Transcript
  • 1

    NotesontheWiedemann-FranzLawMarkLundstromPurdueUniversityJanuary3,2018

    Historically,“TheWiedemann-FranzLawstatesthatformetalsatnottoolowtemperaturestheratioofthethermalconductivitytotheelectricalconductivityisdirectlyproportionaltothetemperaturewiththevalueoftheconstantofproportionalityindependentoftheparticularmetal.”[1].KittelwritestheWiedemann-Franz(WF)Lawas[1]

    κ eσ

    = L0T =π 2

    3kBq

    ⎝⎜⎞

    ⎠⎟

    2

    T , (1)

    where L0 istheLorenznumber(whichisactuallyaratio,notanumber).AsKittelnotes,thefactthat(1)canbederivedfromtheelectrongastheoryofmetalsandthatitappliestoawiderangeofmetalsunderawiderangeofconditions,wasamajorsuccessintheearlyhistoryofthetheoryofmetals[1].BothKittelandZiman[2]pointout,however,thattheLorenznumber(whichZimancallstheLorenzratio)canchangeformetalsatlowtemperature.ThisisusuallyattributedtoabreakdownoftheRelaxationTimeApproximation(RTA)–seeAshcroftandMerman[3],pp.322,323.)Itissometimesstatedthatthescatteringtimesintheelectricalandthermalconductivitiesmaybedifferent[1].Assummarizedineqns.(6),below,however,whensolvingtheBTEintheRTA,thereisonlyasinglescatteringtimethatdeterminestheelectricalandthermalconductivity(itappearsinthemean-free-path, λ E( ) in(6e)).AsdiscussedbyAshcroftandMerman,thebreakdownoftheWFlawatlowtemperaturesisnottheresultofdifferentscatteringtimesfortheelectricalandthermalconductivities,but,rather,theduetothefactthatthesamescatteringhasdifferenteffectsontheelectricalandthermalconductivities([3]footnoteonp.323).Moregenerally,wecanalwayswrite

    κ eσ

    ≡ LT (2)

    andsimplyregarditasthedefinitionoftheLorenznumber.AccordingtoZiman,weshouldonlyrefertothisrelationastheWiedemann-FranzLawwhen

    L = L0 = π

    2 3( ) kB q( )2 [3].Ontheotherhand,itiscommontoreferto(2)asthe“Wiedemann-FranzLaw”andapplyitnotonlytometalsbutalsotosemiconductorsforwhichLisrarely L0 .See,forexample[4],whichalsopointsoutthatweshouldregardtheWiedemenn-FranzLawtobea“ruleofthumb”andnotalawofnature.Evenformetallicconditions,violationsoftheWiedemann-FranzLawoccur(see[5]foroneexample),andforsemiconductors, L israrelyequalto L0 .ThecalculationoftheLorenznumberrequiresanaccuratebandstructureandknowledge

  • 2

    oftheenergy-dependentscatteringprocesses[6].Inthesenotes,wediscusscalculationsforasimple,parabolicenergybandwithpower-lawscattering.Wewillconsider(2)tobethedefinitionoftheLorenznumber,whichcanbewrittenas([7],p.96)

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2E − EFkBTL

    ⎝⎜⎞

    ⎠⎟

    2

    −E − EFkBTL

    ⎝⎜⎞

    ⎠⎟

    2⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪, (3)

    wheretheaverage, i ,isdefinedbyeqn.(5.51)in[7].Foramaterialwithasingleenergy

    channelat E = E1 , M E( ) = M0δ E − E1( ) ,anditiseasytoshowmathematicallyfromeqn.(3)that L = 0 .Thephysicalreasonisclear.Ifthereisasinglechannel,thenwhenweopen-circuitittomeasure κ e ,noelectronsflow.Sincethereisnoflowofelectrons,therecanbenoflowofheatIn3D,foraconstantmean-free-pathandparabolicenergybands,wefindforanon-degeneratesemiconductor

    L ≈ 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (4)

    andforadegeneratesemiconductor,

    L ≈ π

    2

    3kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    . (5)

    Whatarethecorrespondingrelationsfor1Dand2Dsemiconductorswithparabolicenergybands?LorenzNumberin3D,2D,and1DTocomputeLfrom(2)wemustcalculatethethermoelectriccoefficients:

    σ = ′σ E( )∫ dE (6a)

    S = −

    kBq

    E − EFkBT

    ⎛⎝⎜

    ⎞⎠⎟

    ′σ E( )∫ dE ′σ E( )∫ dE (6b)

    κ 0 = T

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2E − EF

    kBT⎛

    ⎝⎜⎞

    ⎠⎟

    2

    ′σ E( )∫ dE (6c)

    κ e =κ 0 − S2σT (6d)

  • 3

    where

    ′σ E( ) = 2q

    2

    hλ E( ) M E( )A −

    ∂ f0∂E

    ⎛⎝⎜

    ⎞⎠⎟= q2Ξ E( ) − ∂ f0∂E

    ⎛⎝⎜

    ⎞⎠⎟. (6e)

    From(2)and(6d),wefind

    L =

    κ eσT

    =κ 0 − S

    2σTσT

    =κ 0σT

    − S 2 . (7)

