dr. arun kumarweb.iitd.ernet.in/~arunku/files/cvl212_y17/airpollution_intro.pdf · dr. arun kumar...

32
Air Pollution-Introduction for CVL212-Environmental Engineering (Second Semester 2017-18) Dr. Arun Kumar Civil Engineering (IIT Delhi) [email protected] Courtesy: Dr. Irene Xagoraraki (U.S.A.)

Upload: others

Post on 24-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

Air Pollution-Introductionfor CVL212-Environmental Engineering

(Second Semester 2017-18)

Dr. Arun Kumar Civil Engineering (IIT Delhi)

[email protected]

Courtesy: Dr. Irene Xagoraraki (U.S.A.)

Page 2: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 2

Plumes

neutral

under inversion layer

Above inversion

Page 3: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 3

Prediction for Pollutant Concentration

Page 4: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 4

Point-Source Gaussian Plume Model

Page 5: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 5

Point-Source Gaussian Plume Model

Page 6: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 6

Point-Source Gaussian Plume Model

• Model Structure and Assumptions

– pollutants released from a “virtual point source”

– advective transport by wind

– dispersive transport (spreading) follows normal (Gaussian)distribution away from trajectory

– constant emission rate

– wind speed constant with time and elevation

– pollutant is conservative (no reaction)

– terrain is flat and unobstructed

– uniform atmospheric stability

Page 7: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 7

Effective Stack Height

Where:

H = Effective stack height (m)

h = height of physical stack (m)

∆H = plume rise (m)

HhH ∆+=

Page 8: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 8

Effective Stack Height (Holland’s formula) for

neutral conditions

where vs = stack velocity (m/s)

d = stack diameter (m)

u = wind speed (m)

P = pressure (kPa)

Ts = stack temperature (ºK)

Ta = air temperature (ºK)

( )

−×+=∆

−d

T

TTP

u

vH

a

ass 21068.25.1

Page 9: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 9

• How much will be % error in C(x,0,0) if one uses Heffective(unstable) for stability class? Think qualitatively.

Page 10: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 10

Atmospheric Stability Categories

Page 11: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 11

Horizontal Dispersion

Page 12: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 12

Vertical Dispersion

Page 13: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 13

Wind Speed Correction

• Unless the wind speed at the virtual stack height is known, it must be estimated from the ground wind speed

Where: ux = wind speed at elevation zx

p = empirical constant

p

z

zuu

=

1

212

Page 14: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 14

Example 2

• A stack in an urban area is emitting 80 g/s of NO. It

has an effective stack height of 100 m. The wind speed is 4 m/s at 10 m. It is a clear summer day with the sun nearly overhead.

• Estimate the ground level concentration at: a) 2 km downwind on the centerline and b) 2 km downwind, 0.1 km off the centerline.

Page 15: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 15

1. Determine stability class

Assume wind speed is 4 km at ground surface. Description suggests strong solar radiation.

Stability class B

Example 2

Page 16: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 16

2. Determine σy and σz

σy = 290, σz = 220

290

220

Example 2

Page 17: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 17

3. Estimate the wind speed at the effective stack height

Note: effective stack height given – no need to

calculate using Holland’s formula

Page 18: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 18

4. Determine concentration

a. x = 2000, y = 0

−=

22

220

100

2

1exp

290

0

2

1exp

)6.5)(220)(290(

80)0,2000(

πC

33 µg/m g/m 3.641043.6)0,2000( 5=×=

−C

Example 2

Page 19: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 19

b. x = 2000, y = 0.1 km = 100 m

−=

22

220

100

2

1exp

290

100

2

1exp

)6.5)(220)(290(

80)100,2000(

πC

33 µg/m g/m 6.601006.6)0,2000( 5=×=

−C

Example 2

Page 20: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 20

Example 3

• If in example #2, there is another stack (downwind distance from 1st stack =500m) with physical height (203m). Now, calculate overall ground level concentration at 2 km downwind on the center line? This 2nd stack is also emitting NO at same 80 g/s rate (all other conditions remain constant) (for stack #2: inside diameter =1.07m; air temp:13degC; barometric pressure =1000 milibars; stack gas velocity=9.14m/s; stack gas temp: 149degC)

