doc.: ieee 802.11-04/xxxr0 submission broady cash, justin mcnew, doug kavner, wayne fisher slide 1...

75
Slide 1 doc.: IEEE 802.11-04/xxxr0 Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fish 5.9 GHz WIRELESS ACCESS IN VEHICULAR ENVIRONMENTS / DEDICATED SHORT RANGE COMMUNICATION (5.9 WAVE / DSRC) CONCEPT UPDATE July 2004 A

Upload: collin-nichols

Post on 31-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Slide 1

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

5.9 GHz

WIRELESS ACCESS IN VEHICULAR ENVIRONMENTS / DEDICATED SHORT

RANGE COMMUNICATION

(5.9 WAVE / DSRC)

CONCEPT UPDATE

July 2004 A

July 2004

Slide 2

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

5.9 WAVE / DSRC CONCEPT

5.9 GHz WAVE / DSRC (Dedicated Short Range Communications) is a short to medium range communications service that supports both Public Safety and Private operations in roadside-to-vehicle and vehicle-to-vehicle communication environments. 5.9 WAVE / DSRC is meant to be a complement to cellular communications by providing very high data transfer rates in circumstances where minimizing latency in the communication link and isolating relatively small communication zones are important.

A

July 2004

Slide 3

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

5.9 WAVE / DSRC ENVIRONMENT

Internet

RSU

RSU

Database

DNS-DHCP

WAVE Applications

GPI Applications

GPI Applications

WAVE Applications

Zone 1

Zone 2

Router

Servers

Data Center

July 2004

Slide 4

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Frequency (GHz)

5.8

50

5.8

55

5.8

60

5.8

65

5.8

70

5.8

75

5.8

80

5.8

85

5.8

90

5.8

95

5.9

00

5.9

05

5.9

10

5.9

15

5.9

20

5.9

25

5.8

25

5.8

30

5.8

35

5.8

40

5.8

45

Canadian Special License Zones*

Uplink

Downlink

Ch 172 Ch 174 Ch 176 Ch 180 Ch 184Ch 182Ch 178

Public Safety/ Private

Public Safety IntersectionsControl

Channel

PublicSafety/Private

PublicSafety/Private

IntersectionsControl High AvailDedicated Public Safety

Short Rng ServiceMed Rng ServiceShared Public Safety/Private

Public Safety/ Private

Public Safety

5.9 GHz DSRC BAND PLAN

40 dBm

33 dBm

23 dBm

Power Limit

Power Limit

Power Limit

44.8 dBm

July 2004

Slide 5

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

5.9 WAVE / DSRC USAGE REQUIREMENTS • INTEROPERABILITY of UNITS from DIFFERENT MANUFACTURES

• PUBLIC SAFETY and PRIVATE APPLICATIONS SHARE UTILIZATION of the 5.9 GHz BAND

• PUBLIC SAFETY MESSAGES HAVE PRIORITY

• 100 ms or less ACCESS TIME to Safety Messages

• CONTROL CHANNEL MUST NOT FAIL UNDER CONGESTED CONDITIONS

• HIGH TRANSFER RATE EFFICIENCY DURING HIGH SPEED MOBILE DATA TRANSACTIONS

July 2004

Slide 6

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

5.9 WAVE / DSRC USAGE REQUIREMENTS (continued)

• WAVE-SPECIFIC APPLICATION SUPPORT

• NON-WAVE SPECIFIC APPLICATION SUPPORT

• GENERAL PURPOSE INTERNET (GPI) APPLICATION SUPPORT

• PRIVATE and SECURE OPERATION

• RSUs CONTROL LICENSED CHANNELS IN THE DESIGNATED COMMUNICATIONS ZONE

• OBUs TRANSFER SAFETY DATA ON WIDE AREA CHANNELS WITH ONLY THE CSMA MECHANISM RESTRICTION

July 2004

Slide 7

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

• Receipt of Vehicle Safety Messages must not be interrupted for extended periods of time. Extended periods of time probably means somewhere between 100 and 500 ms or more

• Some transactions will take more than 100 ms to complete and we want to maximize the efficiency of channel usage

• The Car companies want the ability to implement Vehicle Safety Messages and the Cooperative Collision Avoidance Application with a one channel radio

5.9 WAVE / DSRC USAGE REQUIREMENTS (continued)

July 2004

Slide 8

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

PUBLIC SAFETY Messages Have Priority

• Management Frames have a higher priority than any priority of data frame. Beacon Frames have the highest priority but only one level. Levels of Priority must be added to Action Frames.

