notes on the wiedemannfranzlaw - nanohubnotes_on_the...2018/01/03  · 1 notes on the...

8
1 Notes on the Wiedemann-Franz Law Mark Lundstrom Purdue University January 3, 2018 Historically, “The Wiedemann-Franz Law states that for metals at not too low temperatures the ratio of the thermal conductivity to the electrical conductivity is directly proportional to the temperature with the value of the constant of proportionality independent of the particular metal.” [1]. Kittel writes the Wiedemann-Franz (WF) Law as [1] κ e σ = L 0 T = π 2 3 k B q 2 T , (1) where L 0 is the Lorenz number (which is actually a ratio, not a number). As Kittel notes, the fact that (1) can be derived from the electron gas theory of metals and that it applies to a wide range of metals under a wide range of conditions, was a major success in the early history of the theory of metals [1]. Both Kittel and Ziman [2] point out, however, that the Lorenz number (which Ziman calls the Lorenz ratio) can change for metals at low temperature. This is usually attributed to a breakdown of the Relaxation Time Approximation (RTA) – see Ashcroft and Merman [3], pp. 322, 323.) It is sometimes stated that the scattering times in the electrical and thermal conductivities may be different [1]. As summarized in eqns. (6), below, however, when solving the BTE in the RTA, there is only a single scattering time that determines the electrical and thermal conductivity (it appears in the mean-free-path, λ E ( ) in (6e)). As discussed by Ashcroft and Merman, the breakdown of the WF law at low temperatures is not the result of different scattering times for the electrical and thermal conductivities, but, rather, the due to the fact that the same scattering has different effects on the electrical and thermal conductivities ([3] footnote on p. 323). More generally, we can always write κ e σ LT (2) and simply regard it as the definition of the Lorenz number. According to Ziman, we should only refer to this relation as the Wiedemann-Franz Law when L = L 0 = π 2 3 ( ) k B q ( ) 2 [3]. On the other hand, it is common to refer to (2) as the “Wiedemann-Franz Law” and apply it not only to metals but also to semiconductors for which L is rarely L 0 . See, for example [4], which also points out that we should regard the Wiedemenn-Franz Law to be a “rule of thumb” and not a law of nature. Even for metallic conditions, violations of the Wiedemann- Franz Law occur (see [5] for one example), and for semiconductors, L is rarely equal to L 0 . The calculation of the Lorenz number requires an accurate band structure and knowledge

Upload: others

Post on 02-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    NotesontheWiedemann-FranzLawMarkLundstromPurdueUniversityJanuary3,2018

    Historically,“TheWiedemann-FranzLawstatesthatformetalsatnottoolowtemperaturestheratioofthethermalconductivitytotheelectricalconductivityisdirectlyproportionaltothetemperaturewiththevalueoftheconstantofproportionalityindependentoftheparticularmetal.”[1].KittelwritestheWiedemann-Franz(WF)Lawas[1]

    κ eσ

    = L0T =π 2

    3kBq

    ⎝⎜⎞

    ⎠⎟

    2

    T , (1)

    where L0 istheLorenznumber(whichisactuallyaratio,notanumber).AsKittelnotes,thefactthat(1)canbederivedfromtheelectrongastheoryofmetalsandthatitappliestoawiderangeofmetalsunderawiderangeofconditions,wasamajorsuccessintheearlyhistoryofthetheoryofmetals[1].BothKittelandZiman[2]pointout,however,thattheLorenznumber(whichZimancallstheLorenzratio)canchangeformetalsatlowtemperature.ThisisusuallyattributedtoabreakdownoftheRelaxationTimeApproximation(RTA)–seeAshcroftandMerman[3],pp.322,323.)Itissometimesstatedthatthescatteringtimesintheelectricalandthermalconductivitiesmaybedifferent[1].Assummarizedineqns.(6),below,however,whensolvingtheBTEintheRTA,thereisonlyasinglescatteringtimethatdeterminestheelectricalandthermalconductivity(itappearsinthemean-free-path, λ E( ) in(6e)).AsdiscussedbyAshcroftandMerman,thebreakdownoftheWFlawatlowtemperaturesisnottheresultofdifferentscatteringtimesfortheelectricalandthermalconductivities,but,rather,theduetothefactthatthesamescatteringhasdifferenteffectsontheelectricalandthermalconductivities([3]footnoteonp.323).Moregenerally,wecanalwayswrite

    κ eσ

    ≡ LT (2)

    andsimplyregarditasthedefinitionoftheLorenznumber.AccordingtoZiman,weshouldonlyrefertothisrelationastheWiedemann-FranzLawwhen