Page 21: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 21

Example 3 hints

• From stack #1, we know conc (C1)

• For stack #2, first calculate effective stack height using Holland’s formula� then calculate conc. at given

distance using approach given in Example 2 (apply correction for x= distance of receptor from stack #2)�say we get conc. C2

• Now total conc. at receptor =Ctotal=C1+C2

• Now see if this is less than Callowable

• If not, then we need to control stack heights or source strength

Page 22: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 22

Example 4

• Question: Suppose an anemometer at a height of 10 m above ground measure wind velocity =2.5m/s. estimate the wind speed at an elevation of 300 m in rough terrain if atmosphere is unstable (i.e., k=0.2)?

• Answer:

• U300/u10=(300/10)(0.2)

• Wind velocity at 300m=(2.5)*(30)(0.2)=4.9m/s

p

z

zuu

=

1

212

Page 23: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 23

CPCB minimum guideline for stack

based on SO2 emission

• CPCB minimum stack height =30m

• So Choose maximum (30m; hSO2)

Page 24: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 24

Example 5

• A 40% efficient 1000MW coal fired power plant emitts SO2 at rate =6.47*108 microgram/s. the stack has effective height =20m (CPCB recommended minimum height =30m). An anemometer on a 10-m pole measures 2.5m/s of wind and atmospheric class is C.

• Predict the ground-level concentration of SO2 4 km directly downwind?

• What would be this concentration if stack height is changed to 30 m?

• What is the recommended stack height based on SO2 emission rate?

• Which stack height would you choose?

Page 25: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 25

Example 6

• Repeat Example 5 for stability classes : B,C and D for calculating C(x,0,0) where X=0-100m with 4 m gap. Now plot C(x,0,0) versus distance or for different stability classes. Use effective height obtained from Example 6.

Page 26: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

appendix

May 3, 2018 [email protected] 26

Page 27: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 27

Dry Adiabatic Lapse Rate

Temperature, T (oC)

Altitu

de

, z (

km

)

Adiabatic lapse rate

1

2

= (T2-T1)/(z2-z1)

When any parcel of air moves up or down, it’s

temperature will change according to the adiabatic

lapse rate

For this parcel of air the

change in temperature with

altitude was:

T1T2

z1

z2= (10-20)oC/(2000-1000)m

= -1 oC/100m

Page 28: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 28

Stability

• Dry adiabatic lapse rate: temperature decreases with increased altitude

• Atmospheric (actual) lapse rate

< Г (temperature falls faster) unstable (super-adiabatic)

> Г (temperature falls slower) stable (sub-adiabatic)

= Г (same rate) neutral

ft 1000F mC/100 /4500.1 °=°−=−=Γ .- dz

dT

Page 29: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 29

Example 1

Z(m) T(ºC)

10 5.11

202 1.09

C/m °−=−

−=

−=

∆0209.0

10202

11.509.1

12

12

zz

TT

z

T

m C/100 °−= 09.2

Since lapse rate is more negative than Г, (-1.00 ºC/100 m)=> atmosphereis unstable

Page 30: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 30

Unstable Conditions Rapid vertical mixing

takes place.

-1.25 oC/100 m < -1 oC/100m Unstable air encourages the dispersion and dilution of pollutants.

actual temperature falls faster than Г

Page 31: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 31

Stable Conditions Air at a certain altitude remains

at the same elevation.

-0.5 oC/100 m > -1 oC/100m

Stable air discourages

the dispersion and dilution of pollutants.

actual temperature falls slower than Г

Page 32: Dr. Arun Kumarweb.iitd.ernet.in/~arunku/files/CVL212_Y17/AirPollution_intro.pdf · Dr. Arun Kumar Civil Engineering (IIT Delhi) arunku@civil.iitd.ac.in Courtesy: Dr. Irene Xagoraraki

May 3, 2018 [email protected] 32

Neutral Conditions Air at a certain altitude remains

at the same elevation.

Neutrally stable air discourages the dispersion

and dilution of pollutants.

-1 oC/100 m = -1 oC/100m