orbital mechanics - umdspacecraft.ssl.umd.edu/academics/791s04/791s04.l02b.pdf · 2004. 2. 3. ·...

40
Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Orbital Mechanics, continued Time in orbits Velocity components in orbit Deorbit maneuvers Atmospheric density models Orbital decay (introduction) Fundamentals of Rocket Performance The rocket equation Mass ratio and performance Structural and payload mass fractions – Multistaging – Optimal ΔV distribution between stages (introduction) © 2004 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: others

Post on 17-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Orbital Mechanics• Orbital Mechanics, continued

– Time in orbits– Velocity components in orbit– Deorbit maneuvers– Atmospheric density models– Orbital decay (introduction)

• Fundamentals of Rocket Performance– The rocket equation– Mass ratio and performance– Structural and payload mass fractions– Multistaging– Optimal ΔV distribution between stages (introduction)

© 2004 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Calculating Time in Orbit

Page 3: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

➥M=mean anomalyE=eccentric anomaly

P = 2π a3

µ

n = µa3

M = nt = E − esin E

Page 4: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r = a(1− e cosE)

tanθ2=1+ e1− e

tan E2

Ei+1 = nt + esin Ei

Page 5: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Example: Time in Orbit

• Hohmann transfer from LEO to GEO– h1=300 km --> r1=6378+300=6678 km– r2=42240 km

• Time of transit (1/2 orbital period)

Page 6: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328;2.311; 2.320; 2.316; 2.318; 2.317; 2.317; 2.317

Page 7: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Example: Time-based Position (continued)

Have to be sure to get the position in the properquadrant - since the time is less than 1/2 theperiod, the spacecraft has yet to reach apogee--> 0°<θ<180°

Page 8: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Velocity Components in Orbit

Page 9: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Velocity Components in Orbit (continued)

Page 10: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Atmospheric Decay

• Entry Interface– Altitude where aerodynamic effects become

significant (acc~0.05 g)– Typically 400,000 ft ~ 80 mi ~ 120 km

• Exponential Atmosphere–– Good for selected regions of atmosphere

Page 11: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Atmospheric Density with Altitude

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

Page 12: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Acceleration Due to Atmospheric Drag

Page 13: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Orbit Decay from Atmospheric Drag

Ref: Alan C. Tribble, The Space Environment Princeton University Press, 1995

Page 14: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Derivation of the Rocket Equation

• Momentum at time t:

• Momentum at time t+Δt:

• Some algebraic manipulation gives:

• Take to limits and integrate:

M = mv

M = (m − Δm)(v + Δv) + Δm(v −Ve )

mΔv = −ΔmVe

dmm

= −

dvVe

Vinitial

Vfinal

∫minitial

m final

m-Δm

v+ΔvΔm

Ve

v-Ve

m v

Page 15: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

The Rocket Equation

• Alternate forms

• Basic definitions/concepts– Mass ratio

– Nondimensional velocity change“Velocity ratio”

ΔV = −Ve lnmfinal

minitial

= −Ve ln(r)r ≡

mfinal

minitial

= e−ΔVVe

ΔVVe

r ≡mfinal

minitial

orℜ =minitial

mfinal

Page 16: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Rocket Equation (First Look)

1

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

Velocity Ratio, (ΔV/Ve)

Mas

s Ra

tio,

(Mfi

nal/M

init

ial)

Typical Rangefor Launch to

Low Earth Orbit

Page 17: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Sources and Categories of Vehicle MassPayloadPropellantsInert Mass

StructurePropulsionAvionicsMechanismsThermalEtc.

