humidity.  Treatment  with  DFO  has  been  shown  to  mimic  

hypoxia-­‐induced  replication  stress  (Hammond  et  al.,  2002),  and  we  saw  an  increase  of  γH2AX  when  

Page 68: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

68

adding  DFO  to  the  cells.  However,  after  replacing  the  DFO-­‐containing  medium  with  new  medium  

(mimicking  reoxygenation),  we  observed  high  levels  of  irreversible  DNA  damage  at  high  

concentrations  of  DFO  (Figure  24).  At  lower  concentrations,  we  saw  reversible  γH2AX  after  

removing  DFO  that  is  the  expected  behavior,  since  we  know  that  γH2AX  levels  decrease  in  Mock  

cells  from  the  moment  they  are  removed  from  the  hypoxia  chamber  until  3  hours  after  

reoxygenation.  DFO  can  therefore  serve  as  a  useful  substitute  for  hypoxia  treatment,  even  though  it  

cannot  recreate  all  sides  of  a  hypoxic  experiment.  Moderate  hypoxia  is  more  difficult  to  recreate  

than  anoxic  effect,  because  DFO  inhibits  cell  respiration,  and  they  become  suffocated.    

 

Several  of  the  experiments  in  this  project  were  performed  in  hypoxic  conditions  to  induce  

replication  stress.  A  hypoxia  chamber  was  used  for  this  purpose.  Oxygen  consumption  is  influenced  

by  cell  density  (Jorjani,  1999),  and  for  cells  growing  in  dishes  in  a  hypoxia  chamber,  high  density  

growth  can  lead  to  more  severe  hypoxia  for  the  cells,  and  this  is  important  to  have  in  mind  when  

we  knock  down  proteins  involved  in  cell  cycle  progression.  Knockdown  can  inhibit  proliferation,  and  

even  though  samples  were  seeded  with  similar  densities,  the  cells  may  have  different  densities  

after  several  days  with  protein  knockdown.  Another  consideration  is  that  there  are  major  

differences  of  reoxygenation  in  vivo  and  in  vitro.  Our  experimental  reoxygenation  was  performed  at  

atmospheric  oxygen  levels  (21%  O2)  that  do  not  correspond  to  the  physiological  reoxygenation  of  a  

tumor  that  have  much  lower  oxygen  levels  (3-­‐7.4%  O2)  (McKeown,  2014).  We  have  performed  

experiments  with  the  most  severe  levels  for  of  hypoxia  (0.02%  O2),  since  previous  studies  show  

hypoxia-­‐dependent  induction  of  γH2AX  signals  after  prolonged  exposure  to  severe  levels  of  hypoxia  

and  not  with  more  moderate  levels  of  hypoxia  (0.2%  O2)  (Hasvold  et  al.,  2013).  These  anoxic  

settings  are  only  one  of  several  possible  hypoxic  conditions,  and  it  could  be  interesting  in  the  future  

to  examine  different  levels  of  hypoxia  for  validating  the  results,  or  even  examine  the  effects  of  

cycling  hypoxia.    

6.7.5  Measuring  protein  levels  by  flow  cytometry   Flow  cytometry  was  used  to  detect  S-­‐phase  replication  stress.  By  DNA  and  antibody  staining  this  

method  can  measure  multiple  parameters  simultaneously  and  thousands  of  cells  are  analyzed  in  a  

short  amount  of  time.  For  every  sample,  we  analyzed  10000  cells  to  increase  result  reliability.  

Another  advantage  is  that  subpopulations  of  cells  in  a  sample  can  be  analyzed  by  gating,  and  flow  

data  can  be  stored  and  re-­‐gated  to  get  new  information  at  a  later  time  point.  Quantification  of  

replication  stress  in  S-­‐phase  is  measured  by  γH2AX  signaling  as  a  function  of  cell  cycle  phase.  Flow  

Page 69: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

69

cytometry  can  measure  signals  in  each  single  cell  individually  of  the  S-­‐phase  population,  and  it  has  

an  advantage  over  western  blotting  that  only  can  measure  mean  value  of  the  population  in  a  

sample,  including  all  phases  of  the  cell  cycle.  Mean  value  can  be  misleading  compared  to  median  

value  or  percentage  of  positive  γH2AX  signals.  Even  though  γH2AX  is  not  specific  for  replication  

stress  (Liu  et  al.,  2008),  hypoxia-­‐induced  replication  stress  has  been  shown  to  increase  γH2AX  in  S-­‐

phase  cells  after  severe  hypoxia  (Olcina  et  al.,  2010).  With  this  method,  samples  are  stained  with  

fluorescent  antibodies  and  one  of  the  main  issues  when  with  such  staining  is  that  differences  in  the  

number  of  cells  in  each  sample  can  result  in  variations  in  antibody  staining  per  cell,  and  thus  

variations  in  γH2AX  signaling  detected.  Differences  in  cell  number  can  be  minimized  by  discarding  

some  of  the  densest  samples  before  staining.  Another  way  to  reduce  sample-­‐to-­‐sample  variations  

and  reduce  staining  errors  is  by  barcoding  of  samples,  a  useful  method  when  there  is  a  need  for  a  

high  degree  of  accuracy.  Each  of  a  set  of  four  samples  is  stained  with  a  certain  concentration  of  a  

fluorescent  dye  before  they  are  combined  and  stained  together  for  the  antibodies  of  interest.  This  

will  simplify  staining,  reduce  antibody  consumption,  and  minimize  sample-­‐to-­‐sample  variation.  Our  

samples  were  stained  one  by  one,  but  barcoding  could  be  an  option  for  further  studies.  Cells  were  

plated  at  the  same  cell  density  in  order  to  prevent  them  from  growing  too  dense,  which  can  

influence  oxygen  consumption  and  cell  cycle  progression,  as  mentioned  in  §6.6.4.    

 

6.7.6  Measuring  protein  levels  by  western  blotting   When  measuring  specific  proteins  in  a  sample,  western  blotting  is  a  useful  method  to  give  a  rough  

estimation  of  protein  knockdown  by  comparing  strength  of  the  bands  of  sample  lysates  to  a  control.  

A  dilution  series  of  10  or  12.5%,  25%,  50%,  and  100%  of  the  untreated  control  lysate  was  loaded  

into  the  first  wells  in  every  gel  to  measure  linearity  of  the  antibody  signal.  This  series  also  provides  

an  idea  whether  the  antibody  dilution  has  been  optimal  or  not.  When  using  western  blotting  for  

quantification,  it  is  important  to  have  successfully  transferred  proteins  from  the  SDS-­‐gel  to  the  

membrane.  Uneven  transfer  can  be  checked  by  staining  the  membrane  with  Ponceau  S,  a  rapid  

reversible  stain  to  protect  protein  bands,  before  proceeding  with  antibody  detection.  To  examine  

the  mechanisms  behind  the  synergy  of  MK1775  and  VE822  in  §5.7,  we  quantified  the  signals  (Figure  

20A)  with  a  loading  control  to  normalize  the  results  (Figure  22).  As  an  alternative  to  such  

normalization  against  a  loading  control,  we  could  have  measured  protein  concentration  before  

performing  SDS-­‐PAGE  in  order  to  load  an  even  amount  of  protein  in  each  well.  The  BioRad  

ChemiDoc  we  used,  allowed  us  to  quantify  our  results  with  great  degree  of  certainty,  as  it  is  much  

Page 70: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

70

more  sensitive  and  has  a  greater  linear  range  that  traditional  photographic  film,  and  it  can  control  

saturation  of  signals  better  due  to  enhanced  detection  system.  Western  blotting  can  be  used  to  

examine  a  lot  of  proteins,  phosphorylations,  etc.,  and  because  proteins  is  sorted  by  size,  unspecific  

signal  is  not  as  big  a  problem  as  it  can  be  with  flow  cytometry  analysis  or  IF.  The  selection  of  

antibodies  is  also  greater  compared  to  the  selection  of  antibodies  available  for  usage  in  flow  

cytometry.  Even  though  western  blotting  is  an  easy  method  to  measure  knockdown  of  proteins,  it  is  

difficult  to  measure  protein  levels  and  modifications  relative  to  cell  cycle  phase,  which  is  better  

measured  with  flow  cytometry.  