    TofindL,wesimplyneedtocompute κ e andσ .In(6e), Ξ E( ) isknownasthe“transportfunction”or“transportdistribution”[8].Ingeneral,thecomputationofLrequiresnumericalcalculations[6],butforparabolicenergybandswithpowerlawscattering,analyticalresultsarepossible(seetheappendixof[7]).1) Lorenznumberin3DforparabolicbandsFromtheAppendixof[7]:

    κ e = T

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    22q2

    hλ0

    m*kBT2π2

    ⎝⎜⎞

    ⎠⎟Γ r + 3( ) r + 3( )F r+2 ηF( )−

    r + 2( )F r+12 ηF( )F r ηF( )

    ⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪ (8)

    σ = 2q

    2

    hλ0

    m*kBT2π!2

    ⎝⎜⎞

    ⎠⎟Γ r + 2( )F r ηF( ) , (9)

    wherepowerlawscatteringhasbeenassumed:

    λ E( ) = λ0 E − ECkBT

    ⎝⎜⎞

    ⎠⎟

    r

    . (10)

    TheresultingLorenznumberin3Dis

    L =

    κ eσT

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 3( )Γ r + 2( ) r + 3( )

    F r+2 ηF( )F r ηF( )

    −r + 2( )F r+12 ηF( )

    F r2 ηF( )

    ⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪. (11)

  • 4

    Casei)Maxwell-BoltzmannStatistics

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 3( )Γ r + 2( ) r + 3( )− r + 2( ){ }

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 r + 2( )!r +1( )!

    (12)

    For r = 0 ,wefind

    L = 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (13)

    asexpected.Equation(13)istheWFlawin3Dforparabolicenergybands,energy-independentscattering,andMaxwell-Boltzmannstatistics.Notethatthemean-free-pathisproportionaltovelocitytimesscatteringtime.ForAcousticDeformationPotential(ADP)scattering,thescatteringrate(oneoverthescatteringtime)isproportionaltothedensity-of-states, D E( ) .Forparabolicbands, D E( )∝ E − EC( )

    d−2( ) 2 ,whered=1,2,or3for1D,2D,or3D.ForADPscattering,wefind

    λ E( )∝υ E( )τ E( )∝υ E( ) D E( )∝ E − EC( )3−d( ) 2 . (14)

    ForADPscatteringin3D, r = 0 ,forADPscatteringin2D, r = 1 2 ,andforADPscatteringin1D, r = 1 .Theassumptionofaconstantmean-free-pathinthe3DcalculationsaboveisequivalenttoassumingADPscattering.Caseii)StronglydegenerateconditionsInthiscase,wemustexpandtheFermi-Diracintegralsfor ηF >> 0 .FromJeongandLundstrom,p.101[7]

    F r ηF( )→ ηF

    r+1

    Γ r + 2( ) +π 2

    6ηF

    r−1

    Γ r( ) + ... Therestisleftasanexerciseforthereader.

  • 5

    2) Lorenznumberin2DforparabolicbandsFromtheAppendixof[7]:

    κ e = TkBq

    ⎛⎝⎜

    ⎞⎠⎟

    22q2

    hλ0

    2m*kBTπ

    ⎝⎜⎜

    ⎠⎟⎟Γ r + 5

    2⎛⎝⎜

    ⎞⎠⎟

    r + 52

    ⎛⎝⎜

    ⎞⎠⎟F r+3/2 ηF( )−

    r + 32

    ⎛⎝⎜

    ⎞⎠⎟F r+1/2

    2 ηF( )F r−1/2 ηF( )

    ⎨⎪⎪

    ⎩⎪⎪

    ⎬⎪⎪

    ⎭⎪⎪

    (15)

    and

    σ = 2q2

    hλ0

    2m*kBTπ

    ⎝⎜⎜

    ⎠⎟⎟Γ r + 3

    2⎛⎝⎜

    ⎞⎠⎟F r−1/2 ηF( ) . (16)

    TheLorenznumberin2Dis

    L =κ eσT

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 52

    ⎛⎝⎜

    ⎞⎠⎟

    Γ r + 32

    ⎛⎝⎜

    ⎞⎠⎟

    r + 52

    ⎛⎝⎜

    ⎞⎠⎟F r+3/2 ηF( )F r−1/2 ηF( )

    −r + 3

    2⎛⎝⎜

    ⎞⎠⎟F r+1/2

    2 ηF( )F r−1/2

    2 ηF( )

    ⎨⎪⎪

    ⎩⎪⎪

    ⎬⎪⎪

    ⎭⎪⎪

    . (17)

    Casei)Maxwell-BoltzmannStatistics

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 52

    ⎛⎝⎜

    ⎞⎠⎟

    Γ r + 32

    ⎛⎝⎜

    ⎞⎠⎟

    r + 52

    ⎛⎝⎜

    ⎞⎠⎟− r + 3

    2⎛⎝⎜

    ⎞⎠⎟

    ⎧⎨⎩

    ⎫⎬⎭

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 52

    ⎛⎝⎜

    ⎞⎠⎟

    Γ r + 32

    ⎛⎝⎜

    ⎞⎠⎟

    (18)