    L = L0 = π

    2 3( ) kB q( )2 [3].Ontheotherhand,itiscommontoreferto(2)asthe“Wiedemann-FranzLaw”andapplyitnotonlytometalsbutalsotosemiconductorsforwhichLisrarely L0 .See,forexample[4],whichalsopointsoutthatweshouldregardtheWiedemenn-FranzLawtobea“ruleofthumb”andnotalawofnature.Evenformetallicconditions,violationsoftheWiedemann-FranzLawoccur(see[5]foroneexample),andforsemiconductors, L israrelyequalto L0 .ThecalculationoftheLorenznumberrequiresanaccuratebandstructureandknowledge

  • 2

    oftheenergy-dependentscatteringprocesses[6].Inthesenotes,wediscusscalculationsforasimple,parabolicenergybandwithpower-lawscattering.Wewillconsider(2)tobethedefinitionoftheLorenznumber,whichcanbewrittenas([7],p.96)

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2E − EFkBTL

    ⎝⎜⎞

    ⎠⎟

    2

    −E − EFkBTL

    ⎝⎜⎞

    ⎠⎟

    2⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪, (3)

    wheretheaverage, i ,isdefinedbyeqn.(5.51)in[7].Foramaterialwithasingleenergy

    channelat E = E1 , M E( ) = M0δ E − E1( ) ,anditiseasytoshowmathematicallyfromeqn.(3)that L = 0 .Thephysicalreasonisclear.Ifthereisasinglechannel,thenwhenweopen-circuitittomeasure κ e ,noelectronsflow.Sincethereisnoflowofelectrons,therecanbenoflowofheatIn3D,foraconstantmean-free-pathandparabolicenergybands,wefindforanon-degeneratesemiconductor

    L ≈ 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (4)

    andforadegeneratesemiconductor,

    L ≈ π

    2

    3kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    . (5)

    Whatarethecorrespondingrelationsfor1Dand2Dsemiconductorswithparabolicenergybands?LorenzNumberin3D,2D,and1DTocomputeLfrom(2)wemustcalculatethethermoelectriccoefficients:

    σ = ′σ E( )∫ dE (6a)

    S = −

    kBq

    E − EFkBT

    ⎛⎝⎜

    ⎞⎠⎟

    ′σ E( )∫ dE ′σ E( )∫ dE (6b)

    κ 0 = T

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2E − EF

    kBT⎛

    ⎝⎜⎞

    ⎠⎟

    2

    ′σ E( )∫ dE (6c)

    κ e =κ 0 − S2σT (6d)

  • 3

    where

    ′σ E( ) = 2q

    2

    hλ E( ) M E( )A −

    ∂ f0∂E

    ⎛⎝⎜

    ⎞⎠⎟= q2Ξ E( ) − ∂ f0∂E

    ⎛⎝⎜

    ⎞⎠⎟. (6e)

    From(2)and(6d),wefind

    L =

    κ eσT

    =κ 0 − S

    2σTσT

    =κ 0σT

    − S 2 . (7)

    TofindL,wesimplyneedtocompute κ e andσ .In(6e), Ξ E( ) isknownasthe“transportfunction”or“transportdistribution”[8].Ingeneral,thecomputationofLrequiresnumericalcalculations[6],butforparabolicenergybandswithpowerlawscattering,analyticalresultsarepossible(seetheappendixof[7]).1) Lorenznumberin3DforparabolicbandsFromtheAppendixof[7]:

    κ e = T

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    22q2

    hλ0

    m*kBT2π2

    ⎝⎜⎞

    ⎠⎟Γ r + 3( ) r + 3( )F r+2 ηF( )−

    r + 2( )F r+12 ηF( )F r ηF( )

    ⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪ (8)

    σ = 2q

    2

    hλ0

    m*kBT2π!2

    ⎝⎜⎞

    ⎠⎟Γ r + 2( )F r ηF( ) , (9)

    wherepowerlawscatteringhasbeenassumed:

    λ E( ) = λ0 E − ECkBT

    ⎝⎜⎞

    ⎠⎟

    r

    . (10)

    TheresultingLorenznumberin3Dis

    L =

    κ eσT

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 3( )Γ r + 2( ) r + 3( )

    F r+2 ηF( )F r ηF( )

    −r + 2( )F r+12 ηF( )

    F r2 ηF( )

    ⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪. (11)

  • 4

    Casei)Maxwell-BoltzmannStatistics

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 3( )Γ r + 2( ) r + 3( )− r + 2( ){ }

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 r + 2( )!r +1( )!