• High Priority Public Safety Broadcast Messages are sent in Wave Service Information elements in Beacon Frames from RSUs or Action Management Frames from OBUs.

• Quality of Service Data Frames have priority levels that allow further delineation of priority among applications

• Private Application Messages are sent in Action Frames on the Control Channel and Quality of Service Data Frames in Service Channels

July 2004

Slide 9

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

SME(802.11)

WME(802.11p/1609.3)

Updated WAVE Architecture

PLME(802.11p)

PHY (802.11p/ASTM E2213)

MAC (802.11p/ASTM E2213)

Channelization (1609.4)

Logical Link Control (802.2)

Networking Services (IPv6 – RFC 2460)

MLME(802.11p)

UDP

SNMP agent(RFC 1157)

IVNOBU

App 1

UDP (RFC 768)

App 2 App 3

Networking Services

IVNL2/L1

IVNL2/L1

Notes:1. Each device may have a single SNMP

manager servicing multiple applications.2. Role of 1609.1 & 1609.2 needs further

discussion. For now, the applications areshown in a general context to focus onthe lower layers.

SNMP MIB

Channelizer (1609.4)

July 2004

Slide 10

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Possible 5.9 WAVE Control and Service Channel Implementation Options

• Short Public Safety Messages may be included as elements in Beacon and Action Frames to be Broadcast on the Control Channel

• High Priority messages may be Broadcast on all the service channels

• Extended Public Safety Message exchanges may occur with Unicast data frames on Service channels

• Private Application Messages may be Broadcast in Action Frames on the Control Channel with strict interval and size limits (as listed on a following slide)

• Private Application Messages may be Broadcast or Unicast on a selected service channel

• Private Application Message exchanges occur with unicast data frames on Service channels

July 2004

Slide 11

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Frequency (GHz)

5.8

50

5.8

55

5.8

60

5.8

65

5.8

70

5.8

75

5.8

80

5.8

85

5.8

90

5.8

95

5.9

00

5.9

05

5.9

10

5.9

15

5.9

20

5.9

25

5.8

25

5.8

30

5.8

35

5.8

40

5.8

45

IntersectionsControl High AvailDedicated Public Safety

Short Rng ServiceMed Rng ServiceShared Public Safety/Private

Control Channel Rules

1. Broadcast- Beacon Frame (RSUs only) - Action Frame (Safety - NO limits) - Action Frame (Private Messages - subject to limits shown on the following slide)

2. Unicast (RSU only ) - Action Frame (Safety - NO limits)

- Action Frame (Private subject to limits)

July 2004

Slide 12

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Frequency (GHz)

5.8

50

5.8

55

5.8

60

5.8

65

5.8

70

5.8

75

5.8

80

5.8

85

5.8

90

5.8

95

5.9

00

5.9

05

5.9

10

5.9

15

5.9

20

5.9

25

5.8

25

5.8

30

5.8

35

5.8

40

5.8

45

IntersectionsControl High AvailDedicated Public Safety

Short Rng ServiceMed Rng ServiceShared Public Safety/Private

Service Channel Rules

1. Broadcast - Beacon Frame (RSUs only)

- Action Frame (Safety NO limits) - Data Frame - All other frames

2. Unicast - Data Frame

- All Other Frames

July 2004

Slide 13

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

ACTION FRAME CONTROL CHANNEL USAGE LIMITS

        Below is a table that defines the limits of Control Channel usage for private applications using broadcast or unicast action frame transmissions.