Page 18: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Basic Vehicle Parameters• Basic mass summary

• Inert mass fraction

• Payload fraction

• Parametric mass ratio

m0 = initial massmL = payload massmp = propellant massmi = inert mass

δ =mi

m0=

mi

mL + mp +mi

r = λ +δ

λ =mL

m0=

mL

mL + mp +mi

m0 =mL +mp +mi

Page 19: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Rocket Equation (including Inert Mass)

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

0.000.050.100.150.20

Velocity Ratio, (ΔV/Ve)

Payl

oad

Frac

tion

, (M

payl

oad/

Min

itia

l) Typical Rangefor Launch to

Low Earth Orbit

Inert MassFraction δ

Page 20: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

The Rocket Equation for Multiple Stages

• Assume two stages

• Assume Ve,1=Ve,2=Ve

ΔV1 =−Ve,1 lnmfinal,1

minitial,1

=−Ve,1 ln(r1)

ΔV2 =−Ve,2 lnmfinal,2

minitial,2

=−Ve,2 ln(r2)

ΔV1 +ΔV2 = −Ve ln(r1)−Ve ln(r2 ) = −Ve ln(r1r2 )

Page 21: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Continued Look at Multistaging

• Converting to masses

• Keep in mind that mfinal,1~minitial,2

• r0 has no physical significance!

ΔV1 +ΔV2 = −Ve ln(r1r2 ) =−Ve lnmfinal,1

minitial,1

mfinal,2

minitial,2

ΔV1 +ΔV2 = −Ve ln(r1r2 ) =−Ve lnmfinal,2

minitial,1

=−Ve ln(r0 )

Page 22: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Multistage Vehicle Parameters

• Inert mass fraction

• Payload fraction

• Payload mass/inert mass ratio

δ0 =

mi, j∑m0

= δ j λll =1

j−1

j=1

n stages

λ0δ 0

λ0 =mL

m0= λi

i=1

n stages

Page 23: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Effect of Staging

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5

1 stage2 stage3 stage4 stage

Payl

oad

Frac

tion

, (M

payl

oad/

Min

itia

l)

Velocity Ratio, (ΔV/Ve)

Inert Mass Fraction δ=0.2

Page 24: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Effect of ΔV Distribution

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

0 2000 4000 6000 8000 10000

lambda0delta0lamd0/del0

1st Stage Delta-V (m/sec)

1st Stage: LOX/LH2 2nd Stage: LOX/LH2

Page 25: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Lagrange Multipliers

• Given an objective function

subject to constraint function

• Create a new objective function

• Solve simultaneous equations

y = f (x)

z = g(x)

y = f (x) + λ g(x) − z[ ]

∂y∂x

= 0 ∂y∂λ

= 0

Page 26: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Optimum ΔV Distribution Between Stages

• Maximize payload fraction (2 stage case)

subject to constraint function

• Create a new objective function

➥Very messy for partial derivatives!

λ0 = λ1λ2 = (r1 − δ1)(r2 −δ 2 )

ΔVtotal = ΔV1 + ΔV2

λ0 = (e−ΔV1Ve1 −δ1)(e

−ΔV2Ve2 − δ2 ) + K ΔV1 + ΔV2 − ΔVTotal[ ]

Page 27: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Optimum ΔV Distribution (continued)

• Use substitute objective function

• Create a new constrained objective function

• Take partials and set equal to zero

ln(λ0 ) = ln(r1 − δ1) + ln(r2 −δ 2 )+K ΔVTotal +Ve1 ln(r1) + Ve2 ln(r2 )[ ]

max(λ0 )⇔ max ln(λ0 )[ ]

∂ ln(λ0 )∂r1

= 0 ∂ ln(λ0 )∂r2

= 0 ∂ ln(λ0 )∂K

= 0

Page 28: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Optimum ΔV Special Cases• “Generic” partial of objective function

• Case 1: δ1=δ2 Ve1=Ve2

• Case 2: δ1≠δ2 Ve1=Ve2

• More complex cases have to be done numerically

∂ ln(λ0 )∂ri

=1

ri − δi+ KVei

ri= 0

r1 = r2 ⇒ΔV1 = ΔV2

r1δ1=r2δ 2

Page 29: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Sensitivity to Inert Mass