6.8  Concluding  remarks    Targeted  cancer  therapy  is  currently  in  high  focus  as  a  procedure  for  anti-­‐cancer  drug  development.  

These  drugs  can  block  growth  and  spread  of  cancer  by  interfering  with  specific  molecules.  Studying  

molecules  of  the  DDR  is  important  for  several  reasons.  DDR  is  important  in  normal  cells  as  it  

preserve  genomic  stability.  Alterations  in  cell  cycle  pathways  can  drive  carcinogenesis  and  due  to  

such  alterations,  cancer  cells  often  lack  some  pathways  and  must  rely  on  others  to  survive.  This  can  

make  cancer  cells  vulnerable  for  therapy  that  targets  such  alterations,  without  damaging  normal  

cells.    

 

In  this  project,  we  have  focused  on  factors  of  the  DDR  and  in  particular  one  of  the  main  factors  of  

these  responses,  ATR.  Inhibitors  of  both  ATR  and  WEE1  are  currently  in  clinical  trials,  and  

combination  treatment  with  both  inhibitors  has  shown  synergistic  effects  with  highly  increased    

S-­‐phase  replication  stress,  DNA  damage  and  cell  death.  We  know  that  WEE1  inhibition  causes  

elevated  CDK  activity  that  leads  to  more  DNA  damage,  but  further  studies  are  needed  to  examine  

the  mechanisms  behind  this  synergy,  and  thereby  the  possibility  of  this  combination  treatment  as  

an  anti-­‐cancer  strategy.    

 

Page 71: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

71

7  Supplement  

Figure  25.  Knockdown  of  NIPP1  with  two  siRNA  oligos.  Western  blotting  showing  siNIPP1  transfected  cells  with  two  different  siRNA  oligos  towards  NIPP1.  U2OS  cells  were  transfected  with  siRNAs  and  then  split  after  24  hours.  The  cells  were  harvested  72  hours  after  transfection.  γ-­‐Tubulin  was  used  as  loading  control.  

 

Page 72: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

72

 

Page 73: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

73

8  Acknowledgements   The  work  performed  during  this  master  project  was  carried  out  at  the  Department  of  Radiation  

Biology  at  the  Norwegian  Radium  hospital,  Oslo  University  Hospital.  

 

First,  I  would  like  to  thank  my  two  wonderful  supervisors  Randi  (group  leader)  and  Grete  (post  doc.)  

for  all  your  help  and  support.  Thank  you  for  sharing  your  knowledge,  taking  time  to  teach  me  at  the  

lab  and  discuss  my  results.  You  have  always  been  approachable  and  I  could  not  have  gotten  better  

supervisors  than  you  two.    

 

Second,  I  want  to  thank  my  group  members  for  always  being  helpful,  for  guidance  and  for  always  

being  positive.  Thank  you  for  all  the  laughter,  dancing  and  singing.  I  also  want  to  thank  the  rest  of  

the  department  for  being  social  and  friendly.  I  have  really  enjoyed  my  time  working  in  the  lab.      

 

Finally,  I  want  to  thank  my  friends  and  fellow  students  for  always  being  there  and  be  interested  in  

my  work.    

But  most  of  all  I  want  to  thank  my  family  and  my  boyfriend  for  all  your  help  and  support.  You  have  

all  made  it  possible  for  me  to  focus  on  my  studies  and  to  get  me  trough  these  though  years.  I  would  

never  have  been  where  I  am  today  without  you.  

 

Oslo,  May  2016  

Tine  Therese  Henriksen  Raabe  

 

 

Page 74: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

74

 

Page 75: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

75

9  List  of  abbreviations    53BP1     Tumor  suppressing  p53-­‐binding  protein  1  

9-­‐1-­‐1     Rad9-­‐Hus1-­‐Rad1  

ARF     Alternative  Reading  Frame  

ATM     Ataxia-­‐telangiectasia  mutated  

ATR     Ataxia-­‐telangiectasia  and  Rad3-­‐related    

ATRIP     ATR-­‐interacting  protein  

BER     Base  excision  repair  

BRCA1/2   Breast  cancer  type  1/2  susceptibility  

CDC25     Cell  division  cycle  25  

CHK     Checkpoint  kinase  

CDK     Cyclin-­‐dependent  kinase  

DAPI     4´,6-­‐diamidino-­‐2-­‐phenylindole  

DDR     DNA  damage  response  

DMEM     Dulbecco´s  modified  eagle  medium  

DNA     Deoxyribonucleic  acid  

DNA-­‐PK   DNA  protein  kinase  

DSB     Double  strand  break  

dsDNA     double-­‐stranded  DNA  

dsRNA     double-­‐stranded  RNA    

DTT     Dithiothreitol  

ECL     Enhanced  chemiluminescent  

EDTA     Ethylenediaminetetraacetic  acid  

ERCC1     Excision  repair  cross-­‐complementing  group  1  

EtOH     Ethanol  

FBS     Fetal  bovine  serum  

H3P     Phospho-­‐Histone  H3  

HIF1     Hypoxia-­‐inducible  factor  1  

HR     Homologous  recombination  

HRP     Horseradish  peroxidase  

Hus1     Checkpoint  protein  Hus1  

Page 76: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

76

IC50     Half  maximal  inhibitory  concentration  

IF       Immunofluorescent  

IgG     Immunoglobulin  G  

INK4a     Cyclin-­‐dependent  kinase  inhibitor  2A  isoform  p16INK4A  

IR     Ionizing  radiation  

MCM2-­‐7   Minichromosome  maintenance  proteins  2–7  

MDM2     Mouse  double  minute  2  homolog  

MMR     Mismatch  repair  

Mre11     Meiotic  recombination  11  homolog  A  

MRN     Mre11-­‐Rad50-­‐Nbs1  

mTOR     mammalian  target  of  rapamycin  

MUS81     MUS81  structure-­‐specific  endonuclease  

Nbs1     Nijmegen  breakage  syndrome  proten  1  

NER     Nucleotide  excision  repair  

NHEJ     Non-­‐homologous  end-­‐joining  

NIPP1     Nuclear  inhibitor  of  Protein  Phosphatase-­‐1  

PAGE     Polyacrylamide  gel  electrophoresis  

PALB2     Partner  and  localizer  of  BRCA2  

PARP     Poly(ADP-­‐ribose)  polymerase  

PBS     Phosphate-­‐buffered  serum  

PIKK     Phospho-­‐inositide3-­‐kinase  related  kinases  

PIP     PP1  interaction  protein  

PP1     Protein  Phosphatase-­‐1  

PPP     Phosphoprotein  phosphatase  

Rad     Cell  cycle  control  protein  

RB     Retinoblastoma  

RNA     Ribonucleic  acid  

RNR     Ribonucleotide  reductase  

ROS     Reactive  oxygen  species  

RPA     Replication  Protein  A  

SDS     Sodium  dodecyl  sulfate  

siRNA     Small  interfering  RNA  

SSB     Single  stranded  break  

Page 77: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

77

ssDNA     Single-­‐stranded  DNA  

TOPBP1   DNA  topoisomerase  2-­‐binding  protein-­‐1  

WEE1     Wee1-­‐like  protein  kinase  

XLF       XRCC4-­‐like  factor  1  

XRCC4     X-­‐ray  repair  cross-­‐complementing  protein  4  

γH2AX     Gamma-­‐Histone  H2AX  

 

   

Page 78: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

78

 

Page 79: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

79

10  References    

AJ,  L.  1997.  p53,  the  cellular  gatekeeper  for  growth  and  division.  Cell.  88:323-­‐331.  An,  W.G.,  M.  Kanekal,  M.C.  Simon,  E.  Maltepe,  M.V.  Blagosklonny,  and  L.M.  Neckers.  1998.  