    (12)

    For r = 0 ,wefind

    L = 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (13)

    asexpected.Equation(13)istheWFlawin3Dforparabolicenergybands,energy-independentscattering,andMaxwell-Boltzmannstatistics.Notethatthemean-free-pathisproportionaltovelocitytimesscatteringtime.ForAcousticDeformationPotential(ADP)scattering,thescatteringrate(oneoverthescatteringtime)isproportionaltothedensity-of-states, D E( ) .Forparabolicbands, D E( )∝ E − EC( )

    d−2( ) 2 ,whered=1,2,or3for1D,2D,or3D.ForADPscattering,wefind

    λ E( )∝υ E( )τ E( )∝υ E( ) D E( )∝ E − EC( )3−d( ) 2 . (14)

    ForADPscatteringin3D, r = 0 ,forADPscatteringin2D, r = 1 2 ,andforADPscatteringin1D, r = 1 .Theassumptionofaconstantmean-free-pathinthe3DcalculationsaboveisequivalenttoassumingADPscattering.Caseii)StronglydegenerateconditionsInthiscase,wemustexpandtheFermi-Diracintegralsfor ηF >> 0 .FromJeongandLundstrom,p.101[7]

    F r ηF( )→ ηF

    r+1

    Γ r + 2( ) +π 2

    6ηF

    r−1

    Γ r( ) + ... Therestisleftasanexerciseforthereader.

  • 5

    2) Lorenznumberin2DforparabolicbandsFromtheAppendixof[7]:

    κ e = TkBq

    ⎛⎝⎜

    ⎞⎠⎟

    22q2

    hλ0

    2m*kBTπ

    ⎝⎜⎜

    ⎠⎟⎟Γ r + 5

    2⎛⎝⎜

    ⎞⎠⎟

    r + 52

    ⎛⎝⎜

    ⎞⎠⎟F r+3/2 ηF( )−

    r + 32

    ⎛⎝⎜

    ⎞⎠⎟F r+1/2

    2 ηF( )F r−1/2 ηF( )

    ⎨⎪⎪

    ⎩⎪⎪

    ⎬⎪⎪

    ⎭⎪⎪

    (15)

    and

    σ = 2q2

    hλ0

    2m*kBTπ

    ⎝⎜⎜

    ⎠⎟⎟Γ r + 3

    2⎛⎝⎜

    ⎞⎠⎟F r−1/2 ηF( ) . (16)

    TheLorenznumberin2Dis

    L =κ eσT

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 52

    ⎛⎝⎜

    ⎞⎠⎟

    Γ r + 32

    ⎛⎝⎜

    ⎞⎠⎟

    r + 52

    ⎛⎝⎜

    ⎞⎠⎟F r+3/2 ηF( )F r−1/2 ηF( )

    −r + 3

    2⎛⎝⎜

    ⎞⎠⎟F r+1/2

    2 ηF( )F r−1/2

    2 ηF( )

    ⎨⎪⎪

    ⎩⎪⎪

    ⎬⎪⎪

    ⎭⎪⎪

    . (17)

    Casei)Maxwell-BoltzmannStatistics

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 52

    ⎛⎝⎜

    ⎞⎠⎟

    Γ r + 32

    ⎛⎝⎜

    ⎞⎠⎟

    r + 52

    ⎛⎝⎜

    ⎞⎠⎟− r + 3

    2⎛⎝⎜

    ⎞⎠⎟

    ⎧⎨⎩

    ⎫⎬⎭

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 52

    ⎛⎝⎜

    ⎞⎠⎟

    Γ r + 32

    ⎛⎝⎜

    ⎞⎠⎟

    (18)

    For r = 0 (energy-independentmean-free-path),wefind

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 5 2( )Γ 3 2( ) =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 32Γ 3 2( )Γ 3 2( )

    L = 3

    2kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (2DconstantMFP) (19)

  • 6

    Equation(19)istheLorenznumberin2Dforparabolicenergybands,energy-independentscattering,andMaxwell-Boltzmannstatistics.Weseethatthenumericalfactorof3/2isdifferentthanthefactorof2inthe3Dcase.If,however,weassumeADPscatteringin2D,then r = 1/ 2 and(18)gives

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 3( )Γ 2( ) = 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (2DADPscattering) (20)

    whichisidenticaltotheresultfor3DADPscattering.Caseii)StronglydegenerateconditionsInthiscase,wemustexpandtheFermi-Diracintegralsfor ηF >> 0 .3) Lorenznumberin1DforparabolicbandsFromtheAppendixof[7]:

    κ e = T

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    22q2

    hλ0 Γ r + 2( ) r + 2( )F r+1 ηF( )−

    r +1( )F r2 ηF( )F r−1 ηF( )

    ⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪ (21)

    σ = 2q

    2

    hλ0 Γ r +1( )F r−1 ηF( ) (22)

    TheLorenznumberin1Dis

    L =

    κ eσT

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( ) r + 2( )

    F r+1 ηF( )F r−1 ηF( )

    −r +1( )F r2 ηF( )F r−1

    2 ηF( )⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪ (23)

    Casei)Maxwell-BoltzmannStatistics

    L =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( ) r + 2( )− r +1( ){ }

    =kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( )

    (24)

    For r = 0 (energy-independentmean-free-path),wefind

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 2( )Γ 1( ) =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 1( )!0( )!

    L = 1

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (1DconstantMFP) (25)

  • 7

    Equation(25)istheLorenznumberfor1Dwithparabolicenergybands,energy-independentscattering,andMaxwell-Boltzmannstatistics.Weseethatthenumericalfactorof1isdifferentthanthefactorof2inthe3Dcaseandthefactorof3/2in2D.If,however,weassumeADPscatteringin1D,then r = 1and(24)gives

    L =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ r + 2( )Γ r +1( ) =

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2 Γ 3( )Γ 2( ) = 2

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    (1DADPscattering) (26)

    whichisidenticaltotheresultfor3DADPscattering.Caseii)StronglydegenerateconditionsInthiscase,wemustexpandtheFermi-Diracintegralsfor ηF >> 0 .Discussion:IfweconsidertheLorenznumberin3Dasgivenby(11),in2Dasgivenby(17),andin1Dby(23)andassumeADPscatteringineachcase,soin3D, r = 0 ,in2D, r = 1 2 ,and1D, r = 1 wefindthesameanswerin1D,2D,3D:

    L = 2 3

    F 2 ηF( )F 0 ηF( )

    −2F 1

    2 ηF( )F 0

    2 ηF( )⎧⎨⎪

    ⎩⎪

    ⎫⎬⎪

    ⎭⎪

    kBq

    ⎛⎝⎜

    ⎞⎠⎟

    2

    . (27)

    ForparabolicenergybandswithADPscattering,theLorenznumberisidenticalatanylevelofdegeneracy.Thisresultcouldhavebeenanticipated.Thetransportdistribution, Ξ E( ) in(6e)determinesallofthetransportcoefficients.Thetransportdistributionisproportionalto M E( )λ E( ) .Themean-free-pathisproportionaltovelocitytimesscatteringtime,andthescatteringtimeisinverselyproportionaltotheDOS.ThenumberofchannelsisproportionaltovelocitytimestheDOS[7],soforparabolicbands,wefind

    Ξxx E( )∝ M E( ) A( )× λ E( )∝υ E( )D E( )×υ E( ) D E( )∝υ 2 E( )∝ E − EC( ) . (28)SincethetransportfunctionisindependentofdimensionforADPscatteringinparabolicbands,allthermoelectrictransportcoefficientsareindependentofdimension.

  • 8

    References[1] C.Kittel,IntroductiontoSolidStatePhysics,4thed.,p.263,JohnWileyandSons,1971[2] J.Ziman,PrinciplesoftheTheoryofSolids,p.200,CambridgeUniversityPress,1964.[3] N.W.AshcroftandN.D.Mermin,SolidStatePhysics,2003.[4] G.D.MahanandM.Bartkowiak,"Wiedemann–Franzlawatboundaries,"Appl.Phys.

    Lett.,74,p.953,1999.[5] A.Casian, "Violationof theWiedemann-Franz law inquasi-one-dimensional organic

    crystals,"Phys.Rev.B,81,155415,2010.[6] XufengWang,JesseMaassen,MarkLundstrom,“OntheCalculationofLorenz

    NumbersforComplexThermoelectricMaterials,”https://arxiv.org/abs/1710.03711,October13,2017.

    [7] C.Jeong,R.Kim,M.Luisier,S.Datta,andM.Lundstrom,"OnLandauerversus

    Boltzmannandfullbandversuseffectivemassevaluationofthermoelectrictransportcoefficients,"023707.J.ofAppl.Phys.,107,2010.

    [8] G.D. Mahan and J.O. Sofo, "The best thermoelectric," Proc. National Academy of

    Sciences,93,pp.7436-7439,1996.