1.      For Private Applications:                                                       RSUs                OBUs  Maximum Data Transmission Duration: 750 usec          580 usec  Minimum Interval between Data Transmissions: 100 msec*           750 msec

*20 msec Minimum Transmissions Intervals are allowed in low power (20 dBm EIRP) operations.

2.      Applications are not allowed to respond on the Control Channel to announcements of RSU or OBU Application Services.

 

July 2004

Slide 14

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

DEFINITIONS

WAVE Beacon:

• A WAVE beacon is composed of a WAVE Service Information Element added to the IEEE 802.11 beacon.

• The WAVE Service Information Element is composed of a Provider Service Table (PST), a WAVE Routing Advertisement (optional), a Safety Message (optional), and Authentication elements.

July 2004

Slide 15

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

DEFINITIONS

WAVE Action Frame:

• A WAVE action frame contains the WAVE Service Information Element

• The WAVE Service Information Element is composed of a Provider Service Table (PST), a WAVE Routing Advertisement (optional), a Safety Message (optional), and Authentication elements.

July 2004

Slide 16

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Provider Service Table:

• A set of data that identifies applications being offered

• Identification of the hosting device

• Characteristics of the media to be used (including the Service Channel)

DEFINITIONS

July 2004

Slide 17

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

User Service Table:

• 1. Dynamically generated in response to a PST

• 2. Identifies applications and device parameters for a communications session

DEFINITIONS

July 2004

Slide 18

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Broadcast Scenarios

• Case 1. OBU receives a broadcast message in a management frame on the Control Channel or a Service Channel

• a. If a broadcast message is contained in a management frame , the MAC passes it to the MLME. The MLME passes it on to the WME for processing where it is verified as being from a trusted source by the trailing authentication.

• b. If authenticated the WME routes the message to the appropriate application as indicated in the message header.

July 2004

Slide 19

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Broadcast Scenarios

• Case 2. OBU receives a broadcast message in a data frame on a service channel

• a. If it is verified as being for an application authorized to accept broadcast messages on the service channel it is passed up the stack for processing in the layers above the MAC

July 2004

Slide 20

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Broadcast Scenarios• Case 1. OBU receives a broadcast message requesting a

response in a management frame on the Control Channel or a Service Channel

• a. If a broadcast message is contained in a management frame , the MAC passes it to the MLME. The MLME passes it on to the WME for processing where it is verified as being from a trusted source by the trailing authentication.

• b. If authenticated and if there is a service or services in the PST that has been registered with the OBU for implementation the OBU will create a UST, create and adopt the appropriate WAVE interface IP address, switch to the service channel and sets up the correct power and priority level and notify or open the appropriate application(s).

• c. Once the OBU finishes the above setup procedures it will send the UST to the RSU.

July 2004

Slide 21

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Unicast Scenarios

• Case 1. OBU receives a unicast message in a action frame on the Control Channel

• a. The OBU will NOT respond - except with an ack - to a unicast message in a data frame

July 2004

Slide 22

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

• Case 2. OBU receives a unicast message in a data frame on the Service Channel

• After it is verified as being for a port (application) authorized to accept messages on the service channel it is passed up the stack for processing in the layers above the MAC

Unicast Scenarios

July 2004

Slide 23

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Management System Overview

SNMP Manager

RSU

OBUSNMP Agent

RSUSNMP Agent

MIB 1

MIB 3

MIB 2

Internet

Workstation

SNMP Manager

MIB 1

MIB 3

MIB 2

WAVE Applications

Operations Center

July 2004

Slide 24

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Notification Handler and Traps

• Utility on OBU and RSU

• Listens for SNMP Traps from SNMP Agent

• Alerts appropriate application to be executed

• SNMP may send Trap to both Notification handler and SNMP Manager

• Enterprise Specific Traps– E.g. STMatch, OBUInRange, OBUOutOfRange

July 2004

Slide 25

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Notification Handler and Traps Example

SNMP Agent

MIB 1

MIB 3

MIB 2

E.g. CALM system or Roadside

Infrastructure

TRAP

Applications

Notification Handler

SNMP Manager

App T

raffic

PHY

MAC

UDP

Mgmt IPv6Broadcast gateway(IPv4 or IPv6)