Stabilization  of  wild-­‐type  p53  by  hypoxia-­‐inducible  factor  1[alpha].  Nature.  392:405-­‐408.  Asmal,  M.,  E.  Dean,  J.  Evans,  M.  Middleton,  and  R.  Plummer.  2015.  O6.4VX-­‐970,  selective  inhibitor  

of  ataxia  telangiectasia  and  Rad3-­‐related  (ATR)  protein.  Annals  of  Oncology.  26:ii8.  Bakkenist,  C.J.,  and  M.B.  Kastan.  2003.  DNA  damage  activates  ATM  through  intermolecular  

autophosphorylation  and  dimer  dissociation.  Nature.  421:499-­‐506.  Bartek,  J.,  and  J.  Lukas.  2001.  Mammalian  G1-­‐  and  S-­‐phase  checkpoints  in  response  to  DNA  

damage.  Current  Opinion  in  Cell  Biology.  13:738-­‐747.  Bartek,  J.,  and  J.  Lukas.  2003.  Chk1  and  Chk2  kinases  in  checkpoint  control  and  cancer.  Cancer  Cell.  

3:421-­‐429.  Beck,  H.,  V.  Nähse,  M.S.Y.  Larsen,  P.  Groth,  T.  Clancy,  M.  Lees,  M.  Jørgensen,  T.  Helleday,  R.G.  

Syljuåsen,  and  C.S.  Sørensen.  2010.  Regulators  of  cyclin-­‐dependent  kinases  are  crucial  for  maintaining  genome  integrity  in  S  phase.  J  Cell  Biol.  188:629-­‐638.  

Beck,  H.,  V.  Nähse-­‐Kumpf,  M.S.Y.  Larsen,  K.A.  O'Hanlon,  S.  Patzke,  C.  Holmberg,  J.  Mejlvang,  A.  Groth,  O.  Nielsen,  R.G.  Syljuåsen,  and  C.S.  Sørensen.  2012.  Cyclin-­‐Dependent  Kinase  Suppression  by  WEE1  Kinase  Protects  the  Genome  through  Control  of  Replication  Initiation  and  Nucleotide  Consumption.  Molecular  and  Cellular  Biology.  32:4226-­‐4236.  

Bindra,  R.S.,  M.E.  Crosby,  and  P.M.  Glazer.  2007.  Regulation  of  DNA  repair  in  hypoxic  cancer  cells.  Cancer  Metastasis  Rev.  26:249-­‐260.  

Bindra,  R.S.,  and  P.M.  Glazer.  2006.  Repression  of  RAD51  gene  expression  by  E2F4//p130  complexes  in  hypoxia.  Oncogene.  26:2048-­‐2057.  

Bollen,  M.,  W.  Peti,  M.J.  Ragusa,  and  M.  Beullens.  2010.  The  extended  PP1  toolkit:  designed  to  create  specificity.  Trends  in  biochemical  sciences.  35:450-­‐458.  

Bristow,  R.G.,  and  R.P.  Hill.  2008.  Hypoxia  and  metabolism:  Hypoxia,  DNA  repair  and  genetic  instability.  Nat  Rev  Cancer.  8:180-­‐192.  

Brown,  E.J.,  and  D.  Baltimore.  2003.  Essential  and  dispensable  roles  of  ATR  in  cell  cycle  arrest  and  genome  maintenance.  Genes  &  Development.  17:615-­‐628.  

Buisson,  R.,  Jessica  L.  Boisvert,  Cyril  H.  Benes,  and  L.  Zou.  2015.  Distinct  but  Concerted  Roles  of  ATR,  DNA-­‐PK,  and  Chk1  in  Countering  Replication  Stress  during  S  Phase.  Molecular  Cell.  59:1011-­‐1024.  

Bussink,  J.,  J.H.A.M.  Kaanders,  and  A.J.  van  der  Kogel.  2003.  Tumor  hypoxia  at  the  micro-­‐regional  level:  clinical  relevance  and  predictive  value  of  exogenous  and  endogenous  hypoxic  cell  markers.  Radiotherapy  and  Oncology.  67:3-­‐15.  

Canman,  C.E.,  D.-­‐S.  Lim,  K.A.  Cimprich,  Y.  Taya,  K.  Tamai,  K.  Sakaguchi,  E.  Appella,  M.B.  Kastan,  and  J.D.  Siliciano.  1998.  Activation  of  the  ATM  Kinase  by  Ionizing  Radiation  and  Phosphorylation  of  p53.  Science  (New  York,  N.Y.).  281:1677-­‐1679.  

Carrassa,  L.,  R.  Chila,  M.  Lupi,  F.  Ricci,  C.  Celenza,  M.  Mazzoletti,  M.  Broggini,  and  G.  Damia.  2012.  Combined  inhibition  of  Chk1  and  Wee1:  in  vitro  synergistic  effect  translates  to  tumor  growth  inhibition  in  vivo.  Cell  Cycle.  11:2507-­‐2517.  

Castedo,  M.,  J.L.  Perfettini,  T.  Roumier,  K.  Andreau,  R.  Medema,  and  G.  Kroemer.  2004.  Cell  death  by  mitotic  catastrophe:  a  molecular  definition.  Oncogene.  23:2825-­‐2837.  

Chan,  N.,  M.  Koritzinsky,  H.  Zhao,  R.  Bindra,  P.M.  Glazer,  S.  Powell,  A.  Belmaaza,  B.  Wouters,  and  R.G.  Bristow.  2008.  Chronic  Hypoxia  Decreases  Synthesis  of  Homologous  Recombination  Proteins  to  Offset  Chemoresistance  and  Radioresistance.  Cancer  Research.  68:605-­‐614.  

Page 80: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

80

Chan,  N.,  I.M.  Pires,  Z.  Bencokova,  C.  Coackley,  K.R.  Luoto,  N.  Bhogal,  M.  Lakshman,  P.  Gottipati,  F.J.  Oliver,  T.  Helleday,  E.M.  Hammond,  and  R.G.  Bristow.  2010.  Contextual  Synthetic  Lethality  of  Cancer  Cell  Kill  Based  on  the  Tumor  Microenvironment.  Cancer  Res.  70:8045-­‐8054.  

Charrier,  J.-­‐D.,  S.J.  Durrant,  J.M.C.  Golec,  D.P.  Kay,  R.M.A.  Knegtel,  S.  MacCormick,  M.  Mortimore,  M.E.  O'Donnell,  J.L.  Pinder,  P.M.  Reaper,  A.P.  Rutherford,  P.S.H.  Wang,  S.C.  Young,  and  J.R.  Pollard.  2011.  Discovery  of  Potent  and  Selective  Inhibitors  of  Ataxia  Telangiectasia  Mutated  and  Rad3  Related  (ATR)  Protein  Kinase  as  Potential  Anticancer  Agents.  Journal  of  Medicinal  Chemistry.  54:2320-­‐2330.  

Chen,  H.,  Y.  Yan,  T.L.  Davidson,  Y.  Shinkai,  and  M.  Costa.  2006.  Hypoxic  Stress  Induces  Dimethylated  Histone  H3  Lysine  9  through  Histone  Methyltransferase  G9a  in  Mammalian  Cells.  Cancer  Research.  66:9009-­‐9016.  

Chilà,  R.,  A.  Basana,  M.  Lupi,  F.  Guffanti,  E.  Gaudio,  A.  Rinaldi,  L.  Cascione,  V.  Restelli,  C.  Tarantelli,  F.  Bertoni,  G.  Damia,  and  L.  Carrassa.  2015.  Combined  inhibition  of  Chk1  and  Wee1  as  a  new  therapeutic  strategy  for  mantle  cell  lymphoma.  Oncotarget.  6:3394-­‐3408.  

Ciccia,  A.,  and  S.J.  Elledge.  2010.  The  DNA  Damage  Response:  Making  it  safe  to  play  with  knives.  Mol  Cell.  40:179-­‐204.  

Cimprich,  K.A.,  and  D.  Cortez.  2008.  ATR:  An  Essential  Regulator  of  Genome  Integrity.  Nature  reviews.  Molecular  cell  biology.  9:616-­‐627.  

Comerford,  K.M.,  M.O.  Leonard,  E.P.  Cummins,  K.T.  Fitzgerald,  M.  Beullens,  M.  Bollen,  and  C.T.  Taylor.  2006.  Regulation  of  protein  phosphatase  1γ  activity  in  hypoxia  through  increased  interaction  with  NIPP1:  Implications  for  cellular  metabolism.  Journal  of  Cellular  Physiology.  209:211-­‐218.  