    For r = 0 (energy-independentmean-free-path),wefind

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 5 2( )Γ 3 2( ) =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 32Γ 3 2( )Γ 3 2( )

    L = 3

    2kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (2DconstantMFP) (19)

  • 6

    Equation(19)istheLorenznumberin2Dforparabolicenergybands,energy-independentscattering,andMaxwell-Boltzmannstatistics.Weseethatthenumericalfactorof3/2isdifferentthanthefactorof2inthe3Dcase.If,however,weassumeADPscatteringin2D,then r = 1/ 2 and(18)gives

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 3( )Γ 2( ) = 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (2DADPscattering) (20)

    whichisidenticaltotheresultfor3DADPscattering.Caseii)StronglydegenerateconditionsInthiscase,wemustexpandtheFermi-Diracintegralsfor ηF >> 0 .3) Lorenznumberin1DforparabolicbandsFromtheAppendixof[7]:

    κ e = T

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    22q2

    hλ0 Γ r + 2( ) r + 2( )F r+1 ηF( )−

    r +1( )F r2 ηF( )F r−1 ηF( )

    ⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪ (21)

    σ = 2q

    2

    hλ0 Γ r +1( )F r−1 ηF( ) (22)

    TheLorenznumberin1Dis

    L =

    κ eσT

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( ) r + 2( )

    F r+1 ηF( )F r−1 ηF( )

    −r +1( )F r2 ηF( )F r−1

    2 ηF( )⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪ (23)

    Casei)Maxwell-BoltzmannStatistics

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( ) r + 2( )− r +1( ){ }

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( )

    (24)

    For r = 0 (energy-independentmean-free-path),wefind

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 2( )Γ 1( ) =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 1( )!0( )!

    L = 1

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (1DconstantMFP) (25)

  • 7

    Equation(25)istheLorenznumberfor1Dwithparabolicenergybands,energy-independentscattering,andMaxwell-Boltzmannstatistics.Weseethatthenumericalfactorof1isdifferentthanthefactorof2inthe3Dcaseandthefactorof3/2in2D.If,however,weassumeADPscatteringin1D,then r = 1and(24)gives

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( ) =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 3( )Γ 2( ) = 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (1DADPscattering) (26)

    whichisidenticaltotheresultfor3DADPscattering.Caseii)StronglydegenerateconditionsInthiscase,wemustexpandtheFermi-Diracintegralsfor ηF >> 0 .Discussion:IfweconsidertheLorenznumberin3Dasgivenby(11),in2Dasgivenby(17),andin1Dby(23)andassumeADPscatteringineachcase,soin3D, r = 0 ,in2D, r = 1 2 ,and1D, r = 1 wefindthesameanswerin1D,2D,3D:

    L = 2 3

    F 2 ηF( )F 0 ηF( )

    −2F 1

    2 ηF( )F 0

    2 ηF( )⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    . (27)

    ForparabolicenergybandswithADPscattering,theLorenznumberisidenticalatanylevelofdegeneracy.Thisresultcouldhavebeenanticipated.Thetransportdistribution, Ξ E( ) in(6e)determinesallofthetransportcoefficients.Thetransportdistributionisproportionalto M E( )λ E( ) .Themean-free-pathisproportionaltovelocitytimesscatteringtime,andthescatteringtimeisinverselyproportionaltotheDOS.ThenumberofchannelsisproportionaltovelocitytimestheDOS[7],soforparabolicbands,wefind

    Ξxx E( )∝ M E( ) A( )× λ E( )∝υ E( )D E( )×υ E( ) D E( )∝υ 2 E( )∝ E − EC( ) . (28)SincethetransportfunctionisindependentofdimensionforADPscatteringinparabolicbands,allthermoelectrictransportcoefficientsareindependentofdimension.

  • 8

    References[1] C.Kittel,IntroductiontoSolidStatePhysics,4thed.,p.263,JohnWileyandSons,1971[2] J.Ziman,PrinciplesoftheTheoryofSolids,p.200,CambridgeUniversityPress,1964.[3] N.W.AshcroftandN.D.Mermin,SolidStatePhysics,2003.[4] G.D.MahanandM.Bartkowiak,"Wiedemann–Franzlawatboundaries,"Appl.Phys.

    Lett.,74,p.953,1999.[5] A.Casian, "Violationof theWiedemann-Franz law inquasi-one-dimensional organic

    crystals,"Phys.Rev.B,81,155415,2010.[6] XufengWang,JesseMaassen,MarkLundstrom,“OntheCalculationofLorenz

    NumbersforComplexThermoelectricMaterials,”https://arxiv.org/abs/1710.03711,October13,2017.

    [7] C.Jeong,R.Kim,M.Luisier,S.Datta,andM.Lundstrom,"OnLandauerversus

    Boltzmannandfullbandversuseffectivemassevaluationofthermoelectrictransportcoefficients,"023707.J.ofAppl.Phys.,107,2010.

    [8] G.D. Mahan and J.O. Sofo, "The best thermoelectric," Proc. National Academy of

    Sciences,93,pp.7436-7439,1996.


Top Related