Transcript
Page 1: Laser-induced tunnel ionization: tunneling time and

MA

X-P

LA

NC

K-I

NST

ITU

TF

ÜR

KE

RN

PH

YSI

KLaser-induced tunnel ionization:

tunneling time and relativistic effects

Nicolas Teeny∗, Enderalp Yakaboylu, Michael Kaliber,Heiko Bauke, Karen Z. Hatsagortsyan and Christoph H. Keitel

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg

Figure 1: Wave packet tunneling through a coulomb potential bent by a laser potential.

Relativistic tunneling

Non relativistic tunneling picture:

P̂2x

2+ V(x, y, z)− xE0 = −Ip −

(P̂2

y

2+

P̂2z

2

)

Constant total energy E = −Ip.

Relativistic tunneling picture:

P̂2x

2+ V(x, y, z)− xE0 = −Ip −

(P̂2

y

2+

(P̂z + xE0/c)2

2

)

Position dependent total energy:

E(x) = −Ip −(

P̂2y

2+

(P̂z + xE0/c)2

2

)

-5 0 5 10 15 20

-0.55

-0.50

-0.45

-0.40

-0.35

x Κ

Ε�Κ²

Figure 2: Schematic relativistic tunneling picture. The position dependent total energyE(x) is plotted (red-line), crossing the total potential V(x, y, z)− xE0 (blue-line) [1].

non-relativistic relativistic

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60.0

0.2

0.4

0.6

0.8

1.0

pkc�Κ²

pro

bab

ilit

y

Figure 3: The momentum probability distribution of the tunneled electron at the bar-rier exit in the relativistic case is compared to the non-relativistic case [1].

Ionization time, exit momentum and asymptoticmomentum

Wigner

quasiclassical with tsub=0,px,0=0

quasiclassical with tsub≠0,px,0≠0

0 2 4 6 8 100

2

4

6

8

10

x/xe

t[x]Ip

Figure 4: Wigner trajectory compared to the classical trajectory in the deep tunnelingregime with the electric field strength E0 = Z3/30 [2, 3].

Wigner

quasiclassical

quasiclassical with tsub=0,px,0≠0

0 2 4 6 8 100.0

0.5

1.0

1.5

2.0

2.5

3.0

x/xet[x

]Ip

Figure 5: Wigner trajectory compared to the classical trajectory in the near-threshold-tunneling regime with the electric field strength E0 = Z3/17 [2, 3].

0.035 0.040 0.045 0.050 0.055E0/Z3 (a.u.)

−4

−2

0

2

4

6

8

10

time×Z

2(a.u.)

τA, γ = 0.25τA, γ = 0.35

τMT, γ = 0.25τMT, γ = 0.35

τ2, γ = 0.25τ2, γ = 0.35

τsub

Figure 6: Various times plotted for different electric field strengths E0 and differentKeldysh parameters γ. The ionization time τA determined by placing a virtual detectorat the tunneling exit. The Mandelstam and Tamm time τTMT measured at the instantof electric field maximum. The ionization time τ2 calculated from the asymptoticmomentum using the two-step model. The time spent under the barrier using Wignerformalism τsub is a good estimate for τA [4].

0.035 0.040 0.045 0.050 0.055E0/Z3 (a.u.)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p 0/Z

(a.u.)

method 1, γ = 0.25method 2, γ = 0.25

method 1, γ = 0.35method 2, γ = 0.35

Figure 7: The exit momentum at the instant of ionization at the tunnel exit for differ-ent electric field strengths E0 and different Keldysh parameters γ determined by twodifferent methods. Method 1 is based on the space resolved momentum distribution,while method 2 utilizes the velocity of the probability flow [4].

References

[1] M. Klaiber, E. Yakaboylu, H. Bauke, K. Z. Hatsagortsyan and C. H. KeitelPhys. Rev. Lett, vol. 110, p. 153004, 2013.

[2] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyan and C. H. KeitelPhys. Rev. A, vol. 90, p. 012116, 2014.

[3] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyanand C. H. Keitel Phys. Rev. A, vol. 88, p. 063421, 2013.

[4] N. Teeny, E. Yakaboylu, H. Bauke and C. H. KeitelarXiv:1502.05917

∗e-mail: [email protected]

1

Top Related