laser-induced tunnel ionization: tunneling time and

1
M AX -P LANCK -I NSTITUT FÜR K ERNPHYSIK Laser-induced tunnel ionization: tunneling time and relativistic effects Nicolas Teeny * , Enderalp Yakaboylu, Michael Kaliber, Heiko Bauke, Karen Z. Hatsagortsyan and Christoph H. Keitel Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg Figure 1: Wave packet tunneling through a coulomb potential bent by a laser potential. Relativistic tunneling Non relativistic tunneling picture: ˆ P 2 x 2 + V ( x , y, z ) - xE 0 = - I p - ˆ P 2 y 2 + ˆ P 2 z 2 ! Constant total energy E = - I p . Relativistic tunneling picture: ˆ P 2 x 2 + V ( x , y, z ) - xE 0 = - I p - ˆ P 2 y 2 + ( ˆ P z + xE 0 / c ) 2 2 ! Position dependent total energy: E ( x )= - I p - ˆ P 2 y 2 + ( ˆ P z + xE 0 / c ) 2 2 ! - 5 0 5 10 15 20 - 0.55 - 0.50 - 0.45 - 0.40 - 0.35 x Κ ΕΚ² Figure 2: Schematic relativistic tunneling picture. The position dependent total energy E ( x ) is plotted (red-line), crossing the total potential V ( x , y, z ) - xE 0 (blue-line) [1]. non-relativistic relativistic - 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0 p k cΚ² probability Figure 3: The momentum probability distribution of the tunneled electron at the bar- rier exit in the relativistic case is compared to the non-relativistic case [1]. Ionization time, exit momentum and asymptotic momentum Wigner quasiclassical with t sub =0,p x,0 =0 quasiclassical with t sub 0,p x,0 0 0 2 4 6 8 10 0 2 4 6 8 10 x/xe t[ x ] Ip Figure 4: Wigner trajectory compared to the classical trajectory in the deep tunneling regime with the electric field strength E 0 = Z 3 /30 [2, 3]. Wigner quasiclassical quasiclassical with t sub =0,p x,0 0 0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 x/xe t[ x ] Ip Figure 5: Wigner trajectory compared to the classical trajectory in the near-threshold- tunneling regime with the electric field strength E 0 = Z 3 /17 [2, 3]. 0.035 0.040 0.045 0.050 0.055 E 0 /Z 3 (a.u.) -4 -2 0 2 4 6 8 10 time × Z 2 (a.u.) τ A , γ = 0.25 τ A , γ = 0.35 τ MT , γ = 0.25 τ MT , γ = 0.35 τ 2 , γ = 0.25 τ 2 , γ = 0.35 τ sub Figure 6: Various times plotted for different electric field strengths E 0 and different Keldysh parameters γ. The ionization time τ A determined by placing a virtual detector at the tunneling exit. The Mandelstam and Tamm time τ TMT measured at the instant of electric field maximum. The ionization time τ 2 calculated from the asymptotic momentum using the two-step model. The time spent under the barrier using Wigner formalism τ sub is a good estimate for τ A [4]. 0.035 0.040 0.045 0.050 0.055 E 0 /Z 3 (a.u.) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 p 0 /Z (a.u.) method 1, γ = 0.25 method 2, γ = 0.25 method 1, γ = 0.35 method 2, γ = 0.35 Figure 7: The exit momentum at the instant of ionization at the tunnel exit for differ- ent electric field strengths E 0 and different Keldysh parameters γ determined by two different methods. Method 1 is based on the space resolved momentum distribution, while method 2 utilizes the velocity of the probability flow [4]. References [1] M. Klaiber, E. Yakaboylu, H. Bauke, K. Z. Hatsagortsyan and C. H. Keitel Phys. Rev. Lett, vol. 110, p. 153004, 2013. [2] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyan and C. H. Keitel Phys. Rev. A, vol. 90, p. 012116, 2014. [3] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyan and C. H. Keitel Phys. Rev. A, vol. 88, p. 063421, 2013. [4] N. Teeny, E. Yakaboylu, H. Bauke and C. H. Keitel arXiv:1502.05917 * e-mail: [email protected]

Upload: others

Post on 11-Jul-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laser-induced tunnel ionization: tunneling time and

MA

X-P

LA

NC

K-I

NST

ITU

TF

ÜR

KE

RN

PH

YSI

KLaser-induced tunnel ionization:

tunneling time and relativistic effects

Nicolas Teeny∗, Enderalp Yakaboylu, Michael Kaliber,Heiko Bauke, Karen Z. Hatsagortsyan and Christoph H. Keitel

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg

Figure 1: Wave packet tunneling through a coulomb potential bent by a laser potential.