Curtin,  N.J.  2012.  DNA  repair  dysregulation  from  cancer  driver  to  therapeutic  target.  Nat  Rev  Cancer.  12:801-­‐817.  

Davis,  A.J.,  B.P.C.  Chen,  and  D.J.  Chen.  2014.  DNA-­‐PK:  a  dynamic  enzyme  in  a  versatile  DSB  repair  pathway.  DNA  Repair  (Amst).  17:21-­‐29.  

De  Witt  Hamer,  P.C.,  S.E.  Mir,  D.  Noske,  C.J.F.  Van  Noorden,  and  T.  Würdinger.  2011.  WEE1  Kinase  Targeting  Combined  with  DNA-­‐Damaging  Cancer  Therapy  Catalyzes  Mitotic  Catastrophe.  Clinical  Cancer  Research.  17:4200-­‐4207.  

Deckbar,  D.,  P.A.  Jeggo,  and  M.  Lobrich.  2011.  Understanding  the  limitations  of  radiation-­‐induced  cell  cycle  checkpoints.  Critical  Reviews  in  Biochemistry  and  Molecular  Biology.  46:271-­‐283.  

Dewhirst,  M.W.,  Y.  Cao,  and  B.  Moeller.  2008.  Cycling  hypoxia  and  free  radicals  regulate  angiogenesis  and  radiotherapy  response.  Nat  Rev  Cancer.  8:425-­‐437.  

Dexheimer,  T.S.  2013.  DNA  Repair  Pathways  and  Mechanisms.19-­‐32.  Di  Micco,  R.,  M.  Fumagalli,  A.  Cicalese,  S.  Piccinin,  P.  Gasparini,  C.  Luise,  C.  Schurra,  M.  Garre,  P.  

Giovanni  Nuciforo,  A.  Bensimon,  R.  Maestro,  P.  Giuseppe  Pelicci,  and  F.  d/'Adda  di  Fagagna.  2006.  Oncogene-­‐induced  senescence  is  a  DNA  damage  response  triggered  by  DNA  hyper-­‐replication.  Nature.  444:638-­‐642.  

Diller,  L.,  J.  Kassel,  C.E.  Nelson,  M.A.  Gryka,  G.  Litwak,  M.  Gebhardt,  B.  Bressac,  M.  Ozturk,  S.J.  Baker,  and  B.  Vogelstein.  1990.  p53  functions  as  a  cell  cycle  control  protein  in  osteosarcomas.  Molecular  and  Cellular  Biology.  10:5772-­‐5781.  

Domingo-­‐Sananes,  M.R.,  O.  Kapuy,  T.  Hunt,  and  B.  Novak.  2011.  Switches  and  latches:  a  biochemical  tug-­‐of-­‐war  between  the  kinases  and  phosphatases  that  control  mitosis.  Philosophical  Transactions  of  the  Royal  Society  B:  Biological  Sciences.  366:3584-­‐3594.  

Domínguez-­‐Kelly,  R.,  Y.  Martín,  S.  Koundrioukoff,  M.E.  Tanenbaum,  V.A.J.  Smits,  H.  Medema  Ré,  M.  Debatisse,  and  R.  Freire.  2011.  Wee1  controls  genomic  stability  during  replication  by  regulating  the  Mus81-­‐Eme1  endonuclease.  J  Cell  Biol.  194:567-­‐579.  

Page 81: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

81

Ebbesen,  P.,  E.O.  Pettersen,  T.A.  Gorr,  G.  Jobst,  K.  Williams,  J.  Kieninger,  R.H.  Wenger,  S.  Pastorekova,  L.  Dubois,  P.  Lambin,  B.G.  Wouters,  T.  Van  Den  Beucken,  C.T.  Supuran,  L.  Poellinger,  P.  Ratcliffe,  A.  Kanopka,  A.  Görlach,  M.  Gasmann,  A.L.  Harris,  P.  Maxwell,  and  A.  Scozzafava.  2009.  Taking  advantage  of  tumor  cell  adaptations  to  hypoxia  for  developing  new  tumor  markers  and  treatment  strategies.  Journal  of  Enzyme  Inhibition  and  Medicinal  Chemistry.  24:1-­‐39.  

Enders,  G.H.  2010.  Gauchos  and  ochos:  a  Wee1-­‐Cdk  tango  regulating  mitotic  entry.  Cell  Division.  5:1-­‐7.  

Engelman,  J.A.,  J.  Luo,  and  L.C.  Cantley.  2006.  The  evolution  of  phosphatidylinositol  3-­‐kinases  as  regulators  of  growth  and  metabolism.  Nat  Rev  Genet.  7:606-­‐619.  

Flynn,  R.L.,  K.E.  Cox,  M.  Jeitany,  H.  Wakimoto,  A.R.  Bryll,  N.J.  Ganem,  F.  Bersani,  J.R.  Pineda,  M.L.  Suvà,  C.H.  Benes,  D.A.  Haber,  F.D.  Boussin,  and  L.  Zou.  2015.  Alternative  Lengthening  of  Telomeres  Renders  Cancer  Cells  Hypersensitive  to  ATR  Inhibitors.  Science  (New  York,  N.Y.).  347:273-­‐277.  

Fokas,  E.,  R.  Prevo,  E.M.  Hammond,  T.B.  Brunner,  W.G.  McKenna,  and  R.J.  Muschel.  2014.  Targeting  ATR  in  DNA  damage  response  and  cancer  therapeutics.  Cancer  Treatment  Reviews.  40:109-­‐117.  

Fokas,  E.,  R.  Prevo,  J.R.  Pollard,  P.M.  Reaper,  P.A.  Charlton,  B.  Cornelissen,  K.A.  Vallis,  E.M.  Hammond,  M.M.  Olcina,  W.  Gillies  McKenna,  R.J.  Muschel,  and  T.B.  Brunner.  2012.  Targeting  ATR  in  vivo  using  the  novel  inhibitor  VE-­‐822  results  in  selective  sensitization  of  pancreatic  tumors  to  radiation.  Cell  Death  &  Disease.  3:e441-­‐.  

Franken,  N.A.P.,  H.M.  Rodermond,  J.  Stap,  J.  Haveman,  and  C.  van  Bree.  2006.  Clonogenic  assay  of  cells  in  vitro.  Nat.  Protocols.  1:2315-­‐2319.  

Freiberg,  R.A.,  E.M.  Hammond,  M.J.  Dorie,  S.M.  Welford,  and  A.J.  Giaccia.  2006.  DNA  Damage  during  Reoxygenation  Elicits  a  Chk2-­‐Dependent  Checkpoint  Response.  Molecular  and  Cellular  Biology.  26:1598-­‐1609.  

Furnari,  B.,  N.  Rhind,  and  P.  Russell.  1997.  Cdc25  Mitotic  Inducer  Targeted  by  Chk1  DNA  Damage  Checkpoint  Kinase.  Science  (New  York,  N.Y.).  277:1495-­‐1497.  

Gaillard,  H.,  T.  Garcia-­‐Muse,  and  A.  Aguilera.  2015.  Replication  stress  and  cancer.  Nat  Rev  Cancer.  15:276-­‐289.  

Gallagher,  S.R.  2001.  One-­‐Dimensional  SDS  Gel  Electrophoresis  of  Proteins.  In  Current  Protocols  in  Molecular  Biology.  John  Wiley  &  Sons,  Inc.  

Gilad,  O.,  B.Y.  Nabet,  R.L.  Ragland,  D.W.  Schoppy,  K.D.  Smith,  A.C.  Durham,  and  E.J.  Brown.  2010.  Combining  ATR  suppression  with  oncogenic  Ras  synergistically  increases  genomic  instability,  causing  synthetic  lethality  or  tumorigenesis  in  a  dosage-­‐dependent  manner.  Cancer  Res.  70:9693-­‐9702.  

Green,  S.L.,  R.A.  Freiberg,  and  A.J.  Giaccia.  2001.  p21(Cip1)  and  p27(Kip1)  Regulate  Cell  Cycle  Reentry  after  Hypoxic  Stress  but  Are  Not  Necessary  for  Hypoxia-­‐Induced  Arrest.  Molecular  and  Cellular  Biology.  21:1196-­‐1206.  