Data IPv6

PLME

MLME

ChannelizerWME

coldStartwarmStartlinkDownlinkUp

STMatchInRangeOutRange

TRAP

TRAP

Port 162

July 2004

Slide 26

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Broadcast UDP Gateway (Scenario 1a)

• UDP interface for broadcasts on the Control Channel

– Broadcast Service Information elements in an (Action

Frame)– Application ID (AID) registered along with UDP port and IP

address used on IVN

July 2004

Slide 27

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Broadcast UDP Gateway (cont’d)

Application Host

DIC Prototype

DIC Prototype

Application Host

DIC Prototype

Application Host

To UDP port 7441

AID & BSI element constructed in action frame

To UDP port 7321

To UDP port 7001

Ethernet

Ethernet

Ethernet

July 2004

Slide 28

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Wave Link Initialization (Scenario 1b)• Enterprise specific SNMP traps must be defined for application

initialization– E.g. STMatch– Used to indicate application availability to notification handler

• Notification handler launches the application

• Application looks up the IPv6 profile in the WME MIB– Stored by the WME for retrieval by the application when a ST

match occurs– Destination IPv6 address and destination port number of the

application

July 2004

Slide 29

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Wave Link Initialization and Exchange Example

MAC 3D:91:B5:24:A1:55

IPv6 2001:400:420::/64 (Pre-assigned Prefix)

Global IPv6 2001:400:420:E212:45FF:FE04:ABC0

OBU (IPv6 Host) RSU (IPv6 Router)

WAVE Router Advertisement (WRA)Prefix 2001:400:420::/64DNS Server 2001:420:400::145Default Gateway 2001:420:400::100

MAC E0:12:45:04:AB:C0

IPv6 FE80::E212:45FF:FE04:ABC0

Service TableApplication ID = 10App IP 2001:420:400::150UDP Port 365

Global IPv62001:400:420:E212:45FF:FE04:ABC0

RSU routes datagram to Global IPv62001:420:400::150

Application Initialization… RSU indicates switch to

service channel

RSU switches to service channel

RSU routes datagram from Global IPv62001:420:400::150

Application Response

UDP datagram (MAC unicast) send on Service Channel

Source (UPD port 365):2001:420:400::150Destination (UDP port of OBU):2001:400:420:E212:45FF:FE04:ABC0

MAC broadcast beacon frame sent on Control Channel

UDP datagram (MAC unicast) send on Service Channel

Source (UDP port selected by OBU):2001:400:420:E212:45FF:FE04:ABC0Destination (UDP port 365):2001:420:400::150

July 2004

Slide 30

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Wave Link Initialization and Exchange Example Diagram

Internet

Application

Service Table - AppID, App IP, UDP PortWRA - Prefix 2001:420:400::/64 - DNS 2001:420:400::101 - GW 2001:420:400::1

2001:420:400::1

T=0

T=2

T=1

T=3

RSU

1

5

Broadcast

UDP

MAC

PHY

Channelization

On-Board Computer

IPv6

UDP

IPv6

MAC

PHY

Application

6

OBU

4

7

8

23

OBU

Notification Handler

Close Connection

Application Server

Application Server

3WME

July 2004

Slide 31

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Channelization Overview• Generalized Approach – One set of prioritized queues for each channel

– A simple implementation may support only one service channel at a time (single set of prioritized queues)

TransmissionAttempt

ManagementQueue

Medium Contention & Channel (Queue) Selection(management frames always transmitted first)

AC=0 AC=1 AC=2 AC=3

Internal Contention

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AC=0 AC=1 AC=2 AC=3

Internal Contention

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

. . .