Relativistic tunneling

Non relativistic tunneling picture:

P̂2x

2+ V(x, y, z)− xE0 = −Ip −

(P̂2

y

2+

P̂2z

2

)

Constant total energy E = −Ip.

Relativistic tunneling picture:

P̂2x

2+ V(x, y, z)− xE0 = −Ip −

(P̂2

y

2+

(P̂z + xE0/c)2

2

)

Position dependent total energy:

E(x) = −Ip −(

P̂2y

2+

(P̂z + xE0/c)2

2

)

-5 0 5 10 15 20

-0.55

-0.50

-0.45

-0.40

-0.35

x Κ

Ε�Κ²

Figure 2: Schematic relativistic tunneling picture. The position dependent total energyE(x) is plotted (red-line), crossing the total potential V(x, y, z)− xE0 (blue-line) [1].

non-relativistic relativistic

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60.0

0.2

0.4

0.6

0.8

1.0

pkc�Κ²

pro

bab

ilit

y

Figure 3: The momentum probability distribution of the tunneled electron at the bar-rier exit in the relativistic case is compared to the non-relativistic case [1].

Ionization time, exit momentum and asymptoticmomentum

Wigner

quasiclassical with tsub=0,px,0=0

quasiclassical with tsub≠0,px,0≠0

0 2 4 6 8 100

2

4

6

8

10

x/xe

t[x]Ip

Figure 4: Wigner trajectory compared to the classical trajectory in the deep tunnelingregime with the electric field strength E0 = Z3/30 [2, 3].

Wigner

quasiclassical

quasiclassical with tsub=0,px,0≠0

0 2 4 6 8 100.0

0.5

1.0

1.5

2.0

2.5

3.0

x/xet[x

]Ip

Figure 5: Wigner trajectory compared to the classical trajectory in the near-threshold-tunneling regime with the electric field strength E0 = Z3/17 [2, 3].

0.035 0.040 0.045 0.050 0.055E0/Z3 (a.u.)

−4

−2

0

2

4

6

8

10

time×Z

2(a.u.)

τA, γ = 0.25τA, γ = 0.35

τMT, γ = 0.25τMT, γ = 0.35

τ2, γ = 0.25τ2, γ = 0.35

τsub

Figure 6: Various times plotted for different electric field strengths E0 and differentKeldysh parameters γ. The ionization time τA determined by placing a virtual detectorat the tunneling exit. The Mandelstam and Tamm time τTMT measured at the instantof electric field maximum. The ionization time τ2 calculated from the asymptoticmomentum using the two-step model. The time spent under the barrier using Wignerformalism τsub is a good estimate for τA [4].

0.035 0.040 0.045 0.050 0.055E0/Z3 (a.u.)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p 0/Z

(a.u.)

method 1, γ = 0.25method 2, γ = 0.25

method 1, γ = 0.35method 2, γ = 0.35

Figure 7: The exit momentum at the instant of ionization at the tunnel exit for differ-ent electric field strengths E0 and different Keldysh parameters γ determined by twodifferent methods. Method 1 is based on the space resolved momentum distribution,while method 2 utilizes the velocity of the probability flow [4].

References

[1] M. Klaiber, E. Yakaboylu, H. Bauke, K. Z. Hatsagortsyan and C. H. KeitelPhys. Rev. Lett, vol. 110, p. 153004, 2013.

[2] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyan and C. H. KeitelPhys. Rev. A, vol. 90, p. 012116, 2014.

[3] E. Yakaboylu, M. Klaiber, H. Bauke, K. Z. Hatsagortsyanand C. H. Keitel Phys. Rev. A, vol. 88, p. 063421, 2013.

[4] N. Teeny, E. Yakaboylu, H. Bauke and C. H. KeitelarXiv:1502.05917

∗e-mail: [email protected]

1