Guo,  M.,  L.P.  Song,  Y.  Jiang,  W.  Liu,  Y.  Yu,  and  G.Q.  Chen.  2006.  Hypoxia-­‐mimetic  agents  desferrioxamine  and  cobalt  chloride  induce  leukemic  cell  apoptosis  through  different  hypoxia-­‐inducible  factor-­‐1alpha  independent  mechanisms.  Apoptosis.  11:67-­‐77.  

Halazonetis,  T.D.,  V.G.  Gorgoulis,  and  J.  Bartek.  2008.  An  Oncogene-­‐Induced  DNA  Damage  Model  for  Cancer  Development.  Science  (New  York,  N.Y.).  319:1352-­‐1355.  

Hall,  A.B.,  D.  Newsome,  Y.  Wang,  D.M.  Boucher,  B.  Eustace,  Y.  Gu,  B.  Hare,  M.A.  Johnson,  S.  Milton,  C.E.  Murphy,  D.  Takemoto,  C.  Tolman,  M.  Wood,  P.  Charlton,  J.D.  Charrier,  B.  Furey,  J.  Golec,  P.M.  Reaper,  and  J.R.  Pollard.  2014.  Potentiation  of  tumor  responses  to  DNA  damaging  therapy  by  the  selective  ATR  inhibitor  VX-­‐970.  Oncotarget.  5:5674-­‐5685.  

Page 82: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

82

Hammond,  E.M.,  N.C.  Denko,  M.J.  Dorie,  R.T.  Abraham,  and  A.J.  Giaccia.  2002.  Hypoxia  Links  ATR  and  p53  through  Replication  Arrest.  Molecular  and  Cellular  Biology.  22:1834-­‐1843.  

Hammond,  E.M.,  M.J.  Dorie,  and  A.J.  Giaccia.  2004.  Inhibition  of  ATR  Leads  to  Increased  Sensitivity  to  Hypoxia/Reoxygenation.  Cancer  Research.  64:6556-­‐6562.  

Hammond,  E.M.,  M.R.  Kaufmann,  and  A.J.  Giaccia.  2007.  Oxygen  sensing  and  the  DNA-­‐damage  response.  Current  Opinion  in  Cell  Biology.  19:680-­‐684.  

Hanahan,  D.,  and  Robert  A.  Weinberg.  2011.  Hallmarks  of  Cancer:  The  Next  Generation.  Cell.  144:646-­‐674.  

Hara,  E.,  Smith,  R.,  Parry,  D.,  Tahara,  H.,  Stone  S.,  and    Peters,  G.  1996.  Regulation  of  p16CDKN2  expression  and  its  implications  for  cell  immortalization  and  senescence.  Molecular  and  Cellular  Biology.  16:859–867.  

Harper,  J.W.,  and  S.J.  Elledge.  2007.  The  DNA  Damage  Response:  Ten  Years  After.  Molecular  Cell.  28:739-­‐745.  

Hasvold,  G.,  V.  Nähse-­‐Kumpf,  K.  Tkacz-­‐Stachowska,  E.K.  Rofstad,  and  R.G.  Syljuåsen.  2013.  The  Efficacy  of  CHK1  Inhibitors  Is  Not  Altered  by  Hypoxia,  but  Is  Enhanced  after  Reoxygenation.  Molecular  Cancer  Therapeutics.  12:705-­‐716.  

Hauge,  S.  2013.  WEE1-­‐inhibition  and  hypoxia:  The  impact  of  hypoxia  and  reoxygenation  on  the  S-­‐phase  effects  of  the  WEE1-­‐inhibitor  MK-­‐1775.  

Hauge,  S.,  C.  Naucke,  G.  Hasvold,  M.  Joel,  G.E.  Rødland,  P.  Juzenas,  T.  Stokke,  and  R.  Syljuåsen.  2016.  Combined  inhibition  of  Wee1  and  Chk1  gives  synergistic  DNA  damage  in  S-­‐phase  due  to  distinct  regulation  of  CDK  activity  and  CDC45  loading.  Institute  for  Cancer  Research,  Norwegian  Radium  Hospital.  

Hirai,  H.,  Y.  Iwasawa,  M.  Okada,  T.  Arai,  T.  Nishibata,  M.  Kobayashi,  T.  Kimura,  N.  Kaneko,  J.  Ohtani,  K.  Yamanaka,  H.  Itadani,  I.  Takahashi-­‐Suzuki,  K.  Fukasawa,  H.  Oki,  T.  Nambu,  J.  Jiang,  T.  Sakai,  H.  Arakawa,  T.  Sakamoto,  T.  Sagara,  T.  Yoshizumi,  S.  Mizuarai,  and  H.  Kotani.  2009.  Small-­‐molecule  inhibition  of  Wee1  kinase  by  MK-­‐1775  selectively  sensitizes  p53-­‐deficient  tumor  cells  to  DNA-­‐damaging  agents.  Molecular  Cancer  Therapeutics.  8:2992-­‐3000.  

Holloman,  W.K.  2011.  Unraveling  the  mechanism  of  BRCA2  in  homologous  recombination.  Nat  Struct  Mol  Biol.  18:748-­‐754.  

Holthausen,  J.T.,  C.  Wyman,  and  R.  Kanaar.  2010.  Regulation  of  DNA  strand  exchange  in  homologous  recombination.  DNA  Repair.  9:1264-­‐1272.  

Horsman,  M.R.,  Kogel,  A.v.d.  2009.  Therapeutic  approaches  to  tumour  hypoxia.  In  Basic  clinical  radiobiology.  Hodder  Arnold.  

Håve,  T.  2015.  DNA  damage  signalling  factors  protecting  cancer  cells  against  hypoxia-­‐induced  replication  stress.  

Jackson,  S.P.,  and  J.  Bartek.  2009.  The  DNA-­‐damage  response  in  human  biology  and  disease.  Nature.  461:1071-­‐1078.  

Jardim,  M.J.,  Q.  Wang,  R.  Furumai,  T.  Wakeman,  B.K.  Goodman,  and  X.-­‐F.  Wang.  2009.  Reduced  ATR  or  Chk1  Expression  Leads  to  Chromosome  Instability  and  Chemosensitization  of  Mismatch  Repair–deficient  Colorectal  Cancer  Cells.  Molecular  Biology  of  the  Cell.  20:3801-­‐3809.  

Jones,  R.M.,  O.  Mortusewicz,  I.  Afzal,  M.  Lorvellec,  P.  Garcia,  T.  Helleday,  and  E.  Petermann.  2013.  Increased  replication  initiation  and  conflicts  with  transcription  underlie  Cyclin  E-­‐induced  replication  stress.  Oncogene.  32:3744-­‐3753.  

Jorjani,  P.,  Ozturk,  S.S.  1999.  Effects  of  cell  density  and  temperature  on  oxygen  consumption  rate  for  different  mammalian  cell  lines.  Biotechnology  and  Bioengineering.  64:349-­‐356.  

Kastan,  M.B.,  and  J.  Bartek.  2004.  Cell-­‐cycle  checkpoints  and  cancer.  Nature.  432:316-­‐323.  Kawabe,  T.  2004.  G2  checkpoint  abrogators  as  anticancer  drugs.  Molecular  Cancer  Therapeutics.  

3:513-­‐519.  

Page 83: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

83

Kotsantis,  P.,  R.M.  Jones,  M.R.  Higgs,  and  E.  Petermann.  2015.  Chapter  Three  -­‐  Cancer  Therapy  and  Replication  Stress:  Forks  on  the  Road  to  Perdition.  In  Advances  in  Clinical  Chemistry.  Vol.  Volume  69.  S.M.  Gregory,  editor.  Elsevier.  91-­‐138.  

Krajewska,  M.,  A.M.  Heijink,  Y.J.W.M.  Bisselink,  R.I.  Seinstra,  H.H.W.  Sillje,  E.G.E.  de  Vries,  and  M.A.T.M.  van  Vugt.  2013.  Forced  activation  of  Cdk1  via  wee1  inhibition  impairs  homologous  recombination.  Oncogene.  32:3001-­‐3008.  