AC=0 AC=1 AC=2 AC=3

Internal Contention

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

AIFS[AC]CW[AC]

TXOP[AC]

Queue Routing

July 2004

Slide 32

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Queue Routing Triggers

• Channelization function uses IPv6 destination address– Based on destination MAC if unicast– Based on IPv6 Prefix (and Subnet ID) if broadcast

• May need multicast address trigger• May need multicast group address designation in PST

– Second radio required if more than one service channel used per RSU• Unique MAC per radio (can use “virtual radios” – multiple

MAC per PHY)• Unique IPv6 prefix

July 2004

Slide 33

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Example Channelization Flow

WME

Channelization & MAC

Ap

plica

tion

UD

P/IP

RSU OBU

WME

Channelization & MAC

Beacon Frame (PST,WRA)1

Configure channel queue based on WRA

and source MAC

2 3

Application initialization based on PST(app IP, UDP port)

Optional Action Frame (UST)3

SCH Tx Queue SCH Tx Queue

UD

P/IP

Ap

plica

tion

4Optional Application notification

UDP/IPdatagram

5UDP/IP datagram

4 QRQR

Rx PathRx Path

Queue Router

July 2004

Slide 34

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Network Infrastructure Overview

Internet

RSU

RSU

Database

DNS-DHCP

WAVE Applications

GPI Applications

GPI Applications

WAVE Applications

Zone 1

Zone 2

Router

Servers

Data Center

July 2004

Slide 35

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Address Assignment

• Assign link-local and global addresses– Site local addresses to be obsoleted by next IPv6 RFC

• Global addresses used for both WAVE and GPI applications• Options for global prefixes:

Network Prefix (64-bit) Interface ID (64-bit)

2001:420:400::/64 ::11

::12

::13

::14

.

::15

July 2004

Slide 36

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Address Assignment (cont’d)

• Option for using SubnetsNetwork Prefix (48-bit) Interface ID (64-bit)

2001:420:400::/48 ::11

::12

::13

::14

Subnet ID (16-bit)

::36

::37

Subnet 1

Subnet 2

::11

::12

::13

::14

July 2004

Slide 37

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

WAVE Address Discovery• WAVE Router Advertisement (WRA) contains

– Prefix, DNS Server, Default Gateway• Global address generated from Prefix in WRA

– Need to double check default gateway (may only need MAC address – see standard router advertisement)

– Assumes duplicate detection handled by MAC layer (per VSCC random MAC generation)

MAC 3D:91:B5:24:A1:55

IPv6 2001:400:420::/64 (Pre-assigned Prefix)

Global IPv6 2001:400:420:E212:45FF:FE04:ABC0

OBU (IPv6 Host) RSU (IPv6 Router)

WAVE Router Advertisement (WRA)Prefix 2001:400:420::/64DNS Server 2001:420:400::145Default Gateway 2001:420:400::100

MAC E0:12:45:04:AB:C0

IPv6 FE80::E212:45FF:FE04:ABC0

Service TableApplication ID = 10App IP 2001:420:400::150UDP Port 365

July 2004

Slide 38

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Address Assignment (RSUs on same subnet)

NOTE: should be single colon after 2001 in IPv6 addresses

Internet

RSU/Gateway

RSU/Gateway

Database

DNS-DHCP servers supporting IPv6

WAVE Applications

GPI Applications

GPI Applications

WAVE Applications

Zone 1

Zone 2

Router

Servers

FE80::01:02/64

FE80::01:01/64

FE80::01:03/64

FE80::01:05/64

FE80::01:06/64

FE80::11:01/64

FE80::11:05/64

FE80::11:04/64FE80::11:07/64

FE80::11:02/64

2001::0400:0420::1/64

2001::0400:0420::2/64

2001::0400:0420::3/64

2001::0400:0420::10/64

2001::0400:0420::100/64

2001::0400:0420::101/64

2001::0400:0420::102/64

2001::0400:0420::110/64

Data Center

2001::0400:0420::4/64

2001::0400:0420::5/64

2001::0400:0420::103/64

2001::0400:0420::104/64

July 2004

Slide 39

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

GPI Application Flow (UDP)

Internet

DNS-DHCP servers supporting IPv6

Router Web Server

DNS Request (www.yahoo.com)

DNS Response (2001:420:400::XXX)

