Transcript
Page 1: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Orbital Mechanics• Orbital Mechanics, continued

– Time in orbits– Velocity components in orbit– Deorbit maneuvers– Atmospheric density models– Orbital decay (introduction)

• Fundamentals of Rocket Performance– The rocket equation– Mass ratio and performance– Structural and payload mass fractions– Multistaging– Optimal ΔV distribution between stages (introduction)

© 2004 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Calculating Time in Orbit

Page 3: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

➥M=mean anomalyE=eccentric anomaly

P = 2π a3

µ

n = µa3

M = nt = E − esin E

Page 4: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r = a(1− e cosE)

tanθ2=1+ e1− e

tan E2

Ei+1 = nt + esin Ei

Page 5: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Example: Time in Orbit

• Hohmann transfer from LEO to GEO– h1=300 km --> r1=6378+300=6678 km– r2=42240 km

• Time of transit (1/2 orbital period)

Page 6: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328;2.311; 2.320; 2.316; 2.318; 2.317; 2.317; 2.317

Page 7: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Example: Time-based Position (continued)

Have to be sure to get the position in the properquadrant - since the time is less than 1/2 theperiod, the spacecraft has yet to reach apogee--> 0°<θ<180°

Page 8: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Velocity Components in Orbit

Page 9: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Velocity Components in Orbit (continued)

Page 10: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Atmospheric Decay

• Entry Interface– Altitude where aerodynamic effects become

significant (acc~0.05 g)– Typically 400,000 ft ~ 80 mi ~ 120 km

• Exponential Atmosphere–– Good for selected regions of atmosphere

Page 11: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Atmospheric Density with Altitude

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

Page 12: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Acceleration Due to Atmospheric Drag

Page 13: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Orbit Decay from Atmospheric Drag

Ref: Alan C. Tribble, The Space Environment Princeton University Press, 1995

Page 14: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Derivation of the Rocket Equation

• Momentum at time t:

• Momentum at time t+Δt:

• Some algebraic manipulation gives:

• Take to limits and integrate:

M = mv

M = (m − Δm)(v + Δv) + Δm(v −Ve )

mΔv = −ΔmVe

dmm

= −

dvVe

Vinitial

Vfinal

∫minitial

m final

m-Δm

v+ΔvΔm

Ve

v-Ve

m v

Page 15: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

The Rocket Equation

• Alternate forms

• Basic definitions/concepts– Mass ratio

– Nondimensional velocity change“Velocity ratio”

ΔV = −Ve lnmfinal

minitial

= −Ve ln(r)r ≡

mfinal

minitial

= e−ΔVVe

ΔVVe

r ≡mfinal

minitial

orℜ =minitial

mfinal

Page 16: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Rocket Equation (First Look)

1

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

Velocity Ratio, (ΔV/Ve)

Mas

s Ra

tio,

(Mfi

nal/M

init

ial)

Typical Rangefor Launch to

Low Earth Orbit

Page 17: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Sources and Categories of Vehicle MassPayloadPropellantsInert Mass

StructurePropulsionAvionicsMechanismsThermalEtc.

Page 18: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Basic Vehicle Parameters• Basic mass summary

• Inert mass fraction

• Payload fraction

• Parametric mass ratio

m0 = initial massmL = payload massmp = propellant massmi = inert mass

δ =mi

m0=

mi

mL + mp +mi

r = λ +δ

λ =mL

m0=

mL

mL + mp +mi

m0 =mL +mp +mi

Page 19: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Rocket Equation (including Inert Mass)

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

0.000.050.100.150.20

Velocity Ratio, (ΔV/Ve)

Payl

oad

Frac

tion

, (M

payl

oad/

Min

itia

l) Typical Rangefor Launch to

Low Earth Orbit

Inert MassFraction δ

Page 20: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

The Rocket Equation for Multiple Stages

• Assume two stages

• Assume Ve,1=Ve,2=Ve

ΔV1 =−Ve,1 lnmfinal,1

minitial,1

=−Ve,1 ln(r1)

ΔV2 =−Ve,2 lnmfinal,2

minitial,2

=−Ve,2 ln(r2)

ΔV1 +ΔV2 = −Ve ln(r1)−Ve ln(r2 ) = −Ve ln(r1r2 )

Page 21: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Continued Look at Multistaging

• Converting to masses

• Keep in mind that mfinal,1~minitial,2

• r0 has no physical significance!

ΔV1 +ΔV2 = −Ve ln(r1r2 ) =−Ve lnmfinal,1

minitial,1

mfinal,2

minitial,2

ΔV1 +ΔV2 = −Ve ln(r1r2 ) =−Ve lnmfinal,2

minitial,1

=−Ve ln(r0 )

Page 22: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Multistage Vehicle Parameters

• Inert mass fraction

• Payload fraction

• Payload mass/inert mass ratio

δ0 =

mi, j∑m0

= δ j λll =1

j−1

j=1

n stages

λ0δ 0

λ0 =mL

m0= λi

i=1

n stages

Page 23: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Effect of Staging

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5

1 stage2 stage3 stage4 stage

Payl

oad

Frac

tion

, (M

payl

oad/

Min

itia

l)

Velocity Ratio, (ΔV/Ve)

Inert Mass Fraction δ=0.2

Page 24: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Effect of ΔV Distribution

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

0 2000 4000 6000 8000 10000

lambda0delta0lamd0/del0

1st Stage Delta-V (m/sec)

1st Stage: LOX/LH2 2nd Stage: LOX/LH2

Page 25: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Lagrange Multipliers

• Given an objective function

subject to constraint function

• Create a new objective function

• Solve simultaneous equations

y = f (x)

z = g(x)

y = f (x) + λ g(x) − z[ ]

∂y∂x

= 0 ∂y∂λ

= 0

Page 26: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Optimum ΔV Distribution Between Stages

• Maximize payload fraction (2 stage case)

subject to constraint function

• Create a new objective function

➥Very messy for partial derivatives!