Kreahling,  J.M.,  P.  Foroutan,  D.  Reed,  G.  Martinez,  T.  Razabdouski,  M.M.  Bui,  M.  Raghavan,  D.  Letson,  R.J.  Gillies,  and  S.  Altiok.  2013.  Wee1  Inhibition  by  MK-­‐1775  Leads  to  Tumor  Inhibition  and  Enhances  Efficacy  of  Gemcitabine  in  Human  Sarcomas.  PLoS  One.  8.  

Kreahling,  J.M.,  J.Y.  Gemmer,  D.  Reed,  D.  Letson,  M.  Bui,  and  S.  Altiok.  2012.  MK1775,  A  Selective  Wee1  Inhibitor,  Shows  Single-­‐Agent  Antitumor  Activity  Against  Sarcoma  Cells.  Mol  Cancer  Ther.  11:174-­‐182.  

Kumagai,  A.,  and  W.G.  Dunphy.  2000.  Claspin,  a  Novel  Protein  Required  for  the  Activation  of  Chk1  during  a  DNA  Replication  Checkpoint  Response  in  <em>Xenopus</em>  Egg  Extracts.  Molecular  Cell.  6:839-­‐849.  

Kumagai,  A.,  J.  Lee,  H.Y.  Yoo,  and  W.G.  Dunphy.  2006.  TopBP1  Activates  the  ATR-­‐ATRIP  Complex.  Cell.  124:943-­‐955.  

Kumareswaran,  R.,  O.  Ludkovski,  A.  Meng,  J.  Sykes,  M.  Pintilie,  and  R.G.  Bristow.  2012.  Chronic  hypoxia  compromises  repair  of  DNA  double-­‐strand  breaks  to  drive  genetic  instability.  Journal  of  Cell  Science.  125:189-­‐199.  

Lakin  ND,  H.B.,  Jackson  SP.  1999.  The  ataxia-­‐telangiectasia  related  protein  ATR  mediates  DNA-­‐dependent  phosphorylation  of  p53.  Oncogene.  18:3989-­‐3995.  

Lavin,  M.F.  2008.  Ataxia-­‐telangiectasia:  from  a  rare  disorder  to  a  paradigm  for  cell  signalling  and  cancer.  Nature  reviews.  Molecular  cell  biology.  9:759-­‐769.  

Lee,  D.-­‐H.,  and  D.  Chowdhury.  2011.  What  goes  on  must  come  off:  phosphatases  gate-­‐crash  the  DNA  damage  response.  Trends  in  biochemical  sciences.  36:569-­‐577.  

Lee,  J.-­‐H.,  and  T.T.  Paull.  2004.  Direct  Activation  of  the  ATM  Protein  Kinase  by  the  Mre11/Rad50/Nbs1  Complex.  Science  (New  York,  N.Y.).  304:93-­‐96.  

Liu,  Y.,  J.A.  Parry,  A.  Chin,  S.  Duensing,  and  A.  Duensing.  2008.  Soluble  histone  H2AX  is  induced  by  DNA  replication  stress  and  sensitizes  cells  to  undergo  apoptosis.  Molecular  Cancer.  7:61.  

López-­‐Contreras  Aé,  J.,  and  O.  Fernandez-­‐Capetillo.  2010.  The  ATR  barrier  to  replication-­‐born  DNA  damage.  DNA  Repair  (Amst).  9:1249-­‐1255.  

Lou,  Z.,  K.  Minter-­‐Dykhouse,  S.  Franco,  M.  Gostissa,  M.A.  Rivera,  A.  Celeste,  J.P.  Manis,  J.  van  Deursen,  A.  Nussenzweig,  T.T.  Paull,  F.W.  Alt,  and  J.  Chen.  2006.  MDC1  Maintains  Genomic  Stability  by  Participating  in  the  Amplification  of  ATM-­‐Dependent  DNA  Damage  Signals.  Molecular  Cell.  21:187-­‐200.  

Lukas,  C.,  F.  Melander,  M.  Stucki,  J.  Falck,  S.  Bekker-­‐Jensen,  M.  Goldberg,  Y.  Lerenthal,  S.P.  Jackson,  J.  Bartek,  and  J.  Lukas.  2004.  Mdc1  couples  DNA  double-­‐strand  break  recognition  by  Nbs1  with  its  H2AX-­‐dependent  chromatin  retention.  The  EMBO  Journal.  23:2674-­‐2683.  

Magdalou,  I.,  B.S.  Lopez,  P.  Pasero,  and  S.A.E.  Lambert.  2014.  The  causes  of  replication  stress  and  their  consequences  on  genome  stability  and  cell  fate.  Seminars  in  Cell  &  Developmental  Biology.  30:154-­‐164.  

Mahaney,  B.L.,  K.  Meek,  and  S.P.  Lees-­‐Miller.  2009.  Repair  of  ionizing  radiation-­‐induced  DNA  double  strand  breaks  by  non-­‐homologous  end-­‐joining.  Biochemical  Journal.  417:639-­‐650.  

Malumbres,  M.,  and  M.  Barbacid.  2009.  Cell  cycle,  CDKs  and  cancer:  a  changing  paradigm.  Nat  Rev  Cancer.  9:153-­‐166.  

Maréchal,  A.,  and  L.  Zou.  2013.  DNA  Damage  Sensing  by  the  ATM  and  ATR  Kinases.  Cold  Spring  Harbor  Perspectives  in  Biology.  5.  

Page 84: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

84

Matsuoka,  S.,  M.  Huang,  and  S.J.  Elledge.  1998.  Linkage  of  ATM  to  Cell  Cycle  Regulation  by  the  Chk2  Protein  Kinase.  Science  (New  York,  N.Y.).  282:1893-­‐1897.  

McGowan,  C.H.,  and  P.  Russell.  1995.  Cell  cycle  regulation  of  human  WEE1.  The  EMBO  Journal.  14:2166-­‐2175.  

McKeown,  S.R.  2014.  Defining  normoxia,  physoxia  and  hypoxia  in  tumours—implications  for  treatment  response.  The  British  Journal  of  Radiology.  87.  

Medema,  R.H.,  and  L.  Macurek.  2012.  Checkpoint  control  and  cancer.  Oncogene.  31:2601-­‐2613.  Mohni,  K.N.,  G.M.  Kavanaugh,  and  D.  Cortez.  2014.  ATR  pathway  inhibition  is  synthetically  lethal  in  

cancer  cells  with  ERCC1  deficiency.  Cancer  Res.  74:2835-­‐2845.  Moorhead,  G.B.G.,  L.  Trinkle-­‐Mulcahy,  and  A.  Ulke-­‐Lemee.  2007.  Emerging  roles  of  nuclear  protein  

phosphatases.  Nature  reviews.  Molecular  cell  biology.  8:234-­‐244.  Mueller,  S.,  and  D.A.  Haas-­‐Kogan.  2015.  WEE1  Kinase  As  a  Target  for  Cancer  Therapy.  Journal  of  

Clinical  Oncology.  33:3485-­‐3487.  Niforou,  K.M.,  A.  K.  Anagnostopoulos,  K.  Vougas,  C.  Kittas,  V.  G.  Gorgoulis  and  G.  T.  Tsangaris.  

2008.  The  proteome  profile  of  the  human  osteosarcoma  U2OS  cell  line.  Cancer  Genomics  Proteomics.  5:63-­‐78.  

Nordlund,  P.,  and  P.  Reichard.  2006.  Ribonucleotide  Reductases.  Annual  Review  of  Biochemistry.  75:681-­‐706.  

Olcina,  M.,  P.S.  Lecane,  and  E.M.  Hammond.  2010.  Targeting  hypoxic  cells  through  the  DNA  damage  response.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research.  16:5624-­‐5629.  

Overgaard,  J.  2007.  Hypoxic  Radiosensitization:  Adored  and  Ignored.  Journal  of  Clinical  Oncology.  25:4066-­‐4074.  

Park,  Y.-­‐B.,  M.J.  Park,  K.  Kimura,  K.  Shimizu,  S.H.  Lee,  and  J.  Yokota.  2002.  Alterations  in  the  INK4a/ARF  locus  and  their  effects  on  the  growth  of  human  osteosarcoma  cell  lines.  Cancer  Genetics  and  Cytogenetics.  133:105-­‐111.  