TCP Connection Setup

TCP Connection Teardown

HTTP Data Transfer

RSUOBU

UDP data transfer2001:420:400::XXX

UDP data transfer2001:420:400:XXX

July 2004

Slide 40

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

GPI Application Flow (TCP)

Internet

DNS-DHCP servers supporting IPv6

Router Web Server

DNS Request (www.yahoo.com)

DNS Response (2001:420:400::XXX)

TCP Connection Setup

TCP Connection Teardown

HTTP Data Transfer

RSUOBU

July 2004

Slide 41

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Channel Switching Approach• Leverage 802.11h and the TSF

– The TSF provides an accurate timing mechanism– Channelization is greatly simplified using this approach

• If the current channel matches the queue set for that channel, the queue is served until the channel changes

• Timers no longer required by channelization function– Control Channel Interval & Service Channel Interval

• Controlled by RSU beacon frames

Switch back to CCH

Beacon Interval

Busy Medium

CCH Interval SCH Interval

Switch to SCH

Beacon Frame

Data or other management

July 2004

Slide 42

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Channel Switching Approach (cont’d)

• Vehicle to Vehicle sync options– 1. No sync when not in the presence of an RSU– 2. Use distributed beaconing for sync

– Channel switching supported by 802.11h action frames in this case• E.g. V2V communications session can switch to high

availability V2V channel under special circumstances

July 2004

Slide 43

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Initial Proposed Inputs to 802.11p

• Updates to IEEE 802.11 baseline document

• Based on ASTM E 2213 – 03

July 2004

Slide 44

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

1 RSU Communicating With an OBU

July 2004

Slide 45

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

2 Basic Service Sets With RSUs and OBUs

July 2004

Slide 46

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Fig 3 Independent Basic Service Sets With OBUs Only

July 2004

Slide 47

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

FIG. 4 Connecting OBUs to Wide-Area Networks

July 2004

Slide 48

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Fig 5. Connecting an OBU to an In-vehicle Network

July 2004

Slide 49

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Fig 6 BSS Connects Onboard Computer

Through the WAN to the ITS Application

July 2004

Slide 50

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

FIG. 11 OFDM PHY Frequency Channel Plan for North America

July 2004

Slide 51

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 6 Major Parameters of the OFDM PHY

Information Data Rate 3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s (3, 6, and 12 Mbit/s are Mandatory)

Modulation BPSK OFDM QPSK OFDM 16-QAM OFDM 64-QAM OFDM

Error correcting code K = 7 (64 states) convolutional code Coding rate 1/2, 2/3, 3/4 Number of subcarriers 52 OFDM symbol duration 8.0 s Guard interval 1.6 s2 (TGI) Occupied bandwidth 8.3 MHz

July 2004

Slide 52

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 7 Regulatory Requirement List

Geographic Area Approval Standards Documents Approval Authority

United States Federal Communications

Commission (FCC)

CFR47, Part 15, Sections 15.205, 15.209, and 15.247; Subpart E, Sections 15.401-

15.407; and Part 90, Subparts I and M

FCC

Japan Ministry of Post and Telecommunications

(MPT)

MPT Ordinance for Regulating Radio Equipment,

Article 49.20

MPT

July 2004

Slide 53

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 8 Valid Operating Channel numbers by

Regulatory Domain and Band

Regulatory Domain

Band, GHz

Operating Channel Numbers

Channel Center Frequencies, MHz

United States and Canada

ITS-RS (5.850-5.925)

172 174 175 176 178 180 181 182 184

5860 5870 5875 5880 5890 5900 5905 5910 5920

July 2004

Slide 54

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 9 5.9 WAVE/DSRC Device Classes and

Transmit Power Levels

Device Class Maximum Device

Output Power, dBm

A 0 B 10 C 20 D 28.8 or more

July 2004

Slide 55

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Table 10 WAVE Transmitter Power Limits for

Public Safety

RSU OBU

WAVE Channel

Frequency (GHz) Max Antenna input

Pwr (dBm) Max EIRP

(dBm) Max Antenna input

Pwr (dBm) Max EIRP

(dBm)