λ0 = λ1λ2 = (r1 − δ1)(r2 −δ 2 )

ΔVtotal = ΔV1 + ΔV2

λ0 = (e−ΔV1Ve1 −δ1)(e

−ΔV2Ve2 − δ2 ) + K ΔV1 + ΔV2 − ΔVTotal[ ]

Page 27: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Optimum ΔV Distribution (continued)

• Use substitute objective function

• Create a new constrained objective function

• Take partials and set equal to zero

ln(λ0 ) = ln(r1 − δ1) + ln(r2 −δ 2 )+K ΔVTotal +Ve1 ln(r1) + Ve2 ln(r2 )[ ]

max(λ0 )⇔ max ln(λ0 )[ ]

∂ ln(λ0 )∂r1

= 0 ∂ ln(λ0 )∂r2

= 0 ∂ ln(λ0 )∂K

= 0

Page 28: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Optimum ΔV Special Cases• “Generic” partial of objective function

• Case 1: δ1=δ2 Ve1=Ve2

• Case 2: δ1≠δ2 Ve1=Ve2

• More complex cases have to be done numerically

∂ ln(λ0 )∂ri

=1

ri − δi+ KVei

ri= 0

r1 = r2 ⇒ΔV1 = ΔV2

r1δ1=r2δ 2

Page 29: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Sensitivity to Inert Mass

ΔV for multistaged rocket

ΔVtot = ΔVkk=1

n stages

∑ = Ve,k lnmo,k

m f ,k

k=1

n

∂ΔVtot∂mL

dmL +∂ΔVtot∂mi, j

dmi, j = 0

mo,k =mL +mp,k +mi,k + mp, j +mi, jj= k+1

n

mf ,k =mL +mi,k + mp, j + mi, jj= k+1

n

Page 30: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio: Payload<–>Inert Mass

∂mL

∂mi,k ∂ΔVTotal=0

=

− Ve, j1m0, j

−1mf , j

j=1

k

Ve, l1m0,l

−1mf ,l

l =1

N

Page 31: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio : Payload<–>Propellant

∂mL

∂mp,k ∂ΔVTotal =0

=

− Ve, j1m0, j

j=1

k

Ve,l1m0,l

−1mf ,l

l =1

N

Page 32: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio: Payload<–>Exhaust Velocity

∂mL

∂Ve,k ∂ΔVTotal =0

=

ln m0,k

mf ,k

j=1

k

Ve,l1m0,l

−1mf ,l

l =1

N

Page 33: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio Example: Gemini-Titan II

6.4592.870dmL/dVe,j (kg/m/sec)

0.24430.04124dmL/dmp,j

-1-0.1164dmL/dmi,j

30972900Ve (m/sec)

609939,370Final Mass (kg)

32,630150,500Initial Mass (kg)

Stage 2Stage 1

Page 34: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Parallel Staging

• Multiple dissimilarengines burningsimultaneously

• Frequently a result ofupgrades to operationalsystems

• General case requires“brute force” numericalperformance analysis

Page 35: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Parallel-Staging Rocket Equation

• Momentum at time t:

• Momentum at time t+Δt:(subscript “b”=boosters; “c”=core vehicle)

• Assume thrust (and mass flow rates)constant

M = mv

Page 36: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Parallel-Staging Rocket Equation

• Rocket equation during booster burn

• where

V e =Ve,b ˙ m b +Ve ,c ˙ m c

˙ m b + ˙ m c=

Ve ,bm p,b +Ve ,c 1− χ( )m p,c

m p,b + 1− χ( )m p,c

ΔV = −V e lnm final

minitial

= −V e ln

mi,b + mi,c + χm p,c + mo,2

mi,b + m p,b + mi,c + mp,c + mo,2

Page 37: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Analyzing Parallel-Staging Performance

Parallel stages break down into pseudo-serialstages:

• Stage “0” (boosters and core)

• Stage “1” (core alone)

• Subsequent stages are as before

ΔV0 = −V e lnmi,b + mi,c + χm p,c + mo,2

mi,b + m p,b + mi,c + m p,c + mo,2

ΔV1 = −Ve,c lnmi,c +mo,2

mi,c + χmp,c + mo,2

Page 38: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Modular Staging

• Use identical modules toform multiple stages

• Have to cluster modules onlower stages to make up fornonideal ΔV distributions

• Advantageous fromproduction and developmentcost standpoints

Page 39: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Module Analysis

• All modules have the same inert mass andpropellant mass

• Because δ varies with payload mass, not allmodules have the same δ!

• Introduce two new parameters

• Conversions

ε =mi

mi +mp

σ =mi

mp

ε =δ1− λ

σ =δ

1−δ − λ

Page 40: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Rocket Equation for Modular Boosters

• Assuming n modules in stage 1,

• If all 3 stages use same modules, nj for stage j,

• where

r1 =n mi( ) + mo,2

n mi + mp( ) + mo,2

=

nε +mo,2

mo,mod

n +mo,2

mo,mod

r1 =n1ε+ n2 + n3 + ρLn1 + n2 + n3 + ρL

ρL =mL

mmod; mmod =mi + mp


Top Related