Pérez-­‐Cadahía,  B.,  B.  Drobic,  and  J.R.  Davie.  2009.  H3  phosphorylation:  dual  role  in  mitosis  and  interphaseThis  paper  is  one  of  a  selection  of  papers  published  in  this  Special  Issue  entitled  30th  Annual  International  Asilomar  Chromatin  and  Chromosomes  Conference  and  has  undergone  the  Journal’s  usual  peer  review  process.  Biochemistry  and  Cell  Biology.  87:695-­‐709.  

Petermann,  E.,  M.  Woodcock,  and  T.  Helleday.  2010.  Chk1  promotes  replication  fork  progression  by  controlling  replication  initiation.  Proc  Natl  Acad  Sci  U  S  A.  107:16090-­‐16095.  

Petersen,  L.,  G.  Hasvold,  J.  Lukas,  J.  Bartek,  and  R.G.  Syljuåsen.  2010.  p53-­‐dependent  G1  arrest  in  1st  or  2nd  cell  cycle  may  protect  human  cancer  cells  from  cell  death  after  treatment  with  ionizing  radiation  and  Chk1  inhibitors.  Cell  Proliferation.  43:365-­‐371.  

Pires,  I.M.,  Z.  Bencokova,  M.  Milani,  L.K.  Folkes,  J.L.  Li,  M.R.  Stratford,  E.M.  Hammond,  and  A.L.  Harris.  2010.  Effects  of  acute  versus  chronic  hypoxia  on  DNA  damage  responses  and  genomic  instability.  70:925-­‐935.  

Pires,  I.M.,  M.M.  Olcina,  S.  Anbalagan,  J.R.  Pollard,  P.M.  Reaper,  P.A.  Charlton,  W.G.  McKenna,  and  E.M.  Hammond.  2012.  Targeting  radiation-­‐resistant  hypoxic  tumour  cells  through  ATR  inhibition.  British  Journal  of  Cancer.  107:291-­‐299.  

Rahman,  M.  2006.  Introduction  to  flow  cytometry.  Serotec  Ltd.  Rana,  T.M.  2007.  Illuminating  the  silence:  understanding  the  structure  and  function  of  small  RNAs.  

Nature  reviews.  Molecular  cell  biology.  8:23-­‐36.  Rebelo,  S.,  M.  Santos,  F.  Martins,  E.F.  da  Cruz  e  Silva,  and  O.A.B.  da  Cruz  e  Silva.  2015.  Protein  

phosphatase  1  is  a  key  player  in  nuclear  events.  Cellular  Signalling.  27:2589-­‐2598.  Russell,  M.R.,  K.  Levin,  J.A.  Rader,  L.  Belcastro,  Y.  Li,  D.  Martinez,  B.  Pawel,  S.D.  Shumway,  J.M.  

Maris,  and  K.A.  Cole.  2013.  COMBINATION  THERAPY  TARGETING  THE  CHK1  AND  WEE1  

Page 85: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

85

KINASES  DEMONSTRATES  THERAPEUTIC  EFFICACY  IN  NEUROBLASTOMA.  Cancer  Res.  73:776-­‐784.  

Ruzankina,  Y.,  C.  Pinzon-­‐Guzman,  A.  Asare,  T.  Ong,  L.  Pontano,  G.  Cotsarelis,  V.P.  Zediak,  M.  Velez,  A.  Bhandoola,  and  E.J.  Brown.  2007.  Deletion  of  the  Developmentally  Essential  Gene  ATR  in  Adult  Mice  Leads  to  Age-­‐Related  Phenotypes  and  Stem  Cell  Loss.  Cell  stem  cell.  1:113-­‐126.  

Saintigny,  Y.,  F.  Delacôte,  G.  Varès,  F.  Petitot,  S.  Lambert,  D.  Averbeck,  and  B.S.  Lopez.  2001.  Characterization  of  homologous  recombination  induced  by  replication  inhibition  in  mammalian  cells.  The  EMBO  Journal.  20:3861-­‐3870.  

Sanchez,  Y.,  C.  Wong,  R.S.  Thoma,  R.  Richman,  Z.  Wu,  H.  Piwnica-­‐Worms,  and  S.J.  Elledge.  1997.  Conservation  of  the  Chk1  Checkpoint  Pathway  in  Mammals:  Linkage  of  DNA  Damage  to  Cdk  Regulation  Through  Cdc25.  Science  (New  York,  N.Y.).  277:1497-­‐1501.  

Sanjiv,  K.,  A.  Hagenkort,  José  M.  Calderón-­‐Montaño,  T.  Koolmeister,  Philip  M.  Reaper,  O.  Mortusewicz,  Sylvain  A.  Jacques,  Raoul  V.  Kuiper,  N.  Schultz,  M.  Scobie,  Peter  A.  Charlton,  John  R.  Pollard,  Ulrika  W.  Berglund,  M.  Altun,  and  T.  Helleday.  2016.  Cancer-­‐Specific  Synthetic  Lethality  between  ATR  and  CHK1  Kinase  Activities.  Cell  Reports.  14:298-­‐309.  

Sarkaria,  J.N.,  E.C.  Busby,  R.S.  Tibbetts,  P.  Roos,  Y.  Taya,  L.M.  Karnitz,  and  R.T.  Abraham.  1999.  Inhibition  of  ATM  and  ATR  Kinase  Activities  by  the  Radiosensitizing  Agent,  Caffeine.  Cancer  Research.  59:4375-­‐4382.  

Semenza,  G.L.  1998.  Hypoxia-­‐inducible  factor  1:  master  regulator  of  O2  homeostasis.  Current  Opinion  in  Genetics  &  Development.  8:588-­‐594.  

Semenza,  G.L.  2012.  Hypoxia-­‐Inducible  Factors  in  Physiology  and  Medicine.  Cell.  148:399-­‐408.  Shapiro,  H.M.  2003.  Practical  Flow  Cytometry.  John  Wiley  &  Sons,  Inc.,  Hoboken,  New  Jersey.  Sherr,  C.J.,  and  J.M.  Roberts.  1999.  CDK  inhibitors:  positive  and  negative  regulators  of  G1-­‐phase  

progression.  Genes  &  Development.  13:1501-­‐1512.  Shieh,  S.Y.,  J.  Ahn,  K.  Tamai,  Y.  Taya,  and  C.  Prives.  2000.  The  human  homologs  of  checkpoint  

kinases  Chk1  and  Cds1  (Chk2)  phosphorylate  p53  at  multiple  DNA  damage-­‐inducible  sites.  Genes  &  Development.  14:289-­‐300.  

Stiff,  T.,  M.  O’Driscoll,  N.  Rief,  K.  Iwabuchi,  M.  Löbrich,  and  P.A.  Jeggo.  2004.  ATM  and  DNA-­‐PK  Function  Redundantly  to  Phosphorylate  H2AX  after  Exposure  to  Ionizing  Radiation.  Cancer  Research.  64:2390-­‐2396.  

Stott,  F.J.,  S.  Bates,  M.C.  James,  B.B.  McConnell,  M.  Starborg,  S.  Brookes,  I.  Palmero,  K.  Ryan,  E.  Hara,  K.H.  Vousden,  and  G.  Peters.  1998.  The  alternative  product  from  the  human  CDKN2A  locus,  p14(ARF),  participates  in  a  regulatory  feedback  loop  with  p53  and  MDM2.  The  EMBO  Journal.  17:5001-­‐5014.  

Stracker,  T.H.,  and  J.H.J.  Petrini.  2011.  The  MRE11  complex:  starting  from  the  ends.  Nature  reviews.  Molecular  cell  biology.  12:90-­‐103.  

Stucki,  M.,  and  S.P.  Jackson.  2006.  γH2AX  and  MDC1:  Anchoring  the  DNA-­‐damage-­‐response  machinery  to  broken  chromosomes.  DNA  Repair.  5:534-­‐543.  