172 5.860 28.8 33.0 28.8 33.0 174 5.870 28.8 33.0 28.8 33.0 175 5.875 10.0 23.0 10.0 23.0 176 8.880 28.8 33.0 28.8 33.0 178 5.890 28.8 44.8 28.8 44.8 180 5.900 10.0 23.0 20.0 23.0 181 5.905 10.0 23.0 20.0 23.0 182 5.910 10.0 23.0 20.0 23.0 184 5.920 28.8 40.0 28.8 40.0

July 2004

Slide 56

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Table 11 WAVE Transmitter Power Limits for

Private Usage

RSU OBU

WAVE Channel

Frequency (GHz) Max Antenna input

Pwr (dBm) Max EIRP

(dBm) Max Antenna input

Pwr (dBm) Max EIRP

(dBm)

172 5.860 28.8 33.0 28.8 33.0 174 5.870 28.8 33.0 28.8 33.0 175 5.875 10.0 23.0 10.0 23.0 176 8.880 28.8 33.0 28.8 33.0 178 5.890 28.8 33.0 28.8 33.0 180 5.900 10.0 23.0 20.0 23.0 181 5.905 10.0 23.0 20.0 23.0 182 5.910 10.0 23.0 20.0 23.0 184 5.920 28.8 33.0 28.8 33.0

July 2004

Slide 57

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 12 5.9 WAVE/DSRC Spectrum Mask

Class ± 4.5-MHz Offset

± 5.0-MHz Offset

± 5.5-MHz Offset

± 10-MHz Offset

± 15-MHz Offset

Class A 0 -10 -20 -28 -40 Class B 0 -16 -20 -28 -40 Class C 0 -26 -32 -40 -50 Class D 0 -35 -45 -55 -65

July 2004

Slide 58

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

FIG. 12 Class A Transmit Spectrum Mask

-70

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Offset Frequency (MHz)

Po

we

r A

tte

nu

ati

on

(d

Br)

July 2004

Slide 59

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

FIG. 13 Class B Transmit Spectrum Mask

-70

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Offset Frequency (MHz)

Po

we

r A

tte

nu

ati

on

(d

Br)

July 2004

Slide 60

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

FIG. 14 Class C Transmit Spectrum Mask

-70

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Offset Frequency (MHz)

Po

we

r A

tte

nu

ati

on

(d

Br)

July 2004

Slide 61

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

FIG. 15 Class D Transmit Spectrum Mask

-70

-60

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

Offset Frequency (MHz)

Po

we

r A

tte

nu

ati

on

(d

Br)

July 2004

Slide 62

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 13 Allowed Relative Constellation Error

Versus Data Rate

Data Rate, Mbits/s

Relative Constellation Error, dB

3 -5 4.5 -8 6 -10 9 -13 12 -16 18 -19 24 -22 27 -25

July 2004

Slide 63

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 14 Type 1 Receiver Performance

Requirements

Data Rate, Mbits/s

Minimum Sensitivity, dBm

Adjacent Channel Rejection, dB

Alternate Adjacent Channel Rejection,

dB 3 -85 18 34

4.5 -84 17 33 6 -82 16 32 9 -80 15 31

12 -77 13 29 18 -70 11 27 24 -69 8 24 27 -67 4 20

July 2004

Slide 64

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 15 Type 2 Receiver Performance

Requirements

Data Rate, Mbits/s

Minimum Sensitivity, dBm

Adjacent Channel Rejection, dB

Alternate Adjacent Channel Rejection,

dB 3 -85 37 44

4.5 -84 36 43 6 -82 35 42 9 -80 34 41 12 -77 32 39 18 -70 30 37 24 -69 27 34 27 -67 23 30

July 2004

Slide 65

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 17 OFDM PHY Characteristics Characteristics Value

aSlotTime 16 s aSIFSTime 32 s aCCATime <8 s aRxTxTurnaroundTime <2 s aTxPLCPDelay implementation dependent aRxPLCPDelay implementation dependent aRxTxSwitchTime <<1 s aCHSwitchTime <2 ms aTxRampOnTime implementation dependent aTxRampOffTime implementation dependent aTxRFDelay implementation dependent aRxRFDelay implementation dependent aAirPropagationTime <4 s aMACProcessingDelay <2 s aPreambleLength 40 s aPLCPHeaderLength 8 s aMPDUMaxLength 4095 aCWmin 15 aCWmax 1023