ΔV for multistaged rocket

ΔVtot = ΔVkk=1

n stages

∑ = Ve,k lnmo,k

m f ,k

k=1

n

∂ΔVtot∂mL

dmL +∂ΔVtot∂mi, j

dmi, j = 0

mo,k =mL +mp,k +mi,k + mp, j +mi, jj= k+1

n

mf ,k =mL +mi,k + mp, j + mi, jj= k+1

n

Page 30: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio: Payload<–>Inert Mass

∂mL

∂mi,k ∂ΔVTotal=0

=

− Ve, j1m0, j

−1mf , j

j=1

k

Ve, l1m0,l

−1mf ,l

l =1

N

Page 31: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio : Payload<–>Propellant

∂mL

∂mp,k ∂ΔVTotal =0

=

− Ve, j1m0, j

j=1

k

Ve,l1m0,l

−1mf ,l

l =1

N

Page 32: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio: Payload<–>Exhaust Velocity

∂mL

∂Ve,k ∂ΔVTotal =0

=

ln m0,k

mf ,k

j=1

k

Ve,l1m0,l

−1mf ,l

l =1

N

Page 33: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Trade-off Ratio Example: Gemini-Titan II

6.4592.870dmL/dVe,j (kg/m/sec)

0.24430.04124dmL/dmp,j

-1-0.1164dmL/dmi,j

30972900Ve (m/sec)

609939,370Final Mass (kg)

32,630150,500Initial Mass (kg)

Stage 2Stage 1

Page 34: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Parallel Staging

• Multiple dissimilarengines burningsimultaneously

• Frequently a result ofupgrades to operationalsystems

• General case requires“brute force” numericalperformance analysis

Page 35: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Parallel-Staging Rocket Equation

• Momentum at time t:

• Momentum at time t+Δt:(subscript “b”=boosters; “c”=core vehicle)

• Assume thrust (and mass flow rates)constant

M = mv

Page 36: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Parallel-Staging Rocket Equation

• Rocket equation during booster burn

• where

V e =Ve,b ˙ m b +Ve ,c ˙ m c

˙ m b + ˙ m c=

Ve ,bm p,b +Ve ,c 1− χ( )m p,c

m p,b + 1− χ( )m p,c

ΔV = −V e lnm final

minitial

= −V e ln

mi,b + mi,c + χm p,c + mo,2

mi,b + m p,b + mi,c + mp,c + mo,2

Page 37: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Analyzing Parallel-Staging Performance

Parallel stages break down into pseudo-serialstages:

• Stage “0” (boosters and core)

• Stage “1” (core alone)

• Subsequent stages are as before

ΔV0 = −V e lnmi,b + mi,c + χm p,c + mo,2

mi,b + m p,b + mi,c + m p,c + mo,2

ΔV1 = −Ve,c lnmi,c +mo,2

mi,c + χmp,c + mo,2

Page 38: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Modular Staging

• Use identical modules toform multiple stages

• Have to cluster modules onlower stages to make up fornonideal ΔV distributions

• Advantageous fromproduction and developmentcost standpoints

Page 39: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Module Analysis

• All modules have the same inert mass andpropellant mass

• Because δ varies with payload mass, not allmodules have the same δ!

• Introduce two new parameters

• Conversions

ε =mi

mi +mp

σ =mi

mp

ε =δ1− λ

σ =δ

1−δ − λ

Page 40: Orbital Mechanics - UMDspacecraft.ssl.umd.edu/academics/791S04/791S04.L02B.pdf · 2004. 2. 3. · Orbital Mechanics Launch and Entry Vehicle Design U N I V E R S I T Y O F MARYLAND

Orbital MechanicsLaunch and Entry Vehicle Design

U N I V E R S I T Y O F

MARYLAND

Rocket Equation for Modular Boosters

• Assuming n modules in stage 1,

• If all 3 stages use same modules, nj for stage j,

• where

r1 =n mi( ) + mo,2

n mi + mp( ) + mo,2

=

nε +mo,2

mo,mod

n +mo,2

mo,mod

r1 =n1ε+ n2 + n3 + ρLn1 + n2 + n3 + ρL

ρL =mL

mmod; mmod =mi + mp