Sultana,  R.,  T.  Abdel-­‐Fatah,  C.  Perry,  P.  Moseley,  N.  Albarakti,  V.  Mohan,  C.  Seedhouse,  S.  Chan,  and  S.  Madhusudan.  2013.  Ataxia  Telangiectasia  Mutated  and  Rad3  Related  (ATR)  Protein  Kinase  Inhibition  Is  Synthetically  Lethal  in  XRCC1  Deficient  Ovarian  Cancer  Cells.  PLoS  ONE.  8:e57098.  

Sun,  Y.,  X.  Jiang,  S.  Chen,  N.  Fernandes,  and  B.D.  Price.  2005.  A  role  for  the  Tip60  histone  acetyltransferase  in  the  acetylation  and  activation  of  ATM.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America.  102:13182-­‐13187.  

Syljuåsen,  R.G.,  C.S.  Sørensen,  L.T.  Hansen,  K.  Fugger,  C.  Lundin,  F.  Johansson,  T.  Helleday,  M.  Sehested,  J.  Lukas,  and  J.  Bartek.  2005.  Inhibition  of  Human  Chk1  Causes  Increased  Initiation  of  DNA  Replication,  Phosphorylation  of  ATR  Targets,  and  DNA  Breakage.  Molecular  and  Cellular  Biology.  25:3553-­‐3562.  

Page 86: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

86

Sørensen,  C.S.,  and  R.G.  Syljuåsen.  2012.  Safeguarding  genome  integrity:  the  checkpoint  kinases  ATR,  CHK1  and  WEE1  restrain  CDK  activity  during  normal  DNA  replication.  Nucleic  Acids  Research.  40:477-­‐486.  

Sørensen,  C.S.,  R.G.  Syljuåsen,  J.  Falck,  T.  Schroeder,  L.  Rönnstrand,  K.K.  Khanna,  B.-­‐B.  Zhou,  J.  Bartek,  and  J.  Lukas.  2003.  Chk1  regulates  the  S  phase  checkpoint  by  coupling  the  physiological  turnover  and  ionizing  radiation-­‐induced  accelerated  proteolysis  of  Cdc25A.  Cancer  Cell.  3:247-­‐258.  

Tatum,  J.L.,  G.J.  Kelloff,  R.J.  Gillies,  J.M.  Arbeit,  J.M.  Brown,  K.S.  Chao,  J.D.  Chapman,  W.C.  Eckelman,  A.W.  Fyles,  A.J.  Giaccia,  R.P.  Hill,  C.J.  Koch,  M.C.  Krishna,  K.A.  Krohn,  J.S.  Lewis,  R.P.  Mason,  G.  Melillo,  A.R.  Padhani,  G.  Powis,  J.G.  Rajendran,  R.  Reba,  S.P.  Robinson,  G.L.  Semenza,  H.M.  Swartz,  P.  Vaupel,  D.  Yang,  B.  Croft,  J.  Hoffman,  G.  Liu,  H.  Stone,  and  D.  Sullivan.  2006.  Hypoxia:  importance  in  tumor  biology,  noninvasive  measurement  by  imaging,  and  value  of  its  measurement  in  the  management  of  cancer  therapy.  Int  J  Radiat  Biol.  82:699-­‐757.  

Toledo,  L.I.,  M.  Murga,  R.  Zur,  R.  Soria,  A.  Rodriguez,  S.  Martinez,  J.  Oyarzabal,  J.  Pastor,  J.R.  Bischoff,  and  O.  Fernandez-­‐Capetillo.  2011.  A  cell-­‐based  screen  identifies  ATR  inhibitors  with  synthetic  lethal  properties  for  cancer-­‐associated  mutations.  Nat  Struct  Mol  Biol.  18:721-­‐727.  

Unciti-­‐Broceta,  A.,  M.N.  Bacon,  and  M.  Bradley.  2010.  Strategies  for  the  Preparation  of  Synthetic  Transfection  Vectors.  296:15-­‐49.  

Vaupel,  P.,  F.  Kallinowski,  and  P.  Okunieff.  1989.  Blood  Flow,  Oxygen  and  Nutrient  Supply,  and  Metabolic  Microenvironment  of  Human  Tumors:  A  Review.  Cancer  Research.  49:6449-­‐6465.  

Verbon,  E.H.,  J.A.  Post,  and  J.  Boonstra.  2012.  The  influence  of  reactive  oxygen  species  on  cell  cycle  progression  in  mammalian  cells.  Gene.  511:1-­‐6.  

Walworth,  N.,  S.  Davey,  and  D.  Beach.  1993.  Fission  yeast  chkl  protein  kinase  links  the  rad  checkpoint  pathway  to  cdc2.  Nature.  363:368-­‐371.  

Watanabe,  N.,  H.  Arai,  J.  Iwasaki,  M.  Shiina,  K.  Ogata,  T.  Hunter,  and  H.  Osada.  2005.  Cyclin-­‐dependent  kinase  (CDK)  phosphorylation  destabilizes  somatic  Wee1  via  multiple  pathways.  Proc  Natl  Acad  Sci  U  S  A.  102:11663-­‐11668.  

Watanabe,  N.,  H.  Arai,  Y.  Nishihara,  M.  Taniguchi,  N.  Watanabe,  T.  Hunter,  and  H.  Osada.  2004.  M-­‐phase  kinases  induce  phospho-­‐dependent  ubiquitination  of  somatic  Wee1  by  SCF(β-­‐TrCP).  Proc  Natl  Acad  Sci  U  S  A.  101:4419-­‐4424.  

Watanabe,  N.,  M.  Broome,  and  T.  Hunter.  1995.  Regulation  of  the  human  WEE1Hu  CDK  tyrosine  15-­‐kinase  during  the  cell  cycle.  The  EMBO  Journal.  14:1878-­‐1891.  

Weber,  A.M.,  and  A.J.  Ryan.  2015.  ATM  and  ATR  as  therapeutic  targets  in  cancer.  Pharmacology  &  Therapeutics.  149:124-­‐138.  

Wersto,  R.P.,  Chrest,  F.  J,  et  al.  2001.  Doublet  discrimination  in  DNA  cell-­‐cycle  analysis.  Cytometry.  46:296-­‐306.  

Wouters,  B.G.,  and  M.  Koritzinsky.  2008.  Hypoxia  signalling  through  mTOR  and  the  unfolded  protein  response  in  cancer.  Nat  Rev  Cancer.  8:851-­‐864.  

Xiaofei,  E.,  X.,  and  T.F.  Kowalik.  2014.  The  DNA  Damage  Response  Induced  by  Infection  with  Human  Cytomegalovirus  and  Other  Viruses.  Viruses.  6:2155-­‐2185.  

Xu,  B.,  Z.  Sun,  Z.  Liu,  H.  Guo,  Q.  Liu,  H.  Jiang,  Y.  Zou,  Y.  Gong,  J.A.  Tischfield,  and  C.  Shao.  2011.  Replication  Stress  Induces  Micronuclei  Comprising  of  Aggregated  DNA  Double-­‐Strand  Breaks.  PLoS  ONE.  6:e18618.  

Yun,  M.H.,  and  K.  Hiom.  2009.  CtIP-­‐BRCA1  modulates  the  choice  of  DNA  double-­‐strand  break  repair  pathway  throughout  the  cell  cycle.  Nature.  459:460-­‐463.  

Page 87: DNA damage signaling factors protecting cancer cells against replication stress · 2017-12-07 · DNA damage signaling factors protecting cancer cells against replication stress Tine

87

Zeman,  M.K.,  and  K.A.  Cimprich.  2014.  Causes  and  consequences  of  replication  stress.  Nat  Cell  Biol.  16:2-­‐9.  

Zhang,  Y.,  and  T.  Hunter.  2014.  Roles  of  Chk1  in  Cell  Biology  and  Cancer  Therapy.  International  journal  of  cancer.  Journal  international  du  cancer.  134.  

Zhou,  B.-­‐B.S.,  and  S.J.  Elledge.  2000.  The  DNA  damage  response:  putting  checkpoints  in  perspective.  Nature.  408:433-­‐439.  

Zou,  L.,  and  S.J.  Elledge.  2003.  Sensing  DNA  Damage  Through  ATRIP  Recognition  of  RPA-­‐ssDNA  Complexes.  Science  (New  York,  N.Y.).  300:1542-­‐1548.