July 2004

Slide 66

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

TABLE 18 List of Parameters for the PMD

Primitives

Parameter Associate Primitive Value TXD_UNIT PMD_DATA.request one(1), zero(0): one OFDM

symbol value RXD_UNIT PMD_DATA.indicate one(1), zero(0): one OFDM

symbol value TXPWR_LEVEL PMD_TXPWRLVL.request 1-64 (max of 64 levels) RATE PMD_RATE.request 3 Mbit/s (for BPSK)

6 Mbit/s (for QPSK) 12 Mbit/s (for 16-QAM) 24 Mbit/s (for 64-QAM)

RSSI PMD_RSSI.indicate 0-8 bits of RSSI

July 2004

Slide 67

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Table 0.1 User priority to Access Category mappings

User priority (UP -Same as 802.1D

User Priority)

802.1D Designation

Access Category (AC)

Designation (Informative)

1 BK 0 Low

2 - 0 Low

0 BE 0 Medium

3 EE 1 Medium

4 CL 2 High

5 VI 2 High

6 VO 3 Highest

7 NC 3 Highest

July 2004

Slide 68

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

WAVE Service Information Elements (WSIE)

Element ID (0 ~ 255)

Information Element Notes

0 ~ 55 Used Elements were defined tbd WSIE1 Wave services tbd WSIE2 Wave services tbd WSIE3 Wave services tbd WSIE4 Wave services

July 2004

Slide 69

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

WAVE Action Frame Formats

Category Action Code Action Content

July 2004

Slide 70

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

Category Value associated with a WAVE Action Frame Format

Category Value (0 ~ 255)

Name Notes

0 ~ 3 Used Action categories were defined

tbd WAVE WAVE category

July 2004

Slide 71

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

WAVE Action Code for WSI

Action Code (0 ~ 255)

Meaning

0 Regenerate MAC address

1 Reserved

2 Nearby station request

3 Nearby station response

tbd WSI exchange

tbd RSSI request

tbd RSSI report

July 2004

Slide 72

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

MLME-START.request MLME-START.request(SSID,BSSType,BeaconPeriod,DTIMPeriod,CF parameter set,PHY parameter set,IBSS parameter set,ProbeDelay,CapabilityInformation,BSSBasicRateSet,OperationalRateSet,WSI1,WSI2,WSE3,WSE4,WSEn)

NameType Valid Range Description

WSI As defined in WAVE Service

information elements

As defined in WAVE Service

information elements

Reports Wave Service Information

July 2004

Slide 73

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

MLME-WAVE.request

MLME-WAVE.request (

WSI1,WSI2,WSE3,WSE4,WSEn,Peer MAC

address)

NameType Valid Range Description

WSI As defined in WAVE Service

information elements

As defined in WAVE Service

information elements

Reports Wave Service Information

Peer MAC address MAC address Any valid address

The address of the peer MAC entity to which a WAVE action shall be set.

July 2004

Slide 74

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

MLME-WAVE.confirm

MLME-WAVE.confirm (

ResultCode)

Name Type Valid Range Description

ResultCode Enumeration SUCCESS,INVALID

PARAMETERS

Reports the result of the WAVE request.

July 2004

Slide 75

doc.: IEEE 802.11-04/xxxr0

Submission Broady Cash, Justin McNew, Doug Kavner, Wayne Fisher

MLME-WAVE.indication

MLME-WAVE.indication

(WSI,RSSI,Peer MAC

address)

NameType Valid Range Description

WSI As defined in WAVE Service

information elements

As defined in WAVE Service

information elements

Reports Wave Service Information

RSSI Integer tbd RSSI value in dBm

Source MAC address

MAC address Any valid address The address of the MAC entity from which the WSI was received.